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The time evolution of the normally ordered photon number variance of the fundamental
mode in m-th harmonic generation processes in the case of a weak input chaotic field is
considered. It is shown that the fundamental mode may reveal sub-Poissonian photon
statistics, however, in the course of second-harmonic generation solely.

I. Introduction

Harmonics generation processes with an initially coherent fundamental mode
yield fields exhibiting nonclassical effects of sub-Poissonian photon number statis-
tics and squeezing [1-18]. As two mode phenomena they offer yet the possibility
to study the intermodal correlations (for a review see [8]) and the validity of the
Cauchy-Schwarz inequality [12].

To our best knowledge, Simaan and Loudon {19] have first shown explicitly for
two-photon absorption that an initially chaotic field goes into a sub-Poissonian field.
In turn, Trung and Schiitte [20] and Pefinova and Pefina [21] have obtained for sum-
frequency generation with chaotic input beams an enhancement of anticorrelation
between the different field modes in comparison with the coherent case. It has been
attributed to opposite fluctuations in the field modes [8].

Analytical solutions for the nonclassical effects mentioned above in generation
processes have been found using the short-time approximation {1,2,4-18]. It is al-
ways interesting to present even an approximate analytical solution that is valid for
all times. [t is our aim to give an analytical approach to the problem of the photon
number statistics of an initially weak chaotic fundamental mode in the course of
m-th harmonic generation. Only for small photon numbers there exists a potential
possibility of transformation of a chaotic fundamental mode into a sub-Poissonian
one. The solution obtained will permit us to show explicitly that this transformation
is, in fact, possible for second- (but not third- and higher-) harmonic generation.



M. Kozierowski and R. Tanas

II. Short-time solution for the fundamental mode in higher-harmonic
generation

The rotating wave approximation Hamiltonian for the process of m-th harmonic
generation reads

H = Hfree‘f']{inh
Hivee = hwala+ mhwbl b,
Hint = hgm (a’"bT + at"‘b) . (1)

aT(a) and bT(b) are the photon creation (annihilation) operators for the fundamental
and m-th harmonic modes, respectively. w denotes the frequency of the fundamental
field mode while g, is the mode coupling. Owing to nonlinear coupling the operators
a and b are functions of time not only by way of oscillating factors coming from
the free evolution. We factor out the free evolution from the operators writing

a(t) = as(t)exp(—iwt),
b(t) = bs(t) exp(—imwt), (2)

where aq(t) and bs(t) are slowly varying parts of the operators and satisfy the same
commutation rules as the operators a and b:

1l

[a.af 1=, 8] =1. (3)
The Hamiltonian (1) leads to the following coupled equations of motion:

és = —imgmaz m—lbs’

b, = —igmay . (4)

The long-time evolution of the process will be found by performing numerical calcu-
lations with the method of diagonalization of the interaction Hamiltonian (1), the
details of which are described elsewhere [22]. To start with, however, let us briefly
recall the short-time solution for the fundamental mode. This solution is related
with the expansion of the operators in a Taylor series around ¢ = {3, where ¢ is the
time which it takes for the beams to traverse the medium. Here, we are interested
in the time evolution of the fundamental beam. The solution for the operator as
within an accuracy of ¢2 is [11]

m-—-1
- -1
as(t) = ap —imgmtay™ Ybo + L;—g,zntz{ E rl (mr )(T)

r=1
x [: np~1"" Jagnmo — [ npp :]an] +..., (5)
where the symbol : : stands for normal ordering of the photon creation and anni-

hilation operators and the subscript 0 denotes that the operators (in what follows,
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other quantities as well) are taken at ¢ = 0. ng and n,,o are the photon-number
operators for the fundamental and harmonic mode, respectively.
The one-time first- and second-order field correlation functions are defined by

G = (n(1)),
GO(t) = (n(t)) - GI(1). (6)

The symbol { ) denotes quantum-mechanical averaging over the states of the field.
The harmonic field is in a vacuum state at ¢t = 0, so that the following initial condi-
tions are satisfied (0boj0) = (0|nmo|0) = 0. In order to obtain the field correlation
function for the fundamental mode being initially in a coherent or chaotic state one
has to calculate the quantum-mechanical expectation values in Egs. (6) by sum-
ming up the expressions for n(t) = a}(¢)as(t) and n%(t) = (al(t)as(t))? over the
Poissonian or geometrical photon number distributions P,, respectively:

_ (g
P, = exP(—nm)F» (7

A2
G+ Do ®

where figg = (agao) is the initial mean photon number.
On insertion of Eq. (5) into the definitions (6), after some algebra one finds

G“’(t) = fig - mgt?GM + ..,

60 = G ~mett pOE ) o064 @
where

(m) _ n!

&= Y Py 1o

Beginning the summation from n = m reflects the fact that at least m photons are
needed to have a nonzero m-th order factorial moment.
By definition, the normally ordered photon number variance is

2
V() =6 - [We)] (11)
Negative values of the normally ordered variance (V < 0) indicate sub-Poissonian
photon number statistics.
For the fundamental mode Eq. (11) takes the form
Ve(t) = Voo - mad? {2 [G Y - 660 + m -6V}, (19
and if the field is initially coherent, the above expression transforms to (8]

Ve(t) = —m(m — 1)gn, g , (13)
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pointing directly to sub-Poissonian photon statistics at the onset of the interaction.
The variance becomes negative more steeply as m and 7 increase. For an initially
chaotic fundamental mode from Eq. (12), we get

Vi(t) = A& — mmlgkt?ag (2mip + m — 1) . (14)

The variance, as expected, starts to decrease immediately after switching on the in-
teraction and this tendency is more rapid as m and it grow. However, the conclusion
that for a given, sufficiently large m and 7, the variance could become negative at
an appropriate time ¢ would be too far reaching. Equation (14) describes the very
early stage of the process and, in fact, the transformation into a sub-Poissonian
field occurs for small A and, as we will see further on, for m = 2 only), and it
corresponds to the general feature of this quantum effect that it is meaningful for
not very large photon numbers.

III. Analytical solution

We intend to find an approximate analytical solution to the problem discussed,
permitting us to show explicitly that only in the course of second-harmonic gen-
eration the fundamental mode may exhibit sub-Poissonian photon number statis-
tics. To obtain this solution, we consider the multiphoton Jaynes-Cummings model
(JCM) with an initially unexcited two-level atom, described at exact m-photon res-
onance and in rotating wave approximation by the following effective Hamiltonian:

H = Hfree + Hinc y
Hiee = mhwS® + hwala,
Hine = hgmlal ™S~ +a™5*], (15)

where w denotes the frequency of the field mode while g,, is now the multipho-
ton atom-field coupling. S, S* and S are the pseudospin lowering, raising and
Inversion operators of the atom, respectively, and

[S-,8*] = —253. (16)

For the multiphoton JCM’s (m > 2) the basic effective Hamiltonian (15) omits
the dynamic Stark shifts of the upper and lower atomic levels due to transitions to
intermediate states and its validity has been questioned (e.g. [23-30]). We would like
to stress that we are not interested here in the time behaviour of the multiphoton
JCM but only in the application of the above Hamiltonian to the description of the
time evolution of the fundamental mode in m-th harmonic generation.

From the second commutation relation (3) and the relation (16) it arises that
the interaction Hamiltonians (1) and (15) lead to almost the same results if the
average value of the atomic inversion ($3(t)) remains close to —1/2. Obviously, it
takes place at the beginning of the interaction independently of the initial mean
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photon number. On the other hand, the same situation occurs for an arbitrary time
at sufficiently weak initially coherent or chaotic fields A < 1.

Let the field be initially in a photon number state |n). The atom starts in its
lower state |—). Then, the interaction-picture state of the system reads

() = =, m)CUN(E) + I+, n ~ m)CTA(8), (17)
where |+) denotes the upper state of the atom and the probability amplitudes
Cc(t) and CLNA(t) are

() = ~isin[@2m(n)t],
CLa(t) = cos[2.(n)t]. (18)

2;m(n) is the quantum Rabi frequency describing oscillations of the atom-field Sys-
tem
n!

(19)

To have this frequency nonzero n should be > m.
From the definitions (6), we have

"GO(t) = @(t)lalal¥ (1)) = n - mICTA()2,
"GA() = @(t)lalaTaal¥(t)) = n? —n+m(m+ 1 -20)ICT D). (20)

The superscript n preceding the correlation functions will denote that the field is
initially in a Fock state.
In turn, the atomic inversion reads

MS3(t) = -2 + ICEm (). (21)

Obviously, for a Fock field, the atomic inversion periodically reaches its maxima
(1/2) and minima (—1/2) independently of n (certainly, n should be > m); its quasi
stationary value is equal to zero.

For an initially coherent or chaotic field from (20) we simply get

GO = 3 PGB = A~ m ) RICTAO,

n=0 n=m
GA(t) = Z P."GO(t) = G + m(m + 1) Z P.|C) ()2
n=0 n=m
- 2m Z Pan|C (02, (22)

while the atomic inversion then evolves according to

(%) = ~3+ 3 PalCTAOP. (23)

nam
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Owing to the form of the Rabi frequency (19) the summation over n in the above
equations starts from n = m (in the terms containing the probability amplitude
Con)-

Let us expand the amplitude Cf,_':,),(t) in a power series in t. Within an accuracy
of 2 we arrive at

= n = n!
Y BICEAOP = ght 3 Pape— sy = 0ht°G7,

n=m n=m

= n 2 o — n! 2 m m R
Z Pan|CYA(D)] = git? Z Pnnm = g2 2G4+ mGY™M]. (24)

n=m n=m

Hence, for the normally ordered photon number variance (11) within an accuracy
of t2, we arrive as expected, at the solution identical with (14) for the fundamental
mode in the course of m-th harmonic generation.

The quasi stationary value of the atomic inversion (23) is equal to

m~1
(S%)qs = “21‘ Z Pn. (25)
n=0

Obviously, for strong coherent and chaotic fields it is approximately equal to zero.
This case is beyond the scope of our considerations.
In turn, for a chaotic field this inversion after simple summation takes the form

(%) = —5(1 = ™), (26)
where
n
=3 +1 (27

If the chaotic field is weak (g™ <« 1), the system oscillates with small amplitudes
around the value (26) and the temporary values of (S3(t)) then remain close to
—1/2. Hence, it is reasonable to describe the time evolution of an initially weak
chaotic fundamental mode (coherent as well) in higher-harmonic generation with
the help of the multiphoton JCM. Obviously, the case of weak input fields is less
interesting from the experimental point of view. However, it is desired for the
completeness of our knowledge about quantum features of harmonic generation
processes caused, in particular, by chaotic fields.
The first-order correlation function (20} may be presented as follows:

GI(t) = fi — -'2'-' [C - Wo(t)], (28)
where with respect to Egs. (25) and (26) the constant term C reads
o0
C=an=l+2(53>qs=qm) (29)
n=m

52 Czech. J. Phys. 45 (1995)



while the function Wy (t) has the form
Wo(t) = (1—q) Y q" cos [22m(n)t] . (30)

To calculate the function Wp(t) we use a linear approximation in n for the Rabi
frequency in the range n > m as it was done for the standard JCM (m = 1) [31]})
with an initially unexcited atom or for a multiphoton micromaser case [32]. Quite
generally one can write

22m(n) = Aom + (n ~ M)Aim . (31)

We assume that the above equation is exact in the first two points n = m and
n=m+1:

282 (m) = Aom, 20m(m+1) = Aom + Aim - (32)
From the definition (19) we find that
Aom = 2gmVml!, Aim = Aom(Vm+1-1). (33)

Equation (30) then contains an easily performed summation of the geometrical
progression

m feo]
Wo(t) = 5’-2-(1 - q)exp(idomt) 3 ¢* exp(ikAimt) + c.c., (34)
k=0

and finally one arrives at

6o = - Fo[1- -9 =LA, (35)
where
D(r) = 1 4+ ¢%> —2qcos T,
cos () = 1—“—\/%, sin g(r) = \%“(—:—) (36)
and the two time scales T and r read
T = Agmt, T = Aimt (37)

and they determine “fast oscillations” of the type cosT and a “slow envelope”
dependent on 7, respectively.

1) The original version of this paper contained the results for the multiphoton JCM as well.
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In turn, the second-order field correlation function may be written in the form

G®(t) = 2a? —ﬁ-’ff—l— [C—-Wot)]-m [Z nP, - wl(z)] . (38)
The function Wy(t) reads
8 [ cos[T + ¢(7)]
Wi(t) = q(1 - q) s | =
1( ) ‘I( q) 6(] (q \/m
m cos[T + 26(7)]
= — )Wo(t) + | —g)———=. 39
Hence, the approximate second-order correlation function is found to be
_a _ -1 m — 3 cos{T + o(7)]
GO(t) = 2a* — mg™ it = ~(l1-q)
0 { Sl e
cos[T + 2¢(1)] }
FTm U o

For the normally ordered variance, from Egs. (35) and (40), one gets

V(t) = 7%~ mq {%%ﬂ—( —q)LS[T—D’{;Q)‘”——(—”—]+[1—(1—q>

SR TR0 |

We postulate that the results (35), (40) and (41) describe the time behaviour of the
fundamental mode in m-th harmonic generation when at t = 0 the fundamental
mode is chaotic and weak (fig < 1).

IV. Discussion

Figure 1 shows the time evolution of the exact, numerically computed, mean
photon number of the initially chactic fundamental mode and of the approximate
photon number (35} in third-harmonic generation. Agreement between these two
curves is really satisfactory, at least for the photon numbers assumed.

Let us estimate very roughly the signs at the minimal values of V(). We neglect
in the square bracket (41) all the terms containing g and its higher powers. On this
assumption we arrive at

V~al- %m(m - 1)¢™(1 —cosT). (42)
Putting furthermore cos T = -1 we minimize the value (42) of V. We then have
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Fig. 1. Time evolution of the mean photon number of the initially chaotic fundamental
in third-harmonic generation for figp = 0.4. Solid line corresponds to the exact computer
solution while dashed line corresponds to the approximate result (35).

-9

fl

Vo~ W[(n+1)m—m(m—1)-m- ]. (43)
For second-harmonic generation this quantity may take negative values forn < 0.41.
The bound on sub-Poissonian photon statistics estimated in such a rough manner,
additionally from the approximated formula, does not remain in good agreement
with the limit found numerically: i < 1.2 (for times here assumed gt < 8). In turn,
for m > 3 the term in the square bracket of Eq. (43) is always positive and sub-
Poissonian photon number statistics cannot be observed in these processes in the
fundamental beam when it is chaotic at the input to the medium. Second-harmonic
generation differs from other harmonic generation processes in this respect. Figures
2a and b illustrate this situation.

Figure 3, representing the computer solution for the fundamental beam in the
course of second-harmonic generation, shows how the widths of the photon num-
ber intervals in which sub-Poissonian photon statistics appears vary in time. For
the clarity of the graph only the non-negative values of the quantity (—V) are
plotted. Therefore the positive values over the plane (gt,7) immediately point to
sub-Poissonian photon statistics. From this figure the exact, earlier mentioned, limit
on sub-Poissonian photon statistics is evident. A rather interesting feature of the ef-
fect in question is seen from the first “hummock”; sub-Poissonian photon statistics
starts to appear earlier as fi grows.

Similarity of the description of the time evolution of the multiphoton JCM and
harmonic generation processes turned our attention to the possibility of obtaining
the sub-Poissonian fundamental mode in second-harmonic generation even in the
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Fig. 2. Oscillations of the exact normally ordered photon number variance (solid line)

and of the approximate one (41) (dashed line) for the initially chaotic fundamental in a)
second-harmonic and b) third-harmonic generation; #¢ = 0.2.
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Fig. 3. Non-negative values of (—V) versus dimensionless evolution time gt and # in
second-harmonic generation (computer solution).

case when the input radiation is chaotic. On one hand, we are well aware that the
bound on the number of the incident photons for the presence of this statistics cre-
ates a serious restriction as for the observation of second-harmonic generation. On
the other hand, sub-Poissonian photon statistics is just meaningful for relatively
small photon numbers causing a given nonlinear optical process: the deviation of
the second-order coherence degree from unity is proportional to 1/7. In the case
of coherent input the sub-Poissonian photon statistics is always present in genera-
tion processes, independently of 7. The only problem is then how to reconcile the
efficiency of the process with the magnitude of sub-Poissonian photon statistics.
To conclude, the result here obtained, describing the non-classical behaviour of the
field statistics in second-harmonic generation with the chaotic input, although less
useful from the experimental point of view, supplements our theoretical knowledge
about quantum features of higher-harmonic generation processes.

This work was carried out within the program No 2 0150 91 01 of the Polish Commiitee
for Scientific Research.
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