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Abstract—We discuss a cavity filled with the “Kerr” medium with the (2¢ — 1)th nonlinearity x®- Y, period-
ically kicked by a series of ultrashort laser pulses. Applying the Floquet state and perturbation methods, we find
the analytic formulas for the probabilities of the n-photon states. We show that our system can produce pure
Fock states. Moreover, we perform numerical calculations to validate our analytical results.

l. INTRODUCTION

During the past few years, much attention has been
paid to generation of various nonclassical states of elec-
tromagnetic field. Nonetheless, the experimental real-
ization of those states is not a trivial problem. Among
many papers concerning methods of generation of var-
ious quantum states one can mention the Hong and
Mandel paper [1], where they have shown that a one-
photon Fock state is produced in the parametric down
converter. Stoler and Yurke have studied theoretically
the possibility of generation of antibunched light [2].
Another method of producing Fock states has been pro-
posed by Brune et al. [3, 4], who have proposed the
quantum nondemolition experiment in which detection
of the atomic phase by the Ramsey method plays the
role of a QND probe giving information on the cavity
field energy. After a sequence of atomic measurements,
the cavity field collapses into a Fock state with an unpre-
dictable number of photons. A micromaser system in
which two-level atoms are injected into a cavity gives
also a possibility to generate highly excited Fock states.
This model has been discussed by Filipowicz er al. [5].
A method of generation of various quantum states based
on the interaction with a cavity electromagnetic field of
N two-level atoms injected to a single-mode resonator
has been presented by Vogel er al. [6]. Quite recently,
Kozierowski and Chumakov {7} have shown that in the
spontaneous emission of the partially inverted Dicke
model Fock states can also be generated.

The system discussed in this paper contains a cavity
filled with a passive nonlinear “Kerr” medium, which is
characterized by the (2q —1)th susceptibility x4~ 1. The
cavity is periodically kicked by a series of ultrashort
laser pulses. Moreover, we assume that the field inside
the cavity is initially in the vacuum state [0). We will
show that for a sufficiently weak external excitation, res-
onance effects start to play a significant role and lead, in
effect, to Fock states. The effectiveness of the Fock state
preparation is, of course, considerably diminished by the
cavity losses. Nevertheless, it seems important to us that
a cavity with a nonlinear Kerr medium and a field ini-
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tially in the vacuum state, kicked periodically by a train
of classical pulses, can be, to high accuracy, a source of
Fock states. In our previous paper [8] the problem of
generation of the one-photon state has been discussed for
such a model with the use of numerical approach and
approximate representation for the unitary evolution
operator. Here, we will derive approximate analytical
formulas for the evolution of the probabilities corre-
sponding to the particular Fock states in which we are
interested. We will apply the Floquet states method [9-
11] and the perturbation theory to get analytical results.
For comparison, we will perform calculations in which
we solve the dynamics of our system numerically.

2. THE MODEL AND FLOQUET STATES

The system we in which are interested is governed
by the following Hamiltonian:

A(t) = Hy+ H (1), H
where
2¢-1)
By = ﬁxq @' 'a’ )

describes the cavity field interaction mediated by the
nonlinear medium, whereas

Hi(t) = he(@ +2) ) 8(¢-nT)
n=0

is a time-dependent Hamiltonian corresponding to the
driving of the cavity by the external classical field,
which is a series of ultrashort pulses modeled by the
Dirac delta functions. Moreover, we assume that this
interaction is weak, ie., € < %1, Although the
Hamiltonian (2) describes any order of the nonlinearity,
in this paper we will restrict our considerations to the
case g = 2 only. Since the Hamiltonian (1) is a periodic
function of time ¢ with the period 7, it generates the uni-

©)

tary evolution operator U that transforms the initial
state of the system |D(0)) (the state for the time ¢t = 0)
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to a state corresponding to the time ¢t = 7. Hence, the
state of the system corresponding to the arbitrary num-
ber of pulses k is determined by

(= kT)) = U'|@(¢ = 0), @)

where k denotes the number of kicks. Owing to the
periodicity of our system, we can introduce the Floquet

states |E) of the Hamiltonian H:
ET

—fim

A %

UIE) = ¢ " |E). ()
These states belong to the Hilbert space ¥, spanned by
the Fock number states |n), n =0, 1, 2, .... The Hamil-

tonian A is time-dependent and obeys the time-depen-
dent Schrodinger equation

i) = HOW). ©

Due to periodicity, it is possible to extend the Hilbert
space and reduce the solution of (6) to the eigenvalue
problem [9—11] and next to apply the time-independent
perturbation theory. To perform calculations using this
method we introduce the momentum-like and the posi-

tion-like operators h and #, which obey the well-
known commutation relation [k, 7] = —i%. The opera-
tor h acts on the Hilbert space J€, generated by the
eigenstates |m):

him) = mAQ|m), (7

where m = 0, £1, £2, ..., oo and the characteristic fre-
quency  [12, 13] is related to the periodicity of the
system

2n

Q = T ®

In the next step, we define the following quasi-Hamil-
tonian K:
k=il+HNL+[:Il, ©)

in extended Hilbert space ¥ = ¥, ® #€,. This operator
satisfies the eigenvalue problem

Kig) = £g). (10)
The state |€) appearing in (10) is related to the Floquet
state |E). Since the latter is defined in the Hilbert space
J€,, it can be obtained by the following product:

IE) = (t=0[E), 1D

where

400

[[) - z e-iﬂmllm>.

m = —oo

The state |r) is defined in the Hilbert space #, and obeys

the eigenvalue equation 7|f) = ¢]r), and the Floquet state
|E). given by (11), has the energy E = £(mod Q).

(12)
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Thus, to find the Floquet states for the system is

equivalent to diagonalizing K in the extended Hilbert
space. We start with the “free” evolution first, i.e., the
parameter € is assumed to be equal to zero. For this
case, the quasi-Hamiltonian has the form

i(o = il+I:1NL. (13)
Since the following eigenvalue equations are satisfied,

Ayln) = f%xn(n— Din),
(14)

him) = £Qm|m),

the eigenstates |n, m) = |n) ® |m) of the operator Ko
are labeled by the following quantum numbers: n =
0,1, 2, ...) and m = (0, £I, £2, ...). Obviously,
eigenenergies of the quasi-Hamiltonian Ko are deter-
mined by these two numbers and are equal to

E, .= ﬁ@‘n(n— 1)+ mQ). (15)
It is clear from (15) that the states [0, m) and |1, m) are
degenerate and their energies are equal to E,,, = E, ,, =
m#fiQ. In our further calculations we will only consider
characteristic frequencies €2 that guarantee that any other
states degenerate with |0, m) and |1, m) are [n', m'), where
n' 2 3. Since the interaction ), is linear in the cavity

field operators, to diagonalize K, it is sufficient to per-
form perturbation calculations on the states |0, m) and
[1, m) to the first order in € omitting other degenerate
states. When we include the interaction with the exter-
nal field (e # 0), the quasi-Hamiltonian becomes

K = Ko+ €k, (16)

where
o v . iQli
K, = T(a++a) z ce ". 1Y)

The sum appearing in (17) is a Fourier representation of
the series of ultrashort kicks, and the coefficients c; are
equal to

¢ = e_'nhl (18)
where the small interval of time T has been introduced to
ensure that a single kick is located inside the period T.
We want to find the evolution of the states |0, m) and
{1, m). Expanding the state |£) and the value & in series
of € and inserting into them (10) we get a set of equations
for finding the eigenstates and eigenvalues for a given
order of perturbation. In zeroth order the state is given by

€YY = alo, m) + b1, m). (19)
To find the first-order contributions we have to solve
the eigenvalue equation

{ral:)-+(5)

10

(20)
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which has the following solution:

o) 4 )

The quantity €€V is the first-order correction to the
energy, and we have &V = +k/T. The resulting states

labeled by JE correspond to the Floquet states lEio)).

According to (11), the latter are given by

E®) = (1 =0/t = %2<|0>iu>>.

2D

(22)

After continuing the perturbation procedure, we get the
first-order solutions for the states in extended Hilbert
space and, in consequence, the first-order Floquet states
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Fig. 1. Time evolution of the probabilities for the vacuum |0)
(solid line) and one-photon |1) states. The time T = =, and
the kick strength is € = &/50. The cross marks correspond to
the numerical results.
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Fig. 2. The same as for Fig. 1, but for the probability P, cor-

responding to the two-photon state {2). Cross marks corre-
spond to the numerical results again.

and their energies. These states are of the form

") = (1+eA)ES) 2 eBR2)+0O()),  (23)
where
A=iya poly G g
—21t1 . [ —21tl_ L+%/Q’
| = —oa
and the energies Eftl) are
EV = i%+@(e2). (25)

Since we are interested in the generation of the Fock
states from the system with the cavity field in the vac-
uum state, we can express |0) as a function of the first-
order solution for the Floquet state (23). Then, after
straightforward algebra, we obtain the probability
amplitudes for the Fock states. Thus, the probabilities
P, =[n|Um|0)?*(n=0,1,2,...) for the times ¢ just after
mth kick can be written as

Py(k) = cos’(ke) + O(eh),

P,(k) = sin’(ke) + O(e?),

2¢

sin*(xT/2)
It is seen that the system starts to evolve from the
vacuum state |0). Then, after subsequent kicks, the
probability Py(k) decreases, whereas the probability
corresponding to the one-photon state P,(k) increases.
In consequence, after k = me pulses, the system
evolves to the pure one-photon state. The influence of
the higher n-photon states on the system is propor-
tional to €? and for weak external excitations can be
neglected. For instance, the probability for the two-
photon state P,(k) oscillates with the amplitude equal
to €/(2sin%(xT/2)). This approach enables us to get

close form of analytical results describing the evolution
of the system.

(26)

P, (k) = sin’ (ke) + O(e*).

3. NUMERICAL APPROACH

To verify our analytical results, we perform numer-
ical calculations and compare their results with those
based on formulas (26). This will be done on the basis

of the unitary evolution operator U ), similarly to [8].
Owing to the fact that the ultrashort pulses are mod-
eled by the Dirac delta functions, the time-evolution
of the system can be divided into two different stages.
The first is “free” evolution determined by the Hamil-

tonian Hy;, during the time T between two subsequent
pulses. This evolution is described by the following
unitary operator:

n 2
{o = exp(-i%T(a*) az). 27)
LASER PHYSICS Vol. 7 No. | 1997



KICKED NONLINEAR KERR MEDIUM AND FOCK STATES GENERATION 57

The second stage of the time evolution of the system is
caused by its interaction with the infinitely short pulse.
This part of the evolution is described by the Hamilto-

nian &, (3). Thus, the evolution operator correspond-
ing to the interaction during one pulse can be written as

U, = exp(-ie(a +a)). (28)

In consequence, the total evolution of the state of the sys-
tem can be described as subsequent action of the above

operators ( {6 and U, ) on the initial state. Assuming
that for the time ¢ =0 the system was in the vacuum state,
we express the state |®,) just after kth kick as

@) = (Dol) 10). 29)

Formula (29) is a starting point for our numerical cal-
culations.

Figure | shows the probabilities Py(k) and P (k) cor-
responding to the vacuum |0) and one-photon |1) states,
respectively. For the plots, we use units such that x = 1.
The probabilities are plotted as functions of the number
of pulses k. The lines illustrate the evolution of the vac-
uum state and the one-photon state according to analytical
formulas (26). The system starts its evolution from the
vacuum state |0). Then the probability for the one-photon
state increases, and, in consequence, for the pulse number
k = /e, the system is almost ideally in the pure one-pho-
ton Fock state (up to terms ~e2). With crosses we have
marked the results of our numerical calculations, and it is
quite evident that they agree very well with those obtained
from the analytical formulas. This is because € < | and
the influence of the higher n-photon states (for n > 1) on
Pyand P, is negligible. For reference we have plotted in
Fig. 2 the probability P, for the two-photon state |2).
We see that it oscillates as a sine squared function, but the
amplitude of these oscillations is much smaller than those
in Fig. 1. This amplitude is proportional to €2 ~0.002, and
it is negligible in the scale of Fig. 1. The results of the
numerical calculations are also marked, and, as in Fig. 1,
they agree perfectly with those obtained from the analyti-
cal formula.

Obviously, for real physical systems we cannot
avoid dissipation. In consequence, we cannot take € too
small in order to avoid complete damping of the field
during the evolution between two subsequent pumping
kicks. Moreover, the dissipation in the system leads to
a mixture of the quantum states. Hence, the pure state
picture of the field evolution presented above will be
obscured. However, for the cases when the damping is
weak, it is still possible to get the field in a cavity being
very close to the one-photon state. For the case of the
nonlinear medium with damping the master equation
method should be applied. This problem has been
solved exactly by Milburn and Holmes [14, 15] who
have solved the master equation in their discussion of
quantum and classical dynamics of a pulsed parametric
oscillator with a Kerr nonlinearity. We simply take
advantage of this solution and apply it here to take into
account the dissipation in the system. The results are
1997
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Fig. 3. The probabilities for the vacuum |0) (solid lines) and
one-photon |1) states (dashed lines). The damping constant
is'y=(a) 0.01 and (b) 0.1. The kick strength is € = ®/50 and
the timeis T=m.

shown in Fig. 3, where the probabilities of the vacuum
and the one-photon states are plotted for € =nt/50, T=m,
and various values of damping parameter v. It is seen
that for y = 0.01 it is still over 75% of the population
that is found in the state ]1), while for y = 0.1 it is
already less than 15%. Thus, the dissipation in the sys-
tem drastically lowers the effectiveness of producing the
one-photon state. Nonetheless, our system seems to be
interesting enough to be worthy of further investigation.
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