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Quantum phase properties of optical fields generated in nonlinear optical processes
are reviewed. Phase distributions obtained from the Hermitian phase formalism
of Pegg and Barnett and from the s-parametrized quasidistributions are used to
represent the phase of the field.

1. Introduction

In recent years, a significant progress has been achieved in clarifying the status of the
quantum mechanical phase operator, describing phase properties of optical fields in
terms of various phase distribution functions, and measuring phase dependent physical
quantities. So, although the quantum phase is still a subject of some controversy, we
can now say that, despite the existence of various different conceptions of phase, we are
on the way to a unified view and understanding of the quantum-optical phase.

In this review we are not going to give detailed account of different descriptions of
the quantum phase showing their similarities and differences. We shall rather concen-
trate on the description of quantum properties of real field states that are generated in
various nonlinear optical processes. Nonlinear optical phenomena are sources of optical
fields, statistical properties of which have been changed in a nontrivial way as a result
of nonlinear transformation. Quantum phase properties are among those statistical
properties that undergo nonlinear changes, and fields generated in different nonlinear
processes have different phase properties. With the existing now phase formalisms the
quantum phase properties of such fields can be studied in a systematic way, and quan-
titative comparisons between diflerent quantum field states can be made. We shall
use the Pegg-Barnett (PB) phase formalism and the phase formalism based on the
s-parametrized quasidistribution functions to give several examples of quantum phase
distributions and other phase characteristics associated with the particular one- and
two-mode field states.
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2. The Pegg-Barnett phase distribution

Pegg and Barnett [1, 2] (see also [3]) introduced the Hermitian phase formalism,
which is based on the observation that in a finite-dimensional state space the states
with the well-defined phase exist [4]. Thus they restrict the state space to a finite
(¢ + 1)-dimensional Hilbert space H(®) spanned by the number states |0), [1),..., |o).
In this space they define a complete orthonormal set of phase states by

1 (22

0, = E exp(iné,,) |n), m=0,1,.. 0, 1
where the values of #,, are given by
2mm
0n = 8 . 2
o+ ) (2)

The value of fy is arbitrary and defines a particular basis set of (¢ + 1) mutually
orthogonal phase states.
The PB Hermitian phase operator is defined as

(i>g = (é)gz)>PB = Z 0m ,Hm><0ml (3)

m=0

The phase states (1) are eigenstates of the phase operator (3) with the eigenvalues 6,,
restricted to lie within a phase window between g and 6, +27r;_0|_—1. The PB prescription
1s to evaluate any observable of interest in the finite basis (1) and only after that take
the limit o — oo.

Since the phase states (1) are orthonormal, (6, 0/) = 6,m:, the kth power of the
PB phase operator (3) can be written as

‘i>'5 = ngn 10 ) (O |- (4)

m=0

As the Hermitian phase operator is defined, one can calculate the expectation value
and variance of this operator for a given state of the field |f). Moreover, thé PB phase
formalism allows to introduce the continuous phase probability distribution that is a
representation of the quantum state of the field and describes the phase properties of
the field in a very spectacular fashion.

The mean value of the phase operator and its variance can be calculated according
to the formulas

Flolfy = 0|6l (5)
(A®0)*) = > (0 — ($6))?[ (O f)

m

2
b

(6)
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where |(6’m|f>|2 denotes the probability of being found in the phase state |6,,) The
mean and variance of @4 will depend on the chosen value of fy. If the field state |f)
is a partial phase state, i. e., the amplitude ¢, of its decomposition in the Fock state
basis can be written as

en = bpe™?, (7)

the most convenient and physically transparent way of choosing 6y is to symmetrize the
phase window with respect to the phase ¢. This means the choice

o

bp=p—- ——
0 14 o+ 11 (8)
and after introducing new phase label
o
=m- = 9
p=m=, (9)
the phase probability distribution becomes
2 1 2 2T
6 = — E b, b —k , 10
|< u|f>| 0'+1+0+17L>k keos [(n )U+1:| ( )

with g which goes in integer steps from —¢ /2 to ¢/2. Since the distribution (10) is
symmetrical in g, we immediately get, according to (8)—(10),

(f1®olf) = . (11)

This result means that for a partial phase state with phase ¢, the choice of 0y as in (8)
relates directly the expectation value of the phase operator with the phase ¢.

We should make a remark here that it is not quite correct to take the amplitudes
¢n, €q. (7), obtained from the decomposition of the state |f) in the infinite-dimensional
Fock basis and apply them in the (¢ + 1)-dimensional space. In the finite-dimensional
space the amplitudes ¢, should be redefined as to make the state |f) normalized in this
space. Coherent states in a finite-dimensional basis have been discussed by Buzek et al.
[5] and Miranowicz at al. [6]. However, if & is taken so large that the probabilities |cn|?
for n approaching o are negligible, the use of the infinite basis expansion coefficients
leads to a negligible error and is justified.

All field states generated in real experiments belong to the so-called physical states
[2]. They are defined as the states of finite-energy (finite mean photon number and its
higher moments). For such states the continuous phase distribution can be introduced.
Since the density of states is (o 4 1)/2m, we can write the expectation value of the kth
power of the phase operator as

Oo+27
g9l = [ aepe), (12)
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where the continuous-phase distribution P(§) = Ppg(#) is introduced by

P@O) = lim 2!

oc—so00 2w

Ol I, (13)

and 6, has been replaced by the continuous-phase variable 8. If the state | £} has the
number-state decomposition with the amplitudes ¢, then the PB phase distribution is
given by [2]

1
P8 = Y 14 2Re Z cme,, exp[—i(m — n)d] 3 | (14)
m>n

and for fields being in mixed states described by the density matrix g, formula (14)
generalizes to

P) = % {1 +2Re Y  pmn exp[—i(m — n)e]} , (15)

m>n

where, pn, = (m|p|n), are the density matrix elements in the number state basis.
Formulas (14) or (15) can be used for calculations of the PB phase distribution for
any state with known amplitudes ¢, or matrix elements p,,,,, but despite the fact that
the formulas are exact, they can rarely be summed up into a closed form, and usually
numerical summation must be performed to find the phase distribution. Such numerical
summations have been widely applied in studying phase properties of optical fields. The
PB phase distribution, Eqs. (14) or (15), is obviously 2m-periodic, and for all states
with the density matrix diagonal in the number states the phase distribution is uniform
over the 2m-wide phase window. These are nondiagonal elements of the density matrix
that lead to the structure of the phase distribution. The PB distribution is positive
definite and normalized, and it is a good representation of the quantum state of the
field.

3. Phase distributions associated with the quasiprobability distributions

The quasidistribution functions such as Glauber-Sudarshan P function, Wigner
function, or the Husimi @ function are special examples of the more general s-
parametrized quasidistributions introduced by Cahill and Glauber [7, 8]. Such dis-
tributions are representations of the quantum states in the complex plain, and the
parameter s is related to the particular ordering of the annihilation and creation opera-
tors. If such quasidistributions are integrated over the “radial” variable, the normalized,
2m-periodic phase distributions are obtained [9]. In the Fock basis the resulting formula
for the phase distribution is very similar to the PB phase distribution and is given by

[9]

PO = 21 {1 + 2Re Z Prane (M= G() (i, n)} . (16)

T
m>n
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The difference is in the coefficients G(*)(m,n) that appeared in (16), and which are
given by [9]

_'l'_ min(m,n)

o = ()7 E ()

{=0

I (mgn
A0 ) == 1o

Formulas (16)- (17) allow for calculations of the s-parametrized phase distributions for
any state with known p,,, and compare them to the PB phase distribution, for which
G®)(m,n) = 1. The phase distributions associated with particular quasiprobability dis-
tributions have been used in literature to describe phase properties of field states. For
example, the integrated Wigner function (s = 0) has been applied by Schleich, Horow-
icz and Varro [10] in their description of the phase probability distribution for a highly
squeezed states. The integrated @-function (s = —1) has been used by Braunstein and
Caves [11] to describe phase properties of the generalized squeezed states. FEiselt and
Risken [12] have used the s-parametrized quasiprobability distributions to study prop-
erties of the Jaynes-Cummings model with cavity damping. In their approach, Eiselt
and Risken [12] have used the series expansions of the quasiprobability distribution
functions, and they have found an expression relating the PB phase distribution to the
quasiprobability distributions in a form of the integral relation and applied it to the
Jaynes-Cummings model . Their formulas, however, do not work for s = —1, i.e. for
the Q-function. For some field states the phase distributions P(*)(4) can be found in a
closed form via direct integrations.

The s-parametrized phase distributions are different from the PB phase distribution,
but in some cases the phase information carried by such distributions is basically the
same as that of the PB phase distribution. The coefficients G(”)(m, n) that multiply the
nondiagonal elements of the field density matrix ppn, for 8 < —1 have values smaller
than unity, and the resulting phase distribution is broader than the PB distribution.
Such distributions can be associated with the noisy measurements of the phase distri-
bution [13]. We will show several examples of the different phase distributions that are
found for fields generated in nonlinear optical processes.

4. Phase properties of field states

Optical fields produced as a result of nonlinear transformation of the incoming field in
the nonlinear optical processes have their statistical properties changed with respect to
the original field. Quantum phase properties of the resulting field belong to this class.
Each quantum state of the field is characterized by its own phase properties which
are represented by the phase distribution of the state and/or by the values of mean
phase, variance, phase correlation, etc. Many different states of the field have been
studied from the point of view of their quantum phase properties (see the special issue
of Physica Scripta, vol. T48, 1993 and references therein). Here, we are going to give
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only few examples illustrating the use of the PB and s-parametrized phase distributions
to describe phase properties of optical fields.

First, we remark that for coherent states the PB phase distribution is given by (14)
with the coefficients c¢,, being Poissonian weight factors, and the phase distribution is
obtained by performing the sumrmations numerically. In contrast to this formula, the
s-parametrized phase distribution for a coherent state can be obtained in a closed form

[9]

P (0) / W (a)]a] dja]
0
1

— expl—(XZ = X*)] {exp(=X?) + VAX (1 +exf(X))},  (18)

where

X = XU = %Ia(ﬂcos(b’ — o), (19)
and Xo = X()(dy), ¥y is the phase of ay. Formula (18) is exact, it is 27-periodic,
positive definite and normalized, so it satisfies all requirements for the phase distribu-
tion. Moreover, formula (18) has quite simple and transparent structure. For small
|vg|, the first term in braces plays an essential role, and for || — 0 we get uniform
phase distribution. For large |ag|, the second term in the braces predominates, and if

we replace erf(X) by the unity, we obtain the approximate asymptotic formula given
by Schleich, Dowling, Horowicz and Varro [14] (for s = 0)

P(O)(O) = \/g|a0] cos(f — Jg) exp[—2|0z0|2 sin2(6’ —Jo)], (20)

which however, can be applied only for —7/2 < (8 — ¥g) < m/2. After linearization of
(20) with respect to 6, the approximate formula for coherent states with large mean
number of photons obtained by Barnett and Pegg [3] is recovered. The presence of the
error function in (18) handles properly the phase behavior in the total range of phase
values —m < (6 — ¥9) < 7. This example shows clear advantage of the s-parametrized
phase distribution over the PB phase distribution from the point of view of calculation
simplicity as well as interpretation insight into the form of the distribution. It was shown
[9] that for large number of photons P{9)() is very close to the PB phase distribution,
but for small number of photons the P(=1)(8) is closer to the PB distribution. So, in
case of large photon numbers formula (18) is a very good and simple approximation to
the PB formula (14).

Probably even more striking contrast between the analytical forms of the s-
parametrized and PB phase distributions is seen for squeezed states, for which the
s-parametrized phase distribution has the form [9]

S = L Vi =8)(p — )
PR = ﬂ(u—s)coszﬂ—}—(u‘l—s)sinzﬁ

X exp[—(Xg - X?)] {exp(—XQ) +/TX (1+ erf(X))} , (21)
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where

Y = X(s)(g) _ \/T ao\/jt — scosf 7 (22)
pome \/(N— s)cos?2@+ (u=! —s) sin® @

po= ¥ (23)

and

with 7 being the squeezing parameter and «g (assumed real) being the amplitude of the
coherent component. Although the variable X is slightly different, the main structure
of the phase distribution is the same as for the coherent state. Formula (21) is valid
for both small and large «y. For ay = 0 we have the result for squeezed vacuum.
After appropriate approximations one can easily reproduce the formula obtained by
Schleich, Horowicz and Varro [10] for a highly squeezed state. In contrast, the PB
phase distribution require summations in (14) with rather complicated coefficients ¢,,.
Numerical calculations show [9] that, again, P(%)(0) is sharper than the PB distribution,
but both have very similar shape.

Single-mode squeezed states differ essentially from the two-mode squeezed states
discussed extensively by Caves and Schumaker [15] . The PB phase formalism has
been applied by Barnett and Pegg [16], and Gantsog and Tanas [17] to study the phase
properties of the two-mode squeezed vacuum states.

The two-mode squeezed vacuum state is defined by applying the two-mode squeeze
operator S(r, ¢) on the two-mode vacuum, and is given by [18]

|0:0>(T,w) - S’(?’, 90)|010>
= (coshr)lexp (em tanh r &Td;) |0, 0)
= (coshr) Z 2“" tanh r) "n, n), (24)

where d{ and @} are the creation operators for the two modes, r (0 < r < co) is the
strength of squeezing, and ¢ (—7/2 < ¢ < 7/2) is the phase (note the shift in phase
by 7/2 with respect to the usual choice of ).

The state (24), after generalizing the PB formalism to the two-mode case, leads
to the joint probability distribution for the phases #; and 5 of the two modes in the
form [16]

P(6:,05) = (47%cosh®#)™1 (1 4 tanh® » — 2 tanh r cos(6; + 62))_1 . (25)

One important property of the two-mode squeezed vacuum, which is seen from (25), is
that P(61,68,) depends on the sum of the two phases only. Integrating P(6;,803) over
one of the phases gives the marginal phase distribution P(8;) or P(63) for the phase 8,
or 0,

P((gl) = /P(Gl, 02) dé, = P(@g) = —2—;, (26)

-7
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which means that the phases 6; and 65 of the individual modes are uniformly distributed.
This gives

T

(bo) = o+ / 0.P(0:)d0, = (Bs,) = o, (27)

-7

and
(B, + Bp,) = 2¢, (@9, — Bp,) = 0. (28)

So, the phase-sum operator is related to the phase 2¢ defining the two-mode squeezed
vacuum state (24).

The two-mode squeezed vacuum has very specific phase properties: individual phases
as well as the phase difference are random, and the only non-random phase is the phase
sum.

The variance of the phase-sum operator can be calculated according to the general
formula

<[A((i)91 + <i)92)]2> = <(A(i)91)2> + <(A(i)€2)2> +2C1y (29)

in terms of the individual phase variances <(Aq391,2)2> and the phase correlation function
(correlation coefficient)

Cia = (g, 4,) — (D5, )(Ds,).

Il

/ / 616, P(0,,0,) 6, d6, (30)

—T —7

The variances ((Aégm)z) are simply 7% /3 (because of (26)), and the phase correlation
function C}5 is equal to

n+k
Ciz = —2(cosh r)~? Z % = —2dilog(1 — tanh 7). (31)
n>k

This correlation function describes the correlation between the phases of the two modes
of the two-mode squeezed vacuum. The correlation is negative and asymptotically, as
r tends to infinity, approaches —?/3. The strong negative correlation between the two
phases lowers the variance (29) of the phase-sum operator. Asymptotically, for » — oo,
this variance tends to zero, which means that for very large squeezing the sum of the
two phases becomes well defined (the two phases are locked). The phase sum variance
finally takes the form B

2

([A(Ds, + Bp,)]2) = 2 % — 4dilog(1 — tanh r). (32)

The dependence of the joint phase distribution (25) on the sum of the individual
phases suggests that, after the appropriate change of variables to the sum and the
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difference of the individual phases, we get the phase distribution for a single phase
variable, the phase sum, with the properties of a single phase distribution, e.g., the
2m-periodicity. This transition, however, requires some care with handling properly the
ranges of the phase values, because the phase sum and difference have the 4m-wide
ranges of values. Barnett and Pegg [16] proposed a casting procedure to cast the new
phases into the 2m-wide window. As a result of this procedure we get the mod(2n)
phase distribution for the phase sum 6, in the form [16]

Par(04) = (27 cosh®#)~! (14 tanh? » — 2 tanh r cos 0_,.)_1 . (33)

where 04 is in the range —7 and 7. The phase sum variance is now given by [16]
. A 2
([A(®s, + o, )[")2r = T +4dilog(1+ tanh r) (34)

It is evident that the two variances, eqs. (32) and (34), have generally different values,
although the asymptotic values are the same. This means that the two descriptions,
which are equally well justified, must be interpreted with care. The original approach
is better, for example, in showing explicitly the intermode phase correlations. The
mod(27) phase distribution for the phase sum, on the other hand, is simpler in calcu-
lations of the phase sum properties. The intermode correlations in this case are hidden
in the value of the phase sum variance and are not seen directly.

5. Conclusion

The above examples of the fields, which are pretty simple, were chosen to illustrate
some essential points of the quantum phase description of optical fields. We have
shown the relation between the PB phase description and the description based on the
s-parametrized phase distributions. There is a general relation given by (16) which
says that the s-parametrized phase distribution can be obtained from the PB phase
distribution (15) by multiplying the field density matrix elements Pmn by the coefficients
G(s)(m,n) given by eq. (17). The calculation of the phase distribution in this way
requires, however, numerical summations. In some cases, the s-parametrized phase
distributions can be obtained by direct integrations in a closed form, which allows for
better insight into the structure of the distribution.

There is a large variety of the nonlinear optical phenomena that can produce states
with different phase properties. We just mention a few of them, the phase properties of
which are known, like Jaynes-Cummings model [19, 20, 21, 22, 23], anharmonic oscillator
model [24, 25, 26, 27, 28], harmonics generation [29, 30, 31], or down-conversion [32,
33, 34, 35, 36]. The space available for this article does not allow for presentation their
phase properties, but more information can be found in our review article [37].
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