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Abstract—The master equation approach is used to describe the evolution of the two-level atom in a squeezed
vacuum with finite bandwidth. The master equation is derived under the Born and Markov approximation that
require the squeezed vacuum bandwidth to be much larger than the atomic linewidth, but not necessarily larger
than the Rabi frequency of the driving field. It takes into account the detuning of the laser field from the atomic
resonance. Examples of the fluorescence and absorption spectra are derived and compared to their equivalents

for the broadband squeezing.

1. INTRODUCTION

In some circumstances, squeezed vacuums can
assume the role of a reservoir to the atom, but properties
of such reservoirs are quite different from ordinary vac-
uum. Squeezed vacuums are a reservoir with strong cor-
relations between the field amplitudes at frequencies
placed symmetrically with respect to a certain carrier
frequency ,, and the evolution of a quantum system in
such an unusual reservoir exhibits a number of new fea-
tures. The first paper showing new features of such res-
ervoirs was published by Gardiner 1], and later much
work has been done to study the resonance fluorescence
and probe absorption spectra of two- and three-level
atoms in a squeezed vacuum [2—-8]. Most of the studies
dealing with the problem of a two-level atom in a
squeezed vacuum assume that the squeezed vacuum is
broadband; i.e., the bandwidth of the squeezed vacuum
is much larger than the atomic linewidth and the Rabi
frequency of the driving field. Experimental realizations
of squeezed states [9-12], however, indicate that the
bandwidth of the squeezed light is typically of the order
of the atomic linewidth. The most popular schemes for
generating squeezed light are those using a parametric
oscillator operating below threshold, the output of
which is a squeezed beam with a bandwidth of the order
of the cavity bandwidth [13, 14].

Initial studies of the finite-bandwidth effects were
performed by Gardiner et al. [13], Parkins and Gardiner
[15] and Ritsch and Zoller [16]. The approaches were
based on stochastic methods and numerical calcula-
tions and were applied to analyze the narrowing of the
spontaneous emission and absorption lines. The funda-
mental effect of narrowing has been confirmed, but the
effect of finite bandwidth was to degrade the narrowing

1 Proceedings of VII International Seminar on Quantum Optics.
2 This article was submitted by the authors in English.

of the spectral lines rather than enhance it. Later, how-
ever, numerical simulations done by Parkins [17, 18]
demonstrated that, for strong driving fields, a finite
bandwidth of squeezing can have a positive effect on
the narrowing of the Rabi sidebands.

Yeoman and Barnett [19] have recently proposed an
analytical technique for investigating the behavior of a
coherently driven atom damped by a squeezed vacuum
with finite bandwidth. In the approach, they have
derived a master equation and analytic expressions for
the fluorescent spectrum for the simple case of a two-
level atom exactly resonant with the frequencies of
both the squeezed field and the driving field. Their ana-
lytical results agree with that of Parkins [17, 18] and
explicitly show that the width of the central peak of the
fluorescent spectrum depends solely on the squeezing
present at the Rabi sideband frequencies. They have
assumed that the atom is classically driven by a reso-
nant laser field for which the Rabi frequency is much
larger than the bandwidth of the squeezed vacuum,
though this is still large compared to the natural line-
width. Unlike the conventional theory based on uncou-
pled states, it is possible to obtain a master equation
consistent with the Born-Markov approximation by
first including the interaction of the atom with the driv-
ing field exactly, and then considering the coupling of
this combined dressed-atom system with the finite-
bandwidth squeezed vacuum. The advantage of this
dressed atom method over the more complex treat-
ments based on adjoint equations or stochastic methods
[17, 18, 20] is that simple analytical expressions for the
spectra can be obtained. Within the secular approxima-
tion, the idea of Yeoman and Barnett has recently been
extended by Ficek et al. [21, 22] to the case of a fully
quantized dressed-atom model coupled to a finite band-
width squeezed field inside an optical cavity.
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Recently, Tanas$ et al. [23] extended the Yeoman and
Barnett [19] technique to include a nonzero detuning of
the driving field from the atomic resonance and derived
the master equation for a two-level atom driven by a clas-
sical laser field damped by a finite-bandwidth squeezed
vacuum. Here, we use this master equation to study the
fluorescence and probe absorption spectra for the two-
level atom driven by a classical external field and
damped by a squeezed vacuum with finite bandwidth
produced by a degenerate parametric oscillator (DPO).

2. MASTER EQUATION

We consider a two-level atom driven by a detuned
monochromatic laser field and damped by a squeezed
vacuum with finite bandwidth. Applying the approach
of paper [23], which is based on the idea of Yeoman and
Barnett [19], being in turn an extension of the model
proposed by Carmichael and Walls [24] and Cresser
[25], we derive a master equation of the system which
includes squeezing bandwidth effects. In this approach,
we first perform the dressing transformation to include
the interaction of the atom with the driving field, and
then we couple the resulting dressed atom to the narrow
bandwidth squeezed vacuum field. We derive the mas-
ter equation under the Markov approximation which
requires the squeezing bandwidth to be much greater
than the atomic linewidth, but not necessarily greater
than the Rabi frequency of the driving field and the
detuning. For the sake of simplicity, we assume that the
squeezing properties are symmetric about the central
frequency of the squeezed field which, in turn, is
exactly equal to the laser frequency. Our approach dif-
fers from that of Yeoman and Barnett in performing the
Markov approximation in the time domain rather than
the Laplace transform variable domain with pole
approximation, and in adding a nonzero detuning.

The resulting master equation in the frame rotating
with the laser frequency o, takes the form [23]
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where ¥ is the natural atomic linewidth, & is the Rabi
frequency, A = ®; — ®, is the detuning of the laser field
frequency from the atomic resonance,
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and ¢ is the phase of squeezing M(w) = |M(®)|exp(id).

In the derivation of equation (1), we have assumed that
the phase ¢ does not depend on frequency [26], and we
have included the divergent frequency shifts (the Lamb
shift) with the redefinition of the atomic transition fre-
quency [27]. Moreover, we have assumed that the
squeezed vacuum is symmetric around the central fre-
quency ;, so that N(®, — Q") = N(w, + '), and a sim-
ilar relation holds for M(w).

The master equation (1) has the standard form
known from the broadband squeezing approaches with

the new effective squeezing parameters N and M
given by (2) and (3). There are also new terms propor-
tional to B which are essentially narrow bandwidth
modifications to the master equation. All the narrow
bandwidth modifications are determined by the param-
eter I'_ given by (6), which represents the difference
between the squeezing values at the central line and the
sidebands, and the shifts 8y and J,, defined in (7). They
all become zero when the squeezing bandwidth goes to
infinity.

The squeezing induced shifts 8y and J,, depend on
the explicit form of N(w) and |M(®)|. For a degenerate
parametric oscillator (DPO), the squeezing properties
are described by [13]
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where x = ® — ®,, and A and p are related to the cavity

damping rate, ¥,, and the real amplification constant, €,
of the parametric oscillator according to

n=y.—¢€

The Cauchy principal values of the integrals (7) can
be evaluated using the contour integration which gives

A=Y, +e,
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where the form of §, and , for the degenerate paramet-
ric oscillator is given by
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From the master equation (1), we easily derive the
optical Bloch equations for the mean values of the
atomic operators

(60 = —Y(%+Iv—i8)<c_)—y11~4(o+) +%Q<O-Z>,
(6) = iQ+B*) (o) —i(@+B)(oy
—y(1+2N){c) -¥.

The equation for (o, ) is obtained as a Hermitian conju-
gate of equation for (_).

Defining the Hermitian operators G, and G, as

1 1
G, = i(c—+c+)’ o, = 2_1-(0—"0-+)’ (14)

we get from (13) the following equations of motion for
the atomic polarization quadratures
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The Bloch equations (15) clearly show the two differ-

+N +ReM) andyy=\((l +

2

ent decay rates Y, = Y(l 2

N -Re M) for the two quadrature components of the
atomic dipole (G,) and {o,) which are already known
from the Gardiner paper [1], but now the squeezing

parameters N and M are more complicated. We can
also see that the purely narrow-bandwidth features rep-

resented by ImM and B introduce additional couplings
between the components of the Bloch vector.
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3. SPECTRA

The fluorescence and probe absorption spectra of a
two-level atom are given by the Fourier transforms of
the two-time atomic correlation functions

F(w) = %Re{j(cs+(0)0_('c))”ei(m_m‘)rd'c}, (16)
0

A(®) = %Re{ _[ ([6.(T), o+(0)1>ssei““‘°’L)‘d~c}, 17)
0

where Re denotes the real part of the integral. The
Bloch equations (13), together with the quantum
regression theorem [28], give the following equations
of motion for the two-time atomic correlation functions
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and the initial values for the correlation functions are
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Taking the Laplace transform of (18), we obtain the
system of algebraic equations for the transformed vari-
ables which can be easily solved [23]. For the Laplace

transform of the correlation function (0,(0)0_(1)),,, We
get

F(z) = Zd—l(z){—i<o+)”%[yz(% +N+M+ iS)
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and similarly for the Laplace transform of the differ-
ence (6_(1)0,(0)),, — (6.(0)0_(7)),,, We get
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with d given by (23).
The spectra F(m) and (w) are then given by

F(o) = ;IERC{F(Z)ln “i(w-wp) b
(27)

H(®) = SR{AWD), 0 ap}

For the simplest case of resonant driving field, A =
0, and the squeezed vacuum phase ¢ = 0, T we have N ,

M , and P real, and & = 0. In this case, the characteristic
polynomial (26) factorizes and its roots are given by

W= Ve =3 VIEQe  (8)
where
Y, = yG+N+M) Y, = y(%HV—M), 29)
Y: = Yxt Yy
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=4l
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F[N(oy)-N(o, + Q)11
B = 8,15, (33)

In (31)-(33), the upper sign corresponds to ¢ = 0 and
the lower sign to ¢ = 7. The roots (28) are all real for
QQ+B)-y2/4<0,and, if QQ +B)— v /4> 0,z
becomes a complex conjugate pair with €2 replaced by
iC2z. They define the widths of the spectral lines and the
effective Rabi frequency. It is clear that Q(Q + ) —
Yf /4 = 0 is a threshold at which the character of the
solution changes.

Above the threshold Q(Q + B) — 'Yf /4 > 0, the inco-

herent part of the fluorescence spectrum (the coherent
delta function part of the spectrum is subtracted) is
given by the following formula

1 Yx

Fo = Fo"(w ©) +v;

Fa(yy;Y“) +F(o-0,+Qp)
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+
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The absorption spectrum () has the same structure
as (), but with the replacement F; — A; according
to

v2Q -v,-v,)

Y, Y,
A 8DQ;

A0=ﬁ’ a—4__5’ Ad=

.(37)

Formula (34) reveals the well-known three-peak
structure. For large Rabi frequency €2, the amplitudes
F, and F, become independent of Q and F, ~ Q!, and
the fluorescence spectrum exhibits three Lorentzian
lines: the central line at ®, and two sidebands at &, + Q.
In the case of the absorption spectrum, Ay and A, go as
Q2,and A, ~ Q! is the dominant term in the spectrum.
The absorption spectrum in the strong field limit shows
dispersion features at the sidebands. The widths of the
lines as well as their amplitudes depend on the band-
width of the squeezed vacuum and can be calculated
explicitly using our formulas.

Below the threshold, Q(Q + B) — yf /4 < 0, and for
¢ =0, 7, and A = 0, the spectrum takes the form

1 x
F() = Fo,;—y—zz
(0-,)" +v;
Y, +Y
1 F*( y2 Z+QR)
= Y, +Y 2
@-0+ (Bt (38)
Yy +Y¥:
1 ( 2 QR)
+;I: N 3
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with
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D—YYy
4D °

F0=

(39)
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D = Q(Q+B)+v,Y,, Q ,/4Yx Q(Q +B),(40)

and for the absorption spectrum () we should
replace F’s by

Y(2Q7 —y,y, 2 2Q,)
8D, )

In this case, there are three Lorentzian contributions to
the spectrum, all of them centered at the laser fre-
quency, but with different linewidths.

Formulas (34) and (38) are analytical solutions for
the fluorescence and probe absorption spectra for a res-
onantly driven atom in the finite bandwidth squeezed
vacuum. It is clear that, on resonance and for ¢ = 0, the
spectrum is symmetric with respect to the laser fre-
quency ©, = w,. Below the threshold, it shows Lorent-
zian shape contributions with different widths at the
laser frequency, and above the threshold it exhibits a
Lorentzian line at the laser frequency, and Lorentzian
as well as dispersion features at the Rabi sidebands. For
a finite bandwidth squeezed vacuum, the widths and the

amplitudes of the lines are defined by N, M, and B
given by (31)—~(33). They take the form

Y,
2D’

Ag = A, =+ (41)

Yy = Y{%+N(0)L+Q)i‘|M((DL+Q)|}, 42)

Yy = Y{% +N(oy) T |M(o,)| }’ 43)

where the upper sign corresponds to ¢ =0 and the lower
sign to ¢ = 7. For broadband squeezmg, N(w) and M((o)

do not depend on ®, which means that N=Nand M =
*|M| are constants describing the broadband squeezing.
In this case, the shifts 8y and §,, are zero, and conse-
quently B = 0. For ordinary vacuum y, =¥, = /2 and the
spectrum simplifies to the standard form [29, 30].

From (42), it is clear that the width of the central
line, as well as the effective Rabi frequency, are defined
by the squeezing properties on the sidebands only,
while the widths of the sidebands depend on the
squeezing properties at the laser frequency as well as at
the sidebands. This feature has been found by Yeoman
and Barnett [19] who discussed the resonance fluores-
cence spectrum. When squeezing at the sidebands is
large, ¥y, for ¢ = O is large and the first contribution to
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Fig. 1. Fluorescence spectrum for €/y, = 0.5 (M(w,) = 1.78,
IM(wp)} = 2.22), ¢ = 0, solid line—finite bandwidth with
Y./Y = 10, dashed line—broadband squeezing: (a) above
threshold (Q = 10) and (b) below threshold (Q = 0.5).

(34) and (38) is just a flat Lorentzian with the width
comparable to the other contributions. For ¢ = 7, v, is
small, which means that the first contribution to the
spectrum is the peak at the laser frequency which is
much narrower than the other contributions.

In Fig. 1, we have plotted examples of the resonance
fluorescence spectrum for both the above threshold
(Fig. 1a) and the bottom threshold (Fig. 1b) situations,
for ¢ = 0. The solid lines represent the spectrum for the
finite bandwidth squeezed vacuum calculated accord-
ing to our formulas, which is compared to that obtained
for broadband squeezing. The parameters we used to
calculate the spectrum are: €/y, = 0.5, which gives
Nw,) = 1.78 and |M(0,)] =2.22, A=0, y./y = 10 for
narrow bandwidth (solid lines), y,/y = 100000 for

A(w) x 10°
St @

0 1
-10 -5 0 5 10
(0-oply

Fig. 2. Absorption spectrum for €/y, = 0.5 (N(w,) = 1.78,
IM(wy)l = 2.22), ¢ = 0, solid line—finite bandwidth with
¥./¥ = 10, dashed line—broadband squeezing: (a) above
threshold (w = 10) and (b) below threshold (Q = 0.5).

broadband squeezing (dashed lines), Q = 10 for Fig. 1a,
and Q = 0.5 for Fig. 1b. This example shows that the
character of the spectrum is generally preserved when
the bandwidth of squeezing becomes finite, but the
parameters of the spectral lines such as their widths can
be essentially modified.

In Fig. 2, we illustrate the probe absorption spec-
trum for the same set of parameters as Fig. 1. Figure 2a
shows modification of the dispersive profile of the
absorption spectrum for strong driving fields, and
Fig. 2b shows a hole-burning feature discussed for
broadband squeezing by Zhou ez al. [31] that exist also
for the narrow bandwidth, but is not as deep as for the
broad bandwidth. Modification of the Rabi sidebands
shown in Fig. 2a agrees qualitatively with that obtained
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by Bosticky et al. [22] under the secular approximation,
which requires sufficiently strong driving fields.

Generally, the roots of the characteristic polynomial
are rather complicated, and the spectrum cannot be
written in such a simple form as (34) or (38). Neverthe-
less, the analytical formulas for the Laplace transforms
of the atomic correlation functions F(z) and A(z), given
by (24) and (25), are still available, and the spectrum
can be obtained according to (27). For nonzero detun-
ing and/or squeezing phase ¢ # 0, &, the spectrum is no
longer symmetric and exhibits a number of interesting
features which appear for the driving fields with the
Rabi frequencies comparable to the atomic linewidth.
For broadband squeezing, such features have recently
been discussed by Ficek et al. [32]. For such fields, the
secular approximation is not valid, but our approach is
still applicable and can be used to find the modifica-
tions of the spectra when the bandwidth of the squeezed
vacuum becomes finite.

4. CONCLUSIONS

We have derived simple analytical formulas for the
resonance, fluorescence, and absorption spectra of a
driven two-level atom damped to a squeezed vacuum
with finite bandwidth. The derivation is based on the
master equation which is valid for the bandwidth of the
squeezed vacuum much larger than the natural line-
width of the atom but not necessarily larger than the
Rabi frequency of the driving field. This allows us to
study the spectra for both weak and strong fields. The
formulas obtained in the paper give better insight into
the physical origin of the spectral features that appear
when the atom is damped to a squeezed vacuum with
finite bandwidth. If the squeezing bandwidth becomes
large, our results reproduce the results known for
broadband squeezing. We have shown examples of the
spectra above and below the threshold for the Rabi
oscillations. This threshold depends on the parameters
describing squeezed vacuums.

The master equation approach presented here leads
to rather simple analytical expressions for the spectra,
but the applicability of the approach is restricted by the
Markov approximation used to derive the master equa-
tion, which requires the bandwidth of the squeezed vac-
uum to be much larger than the atomic linewidth. Vio-
lating this requirement can even lead to unphysical
results. For the bandwidth of the squeezed vacuum,
comparable with the atomic linewidth, the non-Mark-
ovian approach is necessary.
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