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Abstract—Phase properties of a shifted Fock state and a shifted random state are studied with the use of two
different approaches for the description of phase. The Pegg—Barnett phase distribution and the phase distribu-
tion associated with the Wigner function are shown to be close to each other for a shifted Fock state, whereas
the phase distribution associated with the Q-function is of lower phase information content. In the case of a
shifted random state, all the phase distributions are qualitatively similar and change to the uniform distribution
in the limit of a large average number of photons. The results are clearly interpreted in terms of the concept of

the overlapping domam in the phase state.

INTRODUCTION

Determination of the phase distribution for a quan-
tum state is a nontrivial problem [1, 2]. This is associ-
ated with the fact that the Hermitian operator of phase
is difficult to construct. Pegg and Barnett have recently
shown [3-5] how such an operator can be constructed
for a quantized electromagnetic field. The Pegg—Bar-
nett formalism allows the phase distribution for a quan-
tum state to be obtained using eigenstates of the Hermi-
tian phase operator.

Another approach for the problem of phase descrip-
tion in quantum optics [6-8], exists ‘in which quasi-
probability distribution functions are used, such as the
Glauber-Sudarshan P-function, the Q-function, and
the Wigner function. These are functions of a complex
number o = |ojexp(iB), which is an eigenvalue of the
annihilation operator. By integrating functions of quasi-
probability distribution over the radial variable ||, func-
tions periodic in the phase angle 8 can be obtained. For
most known states, these functions possess all the prop-
erties required for a phase distribution [6-8]. In our
recent works, we compared the two aforementioned
approaches for the description of phase for the states of
light propagating in a Kerr medium [9] and generated
in a multiphoton downconversion [10], as well as for a
shifted Fock state [11] and for a squeezed Fock state
and squeezed random state [12].

The purpose of this work is to compare these two
approaches using a shifted Fock state (SFS) and a
shifted random state (SRS) as an example. Fock states
(random states) are determined only by the number of
photons (the average number of photgfs) and. have a
uniformly distributed phase. As a result of the operation

of translation, they acquire nonzero average values of
the field amplitude and phase, after which the phase
distributions become nonuniform. Thus, the study of
phase properties of SFS and SRS appears to be helpful.
Note that SFS possess interesting nonclassical proper-
ties, which were studied in detail in [13, 14].

RESULTS AND DISCUSSION

A SFS is determined by the action of the translation
operator D(ar) upon a Fock state |N)

ly) = o, N) = D(@)IN), (1
where
o*a). 2

Expansion of SFS (1) in a basis of Fock states has the
form '
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Fig. 1. Phase distributions (1) PPB)@), (2) PD(®), and
(3) P'™)(@) for shifted Fock states for ot =3, and N = 2.

for n 2 N. Here, ¢ is the phase of the complex number

o = |ojexp(ip), and Ly " (o) is the associated
Laguerre polynomial. For n <N, we have

172 ‘ :
by = (%) DYl e L ol

and the phase ¢, remains the same as in (5).
A SRS is determined by the action of the translation
operator D(co) upon a random state

Paw = D()psD ()

no

N
1 n
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N=0

)

where 7 is the average number of photons in the initial
random state.

As shown in [9-11], the Pegg—Barnett phase distri-
bution and distributions obtained by integrating the
Q-function and the Wigner function can be combined
into one common formula

PY0) = 2%: 142 ) bb,

nk=0
n>k
@)

x cos[(n - k)81G(n, k) },

-~

where the coefficients G¥(n, k) are determined as fol-
lows:

(a) for the Pegg—Barnett distribution PFB)(8)

G, k)= 1. 9
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(b) for the distribution PX9(0) = ﬁ; Q(B)IBI4IBI [9, 10]

T((n+k)/2+1),
Jnk! '

(c) for the distribution P"(8) = j: W(B) IBIdIB) [11]

(10)

P
G(W)(n, k) = Z (_l)p""z(l""k|+2m)/2

m=0
(1)
X [pJ( q JG(Q)(m, |n—kl +m),
mN\ p-m
where
p=min(n, k), q=max(n, k). (12)

All the matrices G“)(n, k) are symmetric, and their diag-
onal elements are equal to unity:

Gn k) = Gk n), GPmn)=1. (13)

Let us examine the phase distribution P(9(6) associated
with the Q-function. Because we have GQ(n, k) < 1 for
n # k, P4(0) is always broader than the Pegg—Barnett
distribution P®BX@) [10] and thus carries a smaller
amount of phase information in comparison with the
latter. Braunstein and Caves [6] called PX(6) a “classi-
cal” distribution function, because the Q-function is
associated with simultaneous measurement of two non-
commuting observables, a process inevitably accompa-
nied by additional noise. In the case of the phase distri-
bution P™X6), associated with the Wigner function, the
off-diagonal matrix elements G"W(n, k) (n # k) take val-
ues greater, as well as smaller, than unity, and their
effect upon the distribution form is not as trivial as in
the case of P@X(8). The P®BXQ), POX(O), and P™(6)
distributions for the SFS are presented in Fig. 1 for
|l =3 and N = 2. The P®B)Y(B) and P*W(B) distributions
are seen to be very close to each other and have N + |
maxima, whereas P(9(0) is somewhat broader and has
only two maxima. Note that this is true for any N 2 1.
Let us consider the Q-function and the Wigner function
for the SFS to explain such a form of the phase distri-
butions. The quasi-probability distribution functions
for the SFS are obtained by mere translation of the cor-
responding distribution functions for Fock states and
have the form

p-or|B—af*

N a$H

Quv(B) = O(B-) = ze
Wan(B) = Wy(B-a)

2 2 (13
= Zexp(-2Ip- o) (-1)" Ly(4IB ~ o),
where Ly(x) is the Laguerre polynomial of the Nth

order. These functions are plotted in Fig. 2 for o = 3
and N = 2. It is seen from (14) that the Q-function van-
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ishes for | — o = 0 for N 2 | (Fig. 2a). Consequently,
the distribution P9(8) has two maxima corresponding
to two positions of the azimuth half-plane when the
area of its intersection with the Q-function takes the
largest values. This is just the concept of the overlap-
ping domain in the phase space [7] applied to the
Q-function. Because the Wigner function oscillates as a
function of N (Fig. 2b), the application of this idea to it
explains the presence of N + | peaks in the distribution
P)(@). Thus, there is a considerable difference in the
phase information contained in the P‘9(6) and P"(0)
distributions. A certain part of the phase information is
lost in P9(0) because of the averaging with the weight

G2, [10]. The P®BYG) and PW(®) distributions
almost coincide and carry basically identical phase
information, at least in the case of the SFS. This simi-
larity agrees with arguments of the concept of the over-
lapping domain in the phase space. However, the posi-
tive definiteness of the function P*")(8) is not guaran-
teed, because the Wigner function may take negative
values, while there is no such problems for the Pegg—
Barnett phase distribution. Completing the consider-
ation of the phase distributions for the SFS, we note
that no well-defined Glauber-Sudarshan P-functions
exist for these states, and, consequently, the corre-
sponding phase distribution P#(8) cannot be defined.
Now, we will briefly discuss the phase properties of the
SRS. According to definition (7), the phase distribution
for this state can be obtained by summing the corre-
sponding phase distributions for the SFS over the num-

ber of photons N with a weight of 72V /(1 + A )¥*!. The
P-function for the SRS is obtained by mere translation
of the 9P-function for the random state

exp( B—off (xl ) (16)

Integrating %P, (B) over the radial variable |B], we
obtain the phase distribution P®(0). The P®B)(@),
POY(8), PM(B), and PP)(0) phase distributions for the
SRS are presented in Fig. 3 for || =3 and 7 =0.3. The
P®XB) and P'9(0) distributions are seen to be the nar-
rowest and broadest (as in the case of the SFS) distribu-
tions, respectively, whereas the P*W(8) and P*B)(8) dis-
tributions virtually coincide. However, despite the fea-
tures indicated above, all of them carry qualitatively
identical phase information. If we take into account that
the Q-function and the Wigner function for the SRS can
be obtained by replacing # by (7 + 1) and (n + 1/2),
respectively, in formula (16), such a form of the phase
distributions can be easily interpreted with the help of
the concept of the overlapping domain in the phase
space, because the P-function, the O-function, and the
Wigner function in this space have identical shapes of
a Gaussian bell, translated by o from the origin of coor-
dinates. The bell of the P-function is the narrowest and

PunB) = Pu(B-0) =
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Fig. 2. (a) Q-functions and (b) Wigner functions for shifted

Fock states; x=Re( - a), y=Im(B-a), 9 =0, | = 3, and
N=2.
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Fig. 3. Phase distributions (/) PPBY®), (2) P¥)e),
(3) PD), and (4) PM(B) for shifted random states;
jd=3,and 1 =0.3.

highest, and the bell of the Q-function is the broadest
and lowest. By intersecting these bells with an azimuth
half-plane at an angle of 8 and measuring the intersec-
tion areas, the corresponding phase distributions can be
obtained. Note that in the limit of large 7, all the distri-
butions considered become uniform, i.e., P(8) = 1/2x.
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