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Analytical formulas for the probe absorption spectrum of a driven two-level atom
damped to a squeezed vacuum with finite bandwidth are derived. We use the mas-
ter equation approach to describe the evolution of the strongly driven two-level
atom coupled to the reservoir being a squeezed vacuum with finite bandwidth
produced by a degenerate parametric oscillator (DPO). The master equation is
derived under the Born and Markov approximation which require the squeezed
vacuum bandwidth to be much larger than the atomic linewidth, but not neces-
sarily larger than the Rabi frequency of the driving field. Our master equation
takes into account the detuning of the laser field from the atomic resonance. Ex-
amples of the absorption spectra are plotted and compared to their equivalents
for the broadband squeezing.

1. Introduction

Squeezed vacuum is a reservoir with strong correlations between field amplitudes at
frequencies placed symmetrically with respect to a certain carrier frequency ws, and the
evolution of a quantum system in such an unusual reservoir exhibits a number of new
features. Since the first paper published by Gardiner on spectroscopy with a broadband
squeezed vacuum field [1] much work has been done to find such new features in the
resonance fluorescence and probe absorption spectra of two- and three-level atoms in a
squeezed vacuum [2-8].

Most of the studies dealing with the problem of a two-level atom in a squeezed
vacuum assume that the squeezed vacuum is broadband, i.e., the bandwidth of the
squeezed vacuum is much larger than the atomic linewidth and the Rabi frequency of
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the driving field. Experimental realizations of squeezed states (9, 10, 11, 12}, however,
indicate that the bandwidth of the squeezed light is typically of the order of the atomic
linewidth. The most popular schemes for generating squeezed light are those using a
parametric oscillator operating below threshold, the output of which is a squeezed beam
with a bandwidth of the order of the cavity bandwidth [13, 14]. There are two types of
squeezed field that can be generated by such a parametric oscillator. If the oscillator
works in a degenerate regime, the squeezed field has the profile with the maximum of
squeezing at the central frequency and a small squeezing far from the center. In the
non-degenerate regime, the profile has two peaks at frequencies symmetrically displaced
from the central frequency. For strong driving fields and finite bandwidth of squeezing
this means that the Rabi sidebands can feel quite different squeezing then the central
line. A realistic description of radiative properties of the two-level atom in such a
squeezed field must thus take into account the finite bandwidth of the squeezed field.

First studies of the finite-bandwidth effects have been performed by Gardiner et
al. [13], Parkins and Gardiner [15] and Ritsch and Zoller [16]. The approaches were
based on stochastic methods and numerical calculations, and were applied to analyze
the narrowing of the spontaneous emission and absorption lines. The fundamental effect
of narrowing has been confirmed, but the effect of finite bandwidth was to degrade
the narrowing of the spectral lines rather than enhance it. Later, however, numerical
simulations done by Parkins [17, 18] demonstrated that for strong driving fields a finite
bandwidth of squeezing can have positive effect on the narrowing of the Rabi sidebands.
He has found that there is a difference between the two types of squeezed light generated
in either degenerate or non-degenerate regime of the parametric oscillator. In the former
case it is possible to narrow either both of the Rabi sidebands or the central peak of
the fluorescent spectrum, while in the latter case simultaneous narrowing of all three
spectral peaks is possible.

Yeoman and Barnett [19] have recently proposed an analytical technique for inves-
tigating the behaviour of a coherently driven atom damped by a squeezed vacuum with
finite bandwidth. In the approach, they have derived a master equation and analytic
expressions for the fluorescent spectrum for the simple case of a two-level atom exactly
resonant with the frequencies of both the squeezed field and the driving field. Their
analytical results agree with that of Parkins [17, 18] and show explicitly that the width
of the central peak of the fluorescent spectrum depends solely on the squeezing present
at the Rabi sideband frequencies. They have assumed that the atom is classically driven
by a resonant laser field for which the Rabi frequency is much larger than the bandwidth
of the squeezed vacuum though this is still large compared to the natural linewidth.
Unlike the conventional theory, based on uncoupled states, it is possible to obtain a
master equation consistent with the Born-Markov approximation by first including the
interaction of the atom with the driving field exactly, and then considering the coupling
of this combined dressed atom system with the finite-bandwidth squeezed vacuum. The
advantage of this dressed atom method over the more complex treatments based on ad-
joint equation or stochastic methods [17, 18, 20] is that simple analytical expressions for
the spectra can be obtained, thus displaying explicitly the factors that determine the
intensities of the spectral features and their widths. The idea of Yeoman and Barnett
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has recently been extended by Ficek et al. [21] to the case of a fully quantized dressed-
atom model coupled to a finite bandwidth squeezed field inside an optical cavity. They
have studied the fluorescence spectrum under the secular approximation [22] and have
found that in the presence of a single-mode cavity the effect of squeezing on the fluo-
rescence spectrum is more evident in the linewidths of the Rabi sidebands rather than
in the linewidth of the central component. In the presence of a two-mode cavity and a
two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all
spectral lines. They have also established that the narrowing of the spectral lines is very
sensitive to the detuning of the driving field from the atomic resonance. The dressed
atom method,under the secular approximation, including a detuning of the driving field
from the atomic resonance has also been applied to calculate the probe absorption
spectra of a driven three-level atom in a narrow bandwidth squeezed vacuum [23].

Recently, Tana$ et al. [24] have extended the Yeoman and Barnett [19] technique to
include a non-zero detuning of the driving field from the atomic resonance and derived
the master equation for a two-level atom driven by a classical laser field and damped
by a finite-bandwidth squeezed vacuum. In this paper, we use this master equation
to study the probe absorption spectrum for the two-level atom driven by a classical
external field and damped by a squeezed vacuum with finite bandwidth produced by
a degenerate parametric oscillator (DPOQ). Using the quantum regression theorem, we
derive analytical formulas for the probe absorption spectrum of the atom. We show
that for the finite bandwidth squeezed vacuum the absorption spectrum is modified in
an essential way with respect to the spectrum for broadband squeezing.

2. Master equation

We consider a two-level atom driven by a detuned monochromatic laser field and
damped by a squeezed vacuum with finite bandwidth. Applying the approach of paper
[24], which is based on the idea of Yeoman and Barnett [19], being in turn an extension
of the model proposed by Carmichael and Walls [25] and Cresser [26], we derive a master
equation of the system which includes squeezing bandwidth effects. In this approach,
we first perform the dressing transformation to include the interaction of the atom
with the driving field and next we couple the resulting dressed atom to the narrow
bandwidth squeezed vacuum field. We derive the master equation under the Markov
approximation which requires the squeezing bandwidth to be much greater than the
atomic linewidth, but not necessarily greater than the Rabi frequency of the driving
field and the detuning. For simplicity, we assume that the squeezing properties are
symmetric about the central frequency of the squeezed field which, in turn, is exactly
equal to the laser frequency. Our approach differs from that of Yeoman and Barnett
in performing the Markov approximation in the time domain rather than the Laplace
transform variable domain with pole approximation, and in adding a non-zero detuning.

We start from the Hamiltonian of the system which in the rotating-wave and electric-
dipole approximations is given by

H=Hj,+Hgr+ H;+ Hy, (1)
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where

1 1 1
Hy = -éﬁwAaz——-z—hAaz—l-Etha‘z (2)

is the Hamiltonian of the atom,
o0
Hp = / w bt (W) b{w) dw 3)
0

is the Hamiltonian of the vacuum field,

H, = —21-hQ [0 exp(—iwLt) + o exp(iwrt) ] (4)
is the interaction between the atom and the classical laser field, and

o0
H = ih/ K(w) [o4bw) —bT(w)o_] dw (5)
0

is the interaction of the atom with the vacuum field. In (2)-(5), K (w) is the coupling
of the atom to the vacuum modes, A = wy, — w4 is the detuning of the driving laser
field frequency wy from the atomic resonance wa, and o4, 0—, and o, are the Pauli
pseudo-spin operators describing the two-level atom. The laser driving field strength is
given by the Rabi frequency £, while the operators b(w) and b+ (w) are the annihilation
and creation operators for the vacuum modes satisfying the commutation relation

[b(w), b* (W)} = 6w — o). (6)

For simplicity, we assume that the laser field phase is equal to zero (¢r = 0).

In order to derive the master equation we perform the two-step unitary transforma-
tion. In the first step we use the second part of the atomic Hamiltonian (2) and the free
field Hamiltonian (3) to transform to the frame rotating with the laser frequency wy, and
to the interaction picture with respect to the vacuum modes. After this transformation
our system is described by the Hamiltonian

Hy + H(t), (7
where
1 1
Hy = —EhAUz+§hQ(0'++0'_), (8)
and

Hi(t) =1ih /00G K (w) [o4 b(w) expli(wr —w)t] - b (w)o_ exp[—i(wr —w)t]] dw. (9)

The second step is the unitary dressing transformation performed with the Hamiltonian
Hy, given by (8). The transformation

oi(t) = exp[—ﬁHot]Uiexp[ﬁHot] (10)
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leads to the following time-dependent atomic raising and lowering operators

oi(t) = % [aa + (1 F Aoy exp(i't) £ (1 £ A)o, exp(-—iﬂ’t)] , (11)
where
ca = Q [fl(a+ +o_) - Aoz] ,
o = % [~ B)oy — 1+ B)o_ = 0], (12)
g, = % [(1 + Aoy —(1-A)o_ + Qaz] ,

are the ‘dressed’ operators oscillating at frequencies 0, ' and —', respectively, and

Q:QE [\:%, Q=02 4+ A2, (13)
For A = 0, the transformation (11) reduces to that of Yeoman and Barnett [19]. Under
the transformation (11) the interaction Hamiltonian takes the form

H;(t) = ih /000 K(w) [a.;.(t)b(w) expli(wy, —w)t] — (14)
bt (w)o—(t) exp[—i(wr, — w) t]] dw. (1%)

The master equation for the reduced density operator p of the system can be derived
using standard methods [27]. In the Born approximation the equation of motion for the
reduced density operator is given by [27]

D t
‘% = -hl /0 Tep {(Hi(t), [Hi(t - 7), pr(0)pP (t — 7)]}} dr, (16)

where the superscript D stands for the dressed picture, pr(0) is the density operator for
the field reservoir, Trr is the trace over the reservoir states and the Hamiltonian H 1(t)
is given by (15). We next make the Markov approximation [27] by replacing p” (t — 7)
in (16) by pP(t), substitute the Hamiltonian (15) and take the trace over the reservoir
variables. We assume that the reservoir is in a squeezed vacuum state in which the
operators b(w) and b (w) satisfy the relations [1]

Trr[pr(0) bW ()] = [Nw)+1]§w-w'),
Trg[pr(0) b (W)b(W)] = Nw)dw-w'), (17)
Trr[pr(0) b(w)b(w)] = M(w)6Quwr —w—w'),

where N(w) and M (w) are the parameters describing the squeezing and that the carrier
frequency of the squeezed field is equal to the laser frequency wr. In the Markov
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approximation we can extend the upper limit of the integration over  to infinity and
next perform necessary integrations using the formula

o0
/ exp(tiet)dr =7 d(e) = iP% ) (18)
0

where P means the Cauchy principal value. After lengthy calculations we obtain the
master equation which in the frame rotating with the laser frequency wy, can be written
as

. 1,
p= Fiv8los,p]

1 ~
+ 57N (204p0- —0_04p~po_oy)

[y

+ 5’)’(N+1) (20-poy —0r0_p—poyo.)
- 7Ma+pa+—fy]l7.f‘a_pa_
1, 1. *
- EZQ[U++a~ap]+Z7'(:B[U+a[02ap]]—ﬂ [U—a[027p]])a (19)

where <y is the natural atomic linewidth,

N = N(wL+ﬂ')+%(1—A2)ReI‘_, (20)
M o= M(wL+Q')—%(1-[\2)r_+¢£\(5Mei¢, (21)
5 = %—%(I—AQ)ImF_+A§N, 22)
B = 7(2[5N+6Me"¢—iAI‘_], (23)
P = N(wr)~Nwr + Q') — [[M(wr)| — [M(w + Q)]] £, (24)
iy = %P _Z mNJr(g dz, oy = %P/:%)—de, (25)

and ¢ is the phase of squeezing (M(w) = |M(w)|exp(i¢)). In the derivation of equa-
tion (19) we have assumed that the phase ¢ does not depend on frequency [28], and we
have included the divergent frequency shifts (the Lamb shift) to the redefinition of the
atomic transition frequency [27]. Moreover, we have assumed that the squeezed vacuum
is symmetric about the central frequency wy, so that N(wy, — Q' ) =N(wr + '), and a
similar relation holds for M (w).

The master equation (19) has the standard form known from the broadband squeez-
ing approaches with the new effective squeezing parameters N and M given by (20)
and (21). There are also new terms, proportional to B which are essentially narrow
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bandwidth modifications to the master equation. All the narrow bandwidth modifica-
tions are determined by the parameter I'_ given by (24), which represents the difference
between the squeezing values at the central line and the sidebands, and the shifts dn
and dps defined in (25). They all become zero when the squeezing bandwidth goes to
infinity.

The squeezing induced shifts dn and dpr depend on the explicit form of N(w) and
[M(w)|. For a degencrate parametric oscillator (DPO) the squeezing properties are
described by [13]

A2 — p? 1 1

N@) = 4 [zz +p? 224 ,\2] ’ (26)
A2 — p? 1 1

M=) = 4 [:ﬁ + p? + 2 + /\2] ’ 27

where z = w —wy, and A and p are related to the cavity damping rate, 7., and the real
amplification constant, €, of the parametric oscillator according to

A = v +e, b= —¢€.

The Cauchy principal values of the integrals (25) can be evaluated using the contour
integration which gives

o = 6u—0x, Ou=10,+0d, (28)
where the form of §,, and dy for the degenerate parametric oscillator is given by
A2 _ 2 1 2 _ 2
d, = L O = A -k 1 (29)

N 4 XQZ+A)

From the master equation (19) we easily derive the optical Bloch equations for the
mean values of the atomic operators

6) = v G+F=i8)o) =7 (01) + 20(s),

(62) i(Q+B")o-) =i (Q+B) (o4) =7 (1 +2N) (0:) 7.

The equation for (o) is obtained as Hermitian conjugate of equation for (¢_). Defining
the Hermitian operators o, and o, as

(30)

1
Slo-+oy),  oy= 57— —04), (31)
we get from (30) the following equations of motion for the atomic polarization quadra-
tures

=
&
I

— <%+1\~7+Re1\~4) (0g) — (ImJVI+(5)

) = =y (it =8) (o) =7 (5 + ) +;naz> (52)
62) = 2ImBn) ~2(2+Ref) (gy) — (1 +28) (02— 7.
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The Bloch Eqs.(32) show clearly the two different decay rates v, = (-} +N+ReM )

and v, = v (% +N-ReM ) for the two quadrature components of the atomic dipole

(02) and {o,) which are already known from the Gardiner paper {1], but now the
squeezing parameters N and M are more complicated. We can also see that the purely
narrow-bandwidth features represented by ImM and 8 introduce additional couplings
between the components of the Bloch vector.

3. Steady-state solutions

The Bloch equations (32) can be easily solved for the steady-state values of the
atomic variables, and the result is given by

1 97(§+N+R3M)

(Oy)ss = —5’7 d » (33)
72 (4 + NV +1) - |1 + 82)

(02)ss = =7 ) ,

where
d = 73(1+2N)<}1+N(N+1)—|M|2+52)
+ 10 [(%+J\7+Re]\71) (Q+Re,3)+1m,8(1m]\7[+6)]. (34)

The steady-state solutions (33) exhibit a number of interesting features. It is seen
that generally all the components of the Bloch vector have nonzero steady-state values.
Even for the resonant driving field (A = 0), we find from (21), (22) and (24) that

ImM+6 = |M(was)|sing, (35)

indicating that even for A = 0 the (0;)ss component of the Bloch vector can have
a non-zero steady-state solution provided the phase ¢ is different from 0 or 7 and
there is a non-zero squeezing at the atomic resonance. This effect can lead to unequal
populations of the dressed states of the system [29, 24]. The dressed states can be found
by diagonalizing the Hamiltonian (8), which gives

, 1+A 1-A
1) -—-2—|y)+\/ 5 le)
1-A 1+A
2) = —\/-—2——[9)+ 5 le),
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where the dressed energies are: Ey = h§)'/2 and E» = —h§Y /2, and |g) and |e) are the
ground and the excited state of the atom, respectively. The populations of the dressed
states can be expressed in terms of the expectation values (02)ss and (o:)ss as follows

pi1 ! (1 -A (az)u) +V1-A2(05)s,

2

% (1 +A (az)ss) -V1-A? (0z)ss -

For a resonant driving field (A = 0) the stationary populations of the dressed states
depend solely on {0)s,, which, on the other hand, can be non-zero only when the phase
¢ is different from 0 and 7 and, simultaneously, there is a non-zero squeezing at the
atomic resonance, as it is the case for the degenerate parametric amplifier.

If the laser field is detuned from the atomic resonance (A # 0) the dressed states
populations are different even for the most frequently discussed cases ¢ = 0, m, for which
we have

(37)

P22

InM+4§ = %+A(5N¢5M), (38)

where the upper sign is for ¢ = 0 and the lower sign for ¢ = m. This means that the
(02)ss component of the Bloch vector changes sign when A changes sign, and it is equal
to zero only on resonance. :

4. Absorption spectrum

The probe absorption spectrum of a two-level atom is given by the Fourier transform
of the two-time atomic correlation functions as [30]

@) = Ere{ [T(to-(os @ ar) (39)

where Re denotes the real part of the integral. The absorption spectrum is defined
by the difference of two atomic correlation functions (coming from the commutator in
(39)). The evolution of such a difference can be found from the Bloch equations (30)
by applying the quantum regression theorem [31]. The equations of motion for the
difference of two-time correlation functions can be written as

o [ {lo-(7),04(0)])ss (lo-(7),0+(0)])ss
pe (lo4(1), 04 (0)])ss = B ([0+(7),0+(0)])ss (40)
([o2(1),04(0)])ss (lo2(7),04(0)])ss

where B is the 3 x 3 matrix

~y(3 + N —i6) —M i0
B = -yM* (3 + N +1d) -0 : (41)

i(Q + 6*) -i(Q + B) —y(1+2N)
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and the initial values for the correlation functions are

(0'—‘7+)ss - (0'+U—>ss = _<02)ss ’
(o404)ss = 0, (42)
(aza+)ss - (‘7+0'z)ss = 2(04)ss

Taking the Laplace transform of (40) we obtain the system of algebraic equations for
the transformed variables which can be easily solved. The solution gives us the following
formula for the Laplace transform of the difference (o_(7)04.(0))4s — (o4 (0)o—(7))ss

Az) = d—(% {z (04)ss 0 [’y(% + N+ M+1i6) + z} —(02)es [72(1 + 21\7)(-;— + N +id)
+ %Q(Q+ﬂ)+'y(g+31\7+i6)z+z2}} (43)
where
d(z) =d+ [2 +5N(N +1) — |MP? + 6% + Q(Q + Re ﬂ)] z+2(1+2N) 22+ 2% (44)
with d given by (34), and
(04)ss = (Ou)ss —i(0y)ss =1 %72 (-;— +N+ M- icS) : (45)

From the Laplace transform (43), the probe absorption spectrum defined by (39) is
obtained as

Aw) = %Re{A(z)]z:_i(w_wL)} (46)

Formulas (43)-(46) are relatively simple analytical expressions that describe the
probe absorption spectrum of the atom driven by the external field with the Rabi fre-
quency {2, detuned by A from the atomic resonance, and damped to the finite bandwidth
squeezed vacuum produced by degenerate parametric oscillator.

Let us discuss the simplest case of resonant driving field, A = 0, and the squeezed
vacuum phase ¢ = 0, 7. In this case N, M , and 3 are real, § = 0, and the denominator
(44) can be factored into

1, - - -1
d(z) = z+’y(§+N+M)} [72(1+2N)(§ +N-M)+ Q2+ 0)
+7(§+3N—M)z+z2J . (47)
Finding the roots of the polynomial d(z), we get

1
20 = Yz, 2t = "5(7’U + '72) + Qpr, (48)
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where
Yo = 1+N+M), 7y=7(%+N—M), Yo =Ye + Y, (49)
O = \/I @+8)- 12/, (50)
N = “{NwL)"‘N(wL-i-Q):F(|M(wL)|—|M(wL+Q)|)} (51)
M = i§ {(IM(we)l + M(wp +Q))) F [N(w) = N(wr + Q)]} (52)
B = oy u. (53)

In (51)-(53) the upper sign corresponds to ¢ = 0 and the lower sign to ¢ = 7. The
roots (48) are all real for Q(Q + 3) —v2/4 < 0, and, if (2 + B) —v2/4 > 0, z+ become
a complex conjugate pair with Qp replaced by iQ0g. They define the widths of the
spectral lines and the effective Rabi frequency. It is clear that Q2 + 8) —y2/4=0is
a threshold at which the character of the solution changes.

Below the threshold, Q(Q+8)—+2/4 < 0, and for ¢ = 0,7, and A = 0, the spectrum
takes the form

1 ¥ { Y'Yy
Alw) = —
R GRS o b Yo e
1 (292 — YzYy T+ 2QR’)’.U) (1”%‘15- + QR)
t 10,

(w—wr)?+ (l#— + QR)z

1 (292 = Y=Vy — 2Qr 'Yy) (7_!+_’7'. QR)
T 4Qp

(54)
(w—-wp)® + (1"1'2'l - QR)

Above the threshold, Q(Q + 8) — v2/4 > 0, the probe absorption spectrum is given
by the following formula

- _1_ Y Y=Yy
ALY = @A ] { @ o) T 7
I Qrvyy(v +792) = 202 — vay) (W — wi + QR)

+

IR (@ —wg + ) + (22
1 Qg 7y('7y +7.) + (292 - ’Yw’Yy) (w—wr — Qr) ‘ (55)
4AQr (w—wp, — Qp)? + (u=)?

Formulas (54) and (55) are analytical solutions for the probe absorption spectrum for
a resonantly driven atom in the finite bandwidth squeezed vacuum. It is clear that the
spectrum is symmetric with respect to the laser frequency wy, = w4. Below the threshold
it shove Lorentzian shape contributions with different widths at the laser frequency, and
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Fig. 1. Absorption spectrum for /7. = 0.5 (N(wa) = 1.78, |[M(wa)| = 2.22), ¢ = 0, solid line
— finite bandwidth with ./ = 10, dashed line — broadband squeezing: (a) below threshold
(© = 1), and (b) above threshold (Q = 10).

above the threshold it exhibits a Lorenzian line at the laser frequency and Lorentzian
as well as dispersion features at the Rabi sidebands. For finite a bandwidth squeezed
vacuum the widths and the amplitudes of the lines are defined by N, M, and 3 given
by (51)-(53). For broadband squeezing N(w) and M(w) do not depend on w, which
means that N = N and M = +|M| are constants describing the broadband squeezing.
In this case the shifts éy and dpr are zero, and consequently § = 0. The damping
parameters 7, and -y, depend on squeezing through N and M, as seen from (49). For
ordinary vacuum 7, = vy, = 7/2 and the spectrum simplifies to the standard form [30}.

Since N+ M = N(wr,+9Q)+|M(wy, +Q)|, it is clear that the width of the central line
as well as the effective Rabi frequency are defined by the squeezing properties on the
sidebands only, while the widths of the sidebands depend on the squeezing properties at
the laser frequency as well as at the sidebands. This feature has been found by Yeoman
and Barnett [19] who discussed the resonance fluorescence spectrum.

In Fig. 1 we have plotted examples of the absorption spectrum for both the below
threshold (Fig. 1(a)) and the above threshold (Fig. 1(b)) situations. The solid lines
represent the spectrum for the finite bandwidth squeezed vacuum calculated according
to our formulas, which is compared to that obtained for broadband squeezing. The
parameters we used to calculate the spectrum are: €/~, = 0.5 which gives N(wa) = 1.78
and |[M(wa)|] = 2.22, ¢ = 0, A = 0, 7./y = 10 for narrow bandwidth (solid lines),
Ye/y = 100000 for broadband squeezing (dashed lines), @ = 1 for figure (a), and
2 = 10 for figure (b). It is evident from Fig. 1 that in real physical situation, when the
bandwidth of squeezing is finite the amplification at the central line is diminished, but
the dispersion profiles at the sidebands that appear for strong fields become stronger.
One can expect better amplification at the sidebands, although in very narrow range of
frequencies, if the bandwidth of the squeezed vacuum is narrow. Figure (a) shows a hole
burning feature discussed for broadband squeezing by Zhou et al. [32] which exist also
for the narrow bandwidth, but is not as deep as for the broad bandwidth. Modification



Analytical results for the probe absorption spectrum ... 313

of the Rabi sidebands shown in figure (b) agree qualitatively with that obtained by
Bosticky et al.[23] under the secular approximation, which requires sufficiently strong
driving fields.

In general case, the simple factorization of the denominator (44) is not possible, and
the absorption spectrum cannot be reduced to the form similar to (55). Nevertheless,
our analytical formula (43) can still be used to evaluate the spectrum numerically. For
nonzero detuning and/or squeezing phase ¢ # 0, 7, the spectrum is no longer symmetric
and exhibits a number of interesting features which appear for the driving fields with the
Rabi frequencies comparable to the atomic linewidth. For broadband squeezing such
features have recently been discussed by Ficek et al.[33]. For such fields the secular
approximation is not valid, but our approach is still applicable and can be used to find
the modifications of the spectra when the bandwidth of the squeezed vacuum becomes
finite.

5. Conclusion

We have derived simple analytical formulas for the absorption spectrum of a driven
two-level atom damped to a squeezed vacuum with finite bandwidth. The derivation is
based on the master equation which is valid for the bandwidth of the squeezed vacuum
much larger than the natural linewidth of the atom but not necessarily larger than
the Rabi frequency of the driving field. This allows us to study the spectra for both
weak and strong fields. The formulas obtained in the paper give better insight into the
physical origin of the spectral features that appear when atom is damped to a squeezed
vacuum with finite bandwidth. If the squeezing bandwidth becomes large our results
reproduce the results known for broadband squeezing. We have shown examples of
the absorption spectra below and above the threshold for the Rabi oscillations. This
threshold depends on the parameters describing squeezed vacuum.

One has to remember, however, that the applicability of the approach is restricted
by the Markov approximation used to derive the master equation, which requires the
bandwidth of the squeezed vacuum to be much larger than the atomic linewidth. Vio-
lating this requirement can even lead to unphysical results.
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