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Some effects of non-classical light on an atom

We consider a three-level atom in a V configuration damped 1o a broadband squeezed vacuum and
driven on one of its allowed transitions (pump transition) by a coherent laser field. The resonance
fluorescence spectrum and the probe absorption spectrum on the other allowed transition (probe
transition) is studied for two cases: (i) carrier frequency of squeezed vacuum is tuned to the probe
transition, and (ii) carrier frequency of the squeezed vacuum is tuned to the pump transition.

1. INTRODUCTION

Non-classical light exhibits a number of features that cannot
be observed with classical light. The non-classical light can be
generated in nonlinear optical processes. Properties of such non-
classical light have been studied for many years by Professor Jan
Perina and his collaborators in Olomouc. The subject and results
of many research works in this field have been covered in details
in an excellent book of Professor Perina on ,, Quantum Statistics of
Linear and Nonlinear Optical Phenomena*“, the second edition of
which appeared in 1991 [1]. The literature related to non-classical
light contains already enormous number of papers and is still grow-
ing. References to a substantial part of the literature can be found
in Professor’s Perina book. Beside the problems associated with
the properties of non-classical light itself that are a subject of in-
tensive research, the old problems that involved ,classical® fields
(ordinary vacuum, for example, is considered in this respect as
classical) are reconsidered with the non-classical light replacing
the classical one (squeezed vacuum, for example, instead of ordi-
nary vacuum), which leads to new and sometimes unexpected be-
havior of the well known systems. In this paper we consider a three-
level atomic system in the V configuration which is coherently
pumped on one of the allowed transitions (pump transition) and is
damped to the squeezed vacuum instead of the ordinary vacuum.
Moreover, we assume that the two allowed atomic transitions are
coupled by a non-zero coherence transfer rate. We study resonance
fluorescence and probe absorption spectra on undriven transition
(probe transition).

The Mollow treatment [2] of a driven system of two level at-
oms with an off resonant field predicted that the absorption spec-
trum contains one absorption and one emission peak at the Rabi
sidebands and a small dispersion profile at the central frequency.
However, for a resonant driving field the central component of the
spectrum disappears and the absorption spectrum exhibit disper-
sion-like profiles located at the Rabi sidebands. When atoms are
damped into a squeezed vacuum, they interact with a modified
electromagnetic vacuum and thus, their radiative properties change.
It is well known [3-8] that there are essential differences between
the atomic decay in an ordinary vacuum and the corresponding
decay in a squeezed vacuum. For example, the atomic dipole de-
cay rate depends on its phase difference with respect to the squeezed
vacuum, the resonance fluorescence and probe absorption spectra
also depend on the relative phase between the coherent driving
field and the squeezed vacuum. The line-widths of the spectra can
be drastically reduced for a particular choice of this phase differ-
ence. Recently, it has been shown [9], that the fluorescence spec-
trum can be asymmetric even if the atoms are driven by a resonant
field. This feature arises from the fact that the relative phase be-
tween the squeezed vacuum and the driving field, if chosen be-
tween 0 and =, makes unequal populations of the dressed states.
Moreover a small change in the Rabi frequency, phase, and detun-
ing will result in the spectrum loosing its dispersive profiles. Ficek
et al. [10] has studied the asymmetric probe-absorption spectrum
and amplification without population inversion of a two level atom
damped by a broadband squeezed vacuum. They have shown that
a resonant driving field which is out of phase with the squeezed

vacuum can be asymmetric. This feature is again due to the fact
that unequal populations of the dressed states of the driven system
have been produced. They have also shown that the amplification
of the probe field at the central frequency is not due to any popula-
tion inversion in both bare and dressed states, but it is rather relat-
ed to the coherent population oscillations, and it cannot appear in
the absence of the squeezed vacuum.

Since the squeezed vacuum is characterized by correlated pairs
of photons, it is quite natural to expect that two-photon transitions
in multilevel atoms should be significantly affected by the pres-
ence of the squeezed vacuum. Such a situation occurs, for instance,
when the the carrier frequency of the squeezed vacuum is chosen
s0 as to its double is tuned to resonance between the lower and
upper states of the three-level cascade system. The two-photon
correlations present in the squeezed vacuum have in this case dra-
matic influence on the steady-state populations of the atom
[6,11-13]. The results for three-level systems driven by two inde-
pendent laser beams show [7, 14,15] that the relative heights and
widths of the peaks in the resonance fluorescence spectra can be
sub-natural or supernatural depending on the relative phase be-
tween the driving fields and the squeezed vacuum, similarly as in
two-level systems. Recently, Ferguson et al. {16] have examined
the effect of a single broad-band squeezed vacuum on the station-
ary populations and coherences in a three-level atom in lambda
configuration that is driven by two independent laser fields. They
also included the coherence transfer rates that couple the two al-
lowed atomic transitions. The squeezed vacuum together with the
nonzero atomic coherence transfer rate lead to the nonzero steady-
state atomic coherences [17] in a three-level atom under certain
conditions.

In this paper, we will study the effect of the squeezed vacuum
on the fluorescence and absorption spectra for a three level V-type
system driven by a coherent laser field on one of the allowed tran-
sitions, which we call the pump transition/and damped to a squeezed
vacuum which is tuned to either the probe transition or to the pump
transition. The spectra are calculated for the atomic transition that
is not pumped by the coherent field, which we call the probe tran-
sition. We also take into account the atomic coherence transfer
rate. We discuss some new features of the spectra that are due to
the squeezed vacuum.

2. THE MODEL AND EQUATIONS OF MOTION

We consider an atom with three levels in a V configuration
shown schematically in Fig./. The system has the lower state |1),
and the two upper states |2) and |3). The atom is pumped by a
coherent field with the Rabi frequency 2 (our £2is in fact one half
of the resonant Rabi frequency) on the transition |1) <> {3) and
probed by a weak field with the strength 2 on the transition
[1) <> |2). Moreover, the atom is damped to a broadband squeezed
vacuum with the frequency @, The master equation for such a
system takes the form

dp_ 1 )
o = el e,

where H is the Hamiltonian of the system, which in the rotating
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wave approximation is given by

H = hoo ) [2)(2]+ hieo 5, |3)(3]+ n2e™¥| 1)(3] +
+hQ e |1)(2]+ H.c..

@

In equation (2) @, is the energy of the level i (level | is assumed to
have zero energy), o,

13> v

12>

11>

Figure 1: Schematic diagram of the system

is the frequency of the pump field acting on the atomic transition
1, i.e., the transition | 1) <> |3), @, is the frequency of the probe
field acting on the atomic transition 2, i.e., the transition | 1) <> |2).
The second term £p which describes various damping terms, is the
effect of the reservoir on the atom and is given by [16]

Lp=-L(N+ 1)21}-(/)0‘}“6} +oioip- 20';p0';')
iJ
—%NZFU(pO';O'; +o-,70’f;p~20‘;pc7,7)
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The parameters I, are the relaxation rates; for i = j they describe

spontaneous dampmg rates I, = Y I,, =y, fromthe level [3) &> | 1)
and |2) & | 1), respectively, for i # j we have the cross relaxation

rate I', = I, =y, that couples the two atomic transitions and is
given by [ 16]
Hizg M (03 3 (4)
LE W3 W5 ).
‘ 127T£0hc3( 3 21)

The operators 57, s* (i = 1, 2) are the atomic lowering and raising
operators for the transition /, i.e., o7 =|1)(3|, o =|1X2, etc. The
parameter N is the mean photon number of the reservoir, which in
our case is the broad-band squeezed vacuum, and M =|M| exp(ig)
is a complex number describing the photon correlations present in

the squeezed vacuum with the carrier frequency e, and the phase ¢.

The parameter M must satisfy the inequality IM [ ,/ N + 1)
The master equation (1), under the assumption that .Q =0,

leads to the following set of equations for the atomic densny ma-

trix elements (in a frame rotated with respect to , and ®,)
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where the parameters y; are given by:

Yi2= (N+1)7’2+ Ny,
Yi3=(N+1y, +3NY,, (6)
125 ZEI(NH)(J’z +71)s

0, =0, —0,,6,= 1, —1,, A, =0, -0, A, - @,
A=20 -0 -0, p,is the complex conjugate ofp ) and the trace
condition oyt p22 + Py, = 1 have been used in (5). Since we have
assumed 2 = 0, we have actually assumed that the atomic coher-
ences p,, and p, have been rotated with respect to the atomic fre-
quency @, instead of the frequency w,, so 8, = 0, and we will
simplify the notation using &, = & later on.

3. Resonance fluorescence and probe absorption spectrum

We study here the radiative properties of the atom associated
with the atomic transition | 1) <> |2), which is not pumped by the
coherent light. The only mechanism that can populate the state |2)
is due to the nonzero value of the mean number of photons N in the
squeezed vacuum. However, the squeezed vacuum introduces some
extra couplings to the equations (5) through the parameter M, which
modify the radiative properties of the atom. We calculate the reso-
nance fluorescence as well as absorption spectrum of light on the
probe transition showing the appearance of an additional structure
that is introduced by the squeezed vacuum.

The fluorescence spectrum is defined by the Fourier transform
of the correlation function

Flt+7)= <E(_)(r,t)E(+)(r,t+r)> 0]

of the electric field emitted by the atom, where E® are the positive
and negative frequency parts of the total field operator. The field
correlation function (7) is proportional to the atomic correlation
function

Fit+7)~(o" (o~ (r+7)). ®

342

JMO 11-12/98



According to the quantum regression theorem, this two-time cor-
relation function can be calculated from the equations of motion
for the expectation values of the atomic Jowering operator

o~ (1 + T) . Once the atomic correlation function (8) is known, the
steady-state resonance fluorescence spectrum can be calculated as
the Fourier transform of this function from the formula

Flo)= Rej(j"<a+(z)a-(t,z+ o)) de. ©)

Similarly, the absorption spectrum can be calculated according to
the formula [2]

S(@)=Re j( ‘)’°<[o+(t+ r),c“(l)]>ei“’7df.

The correlation functions (9) and (10) are calculated using the quan-
tum regression theorem in the absence of the probe field using
equations (5). Generally, equations (5) cannot be solved directly
because the matrix of the coefficients is time dependent. To get rid
of this time dependence we choose the carrier frequency o, of the
squeezed vacuum to be resonant, or nearly resonant, with one of
the allowed transitions, and we discard in equations (5) all rapidly
oscillating terms (secular approximation).

0

3.1 Squeezed vacuum frequency tuned to the probe transition

We assume that the atom is non-degenerate, so the fast oscillat-
ing terms that oscillate at the frequency A, can be neglected, and if
the squeezed vacuum is tuned to the probc transition (A | = 0), the
terms that oscillate at the frequencies A , and A are also fast oscil-
lating, and they can thus be neglected. As a result the equations (5)
can be written in the form

P .
P = (NG +72)+ (N + )y oy + 9015+ (N +1)(72 71 )22,

—iQpy +(N+1)y,,
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ot

The steady-state solution to equations (11) can be found by
putting their left hand side equal to zero and solving the resulting
algebraic set of equations. In this way we get formulas for the
steady-state values of the populations p,,, p,, and the coherence
ps,- The steady-state value for the coherence p, is equal to zero, as
one could expect because this transition is not pumped. The results
are found to be

(N +1)((N+1)y 1y 13 +2027)

PO NI OGN + )y 7151 20N +2)2°
_ N((N+1)Y|713+2~QZ) 1
P Ny e 20N+ 222 )
—i{N+1)y 02
P31 = ( ) l

(N+1)(3N + Ly 715 +2(3N +2)2°

It is clear from the solutions (12) that they depend on the mean
number of photons in the squeezed vacuum ¥, but they do not
depend on the parameter M describing correlations in the squeezed
field. For Q2 =0, p,, = 0, and the atomic populations are the same
as in a thermal field with the same mean number of photons. This
means that the steady-state expectation values of the atomic oper-
ators are not affected by the presence of photon correlations in the
squeezed vacuum. The results do not depend also on the coher-
ence transfer rate y, given by (4). The situation can, however, be
different when the fluorescence and/or absorption spectrum is cal-
culated. The spectra are defined by the two-time correlation func-
tions (9) and (10) that can be sensitive to the presence of correla-
tions in the squeezed light. We will show that this is really the
case.

We calculate the fluorescence spectrum and the absorption spec-
trum for the probe transition, using formulas (9) and (10), for the
case when the squeezed vacuum frequency is resonant with the
atomic transition | 1) <> |2). This means that we calculate the spec-
tra for the atomic transition that is not pumped by the laser field.
The mechanism that populates state |2) is due to the squeezed vac-
uum field with the mean number of photons N, as it is clear from
(12). The spectra are given by

(Z+723“i5)P22

F(w)=Re . (13)
7%((Z+723)2+52) 2
A_(z.9Q)- M|
A+(Z’Q) z=i(w-0y)
S(@)=R (Z+723“’52)(Pu‘Pz;)—‘zﬂpsl a4
72((z+723) +8 ) )
A_(z9)- |M]|
A+(Z’Q) z=i{w-0y)
where

Ai(Z’Q)= 2 +(712 +723)Z+?’127’23 +0? ii5(z+723). (15)

0.06

F(w-0,)

Fig. 2 The fluorescence spectrum on the probe transition when the
squeezed vacuum frequency is tuned to the probe transition for different
values of 2 = 1.7, 7.7, 13.7. The other parameters are:
N=1,M=+2,y,=7=1,Q2 =10and § = 0. Solid line represents the
spectrum for the squeezed vacuum and dotted line for thermal field
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It is clear from (13) and (14) that for M = 0, the denominator is a
polynomial of the second order in z. This means that for the ordi-
nary vacuum or thermal light the spectrum can show only two
Lorentzian peaks. The situation is different for M # 0 in which
case there can generally be four different Lorentzian contributions
to the fluorescence spectrum.

In the case when the pump field is resonant with the atomic
transition [ 1) <> {2) (8 = 0) the fluorescence spectrum can be re-
written in the simple form

Pn Z+Y2
Flw)=—2Re - +
O R v e )

(16)
+ Z+Ya3
(z+712 ‘M7’2)(Z+723)+92

z=i(w-wy)

It is clear from the expression (16), which is a sum of two terms
each of which has the second order polynomial in the denominator
and thus represents two lines, that generally the spectrum is com-
posed of four lines which are symmetrically disposed with respect
to the frequency ,,. To confirm this statement we decompose the
spectrum (16) into the four Lorentzians explicitly. Beside the four
Lorentzians the spectrum contains also some dispersion-like terms,
which, however, are small in the strong field limit. The strong field
limit means in this case that the following condition is satisfied

4(712}’23+Qz)>(712 +723+|Ml7’2)2~ (17

In the strong field limit the spectrum (16) can be rewritten in the
form

F(w)=pi £ 5 + Vs 5 +
(w-wy-2,) +73 (0-wy-2,) +73

4
+ Y- 5 + Y- 5 +
(@=wy—-02.) +y2 (0-w,-02_) +y?
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Ql (w-wy,-0,)+72 (@-wy+02,) +7?
i (r-—rn)@-0,-0.) (1. -7y)0-0y+Q.) .
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Ve=%(rno+vstMy,) (19)
Qizil\/4(712723+92)‘72~ (20)

It is clear from equation (18) that for the squeezed vacuum
(M # 0) the resonance fluorescence spectrum on the probe transi-
tion consist of four Lorentzian lines located symmetrically with
respect to the transition frequency w,, at the frequencies €2, and
havmg the widths y,. Beside the four Lorentzians the spectrum
contains some dispersion-like terms, which are of the order of
€27 and are negligible if €2 >>y . The presence of the four lines in
the fluorescence spectrum is the result of the squeezed vacuum.
This effect is associated with the different damping rates for the
two quadrature components of the atomic dipole moment in the
squeezed vacuum. In the case of thermal field, |M| = 0, with the
mean number of photons N the four lines merge into two lines.
Since the difference €2, - Q in the strong field limit is small and

the width y, is large, the peaks associated with the frequencies
Q, and Q cannot be separated in practice. The two peaks merge
into one peak, but the resulting peak is narrower than the peak
obtained for the thermal field with the same mean number of pho-
tons. Similar decomposition can be performed for the absorption
spectrum.
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Fig.3 (a) - The absorption spectrum S(@ — w,,) on the transition
1 «> 2 for the squeezed vacuum frequency tuned to the probe
transition (b) - Fluorescence spectrum F(w — ®,,) for the transition

1 ¢> 2. The parameters are: y, = 0.01, 3, = 1, £, = 14, §, = 20,
N=08 M= /N(N+1)

Examples of the fluorescence spectrum are shown in Fig. 2. It
is seen that in the presence of the squeezed vacuum the fluores-
cence spectrum is narrower than the corresponding spectrum for
thermal light with the same number of photons. For strong driving
fields the spectrum splits into two lines. Each of the two lines is
composed of two components with different widths, but effective-
ly they appear as a single line because the splitting due to the dif-
ferent widths resulting in the squeezed vacuum are too small to be
resolved within the line-width. To see the presence of the extra
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structure in the spectrum the driving field must be considerably
detuned from the resonance. In the case of large detuning the lines
should be separated and one can expect the appearance of addi-
tional structure in the spectrum. That it is really the case we have
shown in Fig.3, where we have plotted the fluorescence as well as
absorption spectra for large detuning to make the extra structure
visible. As it is seen there are really small dips that appeared in the
spectra. The additional structure is, however, hardly visible, and
the most essential result of the squeezed vacuum is the narrowing
of the spectrum that is clearly seen in Fig. 2.

3.2 Squeezed vacuum frequency tuned to the pump transition

In the case when the squeezed vacuum frequency is close to
resonance with the pump transition | 1) «>|3), we substitute £ =0
and A, = 0 in equation (5), and we neglect the fast oscillating
terms that oscillate at the frequencies A , and A. The master equa-
tion (5) gives us then

7] .
EPII :_(N(Yl +72)+(N+1)7’|)P|1+IQP13+(N+I)(72 +71)P22s

—iQp4 +(N+1)y,,

o
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é,tplz Yi2P12 — 4032

o . . . * .
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ot

17
‘é;Pzz = N72P|1—(N+ 1)72P22’

a . ,
EPZB =iCp,, ”(7’23 + 15)P23~

The steady-state solutions to (21) can be found analytically in gen-
eral form, but the formulas are rather involved, so we only adduce
them here for the special case when & = 0.

et H oo
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P

MR+ (v Lo oy

1
Pn= - - - . (22
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sy = —i(N -+ 1)(|Ml7’lei¢ —Yla)YIQ
31~ — - " s
23N +2)y F(9)2% + 3N + YN + 1)y 5 0y (0
where
y&) =y %My, cosg. (23)

It is seen from (22) that when the squeezed vacuum acts on the
same transition as the coherent field the atomic density matrix el-
ements depend on the phase ¢ of the squeezed light. This is the
effect known from the two-level system damped to the squeezed
vacuum [4,18], which leads to different damping rates for the two

0.06 T T

0.01

-20 -15 -10 -5 0 5 10 15 20
W—0y;

Fig. 4 The fluorescence spectrum on the probe transition when the
squeezed vacuum frequency is tuned to the pump transition. There is
no difference in the scale of the figure between the thermal field and
the squeezed vacuum. The parameters are: 7, = 1, 7, = 0.001,5 =0,

2=10,¢=m/10, N=5,and M =+/30

The fluorescence and absorption spectra for this case are given by
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Fig. 5 The absorption spectrum on the probe transition when the
squeezed vacuum frequency is tuned to the pump transition for
M =+/30 (solid line), and for M = 0 (dashed line). The other
parameters are the same as in Fig. 4

(z+753-16)(p1, —Pzz)—iQP31|

quadrature components of the atomic dipole associated with the ~ S(w)=Re _ > (25)
transition | 1) < |3). (e+7i)(ztyg—i8)+Q 2=i{w0-wy)
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From equations (24) and (25) it is clear that when the squeezed
vacuum acts on the pump transition, both the fluorescence and
absorption spectra on the probe transition do not exhibit, contrary
to the previous case, any additional structure. Their dependence
on the squeezed vacuum parameter M is only through the atomic
populations given by (22). For high Rabi frequencies the popula-
tion p,, of the upper lasing level is independent of M as well as
damping rates, and it is given by

N (26)

The same is also true for low Rabi frequencies, for which the pop-
ulation p,, is equal to

S A 27
P2 =GN+ 1) (3N +2) @7

The examples of the fluorescence and absorption spectra for
the pump transition are shown in Fig. 4 and Fig. 5. The fluores-
cence spectrum shown in Fig. 4 exhibits two peaks the presence of
which is caused by the splitting of the state | 1) in the strong field.
For the choice of atomic parameters in Fig. 4 there is no visible
difference between the fluorescence in the squeezed vacuum and a
thermal field with the same number of photons. The absorption
spectrum illustrated in Fig. 5 also reveals the two-peak structure
but with absorption on one side of the resonance and gain (nega-
tive absorption) on the other side. This is the gain without popula-
tion inversion in the bare atomic states. Since the atomic popula-
tions (22) depend on the phase of the squeezed vacuum, the
amplification of the probe light depends crucially on this phase.
The structure of the spectra is better understood in the dressed-
state picture discussed in the next Section.

4. DRESSED STATE PICTURE

In the strong field limit the dressed-atom picture [19, 20] pro-
vides useful description of the interaction of atom with strong fields.
In this approach, eigenstates of the coupled atom-+driving field
system, referred to as the dressed states, serve as the basis for the
whole system. For our model the semi-classical dressed states are
the eigenvectors |2) and |+) of the Hamiltonian

0O 0 Q
H=#0 w, 0 (28)
Q 0 -6

The dressed states are given by

13> _K__—

2>

v I+>

1>

Qg

\ ! I->

Fig. 6 The semi-classical dressed states of the atom pumped by the
strong field with the Rabi frequency (2, on the 1 <> 3 transition and
the possible transitions leading to fluorescence on the 1 < 2
transition

1
a2 e iz 2 s 29)
=gy )2 15 )
with eigenvalues equal, respectively, to
E; = hoy,,
1 1 30)
E, = —-5/‘16 i;hQR,
and the Rabi frequency Q, equal to
R =V8E+407 . GbH

In the case when the squeezed vacuum is tuned to the probe
transition there are two peaks in the fluorescence spectrum that
can be easily explain as the transitions from the atomic level |2) to
the two dressed states |=). For thermal field, when |M] = 0, and for
& = 0, these are exactly two peaks as it is seen from the analytical
formula (18). In the squeezed vacuum each of the peaks is com-
posed of two separate peaks with different widths. It is, however,
difficult to separate the two components of each peak because of
the small distance between the components and the large width of
one of them. A very weak additional structure in the fluorescence
as well as absorption spectrum can be seen from Fig. 3 for large
values of the detuning 6. In the case when the squeezed vacuum
frequency is tuned to the pump transition the fluorescence spec-
trum on the probe transition shows only two peaks that reflect the
structure of dressed states and the form of the spectrum is not af-
fected by the squeezed vacuum parameter M. The squeezed vacu-
um modifies in this case only the steady-state solutions for the atom-
ic populations and coherences, as it is seen from formulas (22).

0.04 T T T
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0.01
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-3.14 -1.57 0 1.57 3.14

Fig. 7 The absorption spectrum at the frequency o = o, —Q
(solid line) and at @ = @,, + 2 (dashed hne) versus the squeezed
vacuum phase, when the squeezed vacuum is tuned to the pump
transition. The parameters are: , = 1, %, = 0,001, Q2 = 10,6 =0,

N=5,M=+30

The absorption spectrum shown in Fig. 5 reflects the same struc-
ture of the dressed states exhibiting two absorption peaks in the
thermal field. In the squeezed vacuum, however, we can observe
narrowing of the absorption peak on one side, and the negative
absorption, i.e., the gain on the other side of the resonance. Ampli-
fication without population inversion can occur on this side. The
amplification of the probe field depends strongly on the phase of
the squeezed vacuum and the mechanism behind this effect is shown
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Fig. 8 The dressed-state population inversion p_— p,, (solid line)
and p_ — p,, (dashed line) versus the squeezed vacuum phase, when
the squeezed vacuum is tuned to the pump transition. The
parameters are are the same as Fig. 7.

in Fig. 8. There is population inversion between in the dressed
states leading to the gain, and there is no population inversion on
the absorption side. At low N the absorption spectrum shows ab-
sorption of the probe field. By increasing N we can get amplification
or absorption depending on the phase of the squeezed vacuum.

We can see from our formulas for the fluorescence and absorp-
tion spectra, for the two cases considered in this paper, that for the
case when the squeezed vacuum is tuned to the probe transition,
the spectrum itself depends on |M), but the steady-state popula-
tions and coherences do not depend on the squeezed vacuum pa-
rameter M. Quite differently, in the case when the squeezed vacu-
um frequency is tuned to the pump transition, the spectrum on the
probe transition depends on the squeezed vacuum parameter M
through the steady-state populations and coherence only.

5. CONCLUSIONS

In this paper we have studied the radiative properties of a three-
level atom in V configuration that is pumped by a coherent laser
field on one of the allowed transitions and probed on the other
transition. The main idea of the paper was to study resonance flu-
orescence and absorption spectra on the probe transition taking
into account the fact that the other transition is coherently pumped
and assuming that the atom is damped to the squeezed vacuum
instead of the ordinary vacuum or thermal field. Moreover, we have
included the non-zero coherence transfer rate that couples the two
atomic transitions. We have considered two different situations in
which the carrier frequency of the squeezed vacuum was tuned
either to the probe transition or to the pump transition. When the
squeezed vacuum frequency is tuned to a particular atomic transi-
tion we have in fact the situation similar to the two-level atom
damped to the squeezed vacuum, but the presence of the other atom-
ic transition changes, sometimes in an essential way, the radiative
properties of the atom with respect to those observed in the two-
level atom. We have found analytical formulas for the fluorescence
and absorption spectra and illustrated them graphically for certain
choices of the atomic and field parameters. Our results show some
similarities and differences with respect to the two-level atom spec-
tra. We have found narrowing of the spectra in the squeezed vacu-
um, which is known from the two-level case, but we have also
found a weak additional structure in the spectra. When the fre-
quency of the squeezed vacuum is tuned to the pump transition
and the pump field is strong, the absorption spectrum on the probe
transition has two peaks at Rabi sidebands: one of them shows

absorption and the other amplification of the probe field. In this
case we get absorption without inversion in the bare atomic states,
but as our analysis has shown, the mechanism for this gain is relat-
ed to the population inversion in the dressed states. We have also
shown that for the two cases of the squeezed vacuum considered
in this paper the atomic coherence transfer rate has no influence on
the atomic spectra. In the strong-field limit the dressed states ap-
peared to be a good tool for explaining the features of the spectra.
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