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Abstract. We examine squeezing properties of resonance fluorescence from two interact-
ing atoms. Previous thecretical analyses of this madel have predicted squeezing on one-
photon resonance. Here we show that it is possible to obtain squeezing in two-atom
resonance fluorescence through two-photon transitions induced by a cooperative atomic
interaction. The squeezing occurs near a two-photon resonance and is not sensitive to the
duration of the detection time in comparison with the decay time of the subradiant state.
Moreover, squeezing near a two-photon resonance is completely independent of the
direction of observation in respect to the atomic axis and can be significantly larger than
that previously found ¢n one-photon resonance.

1. Introduction

Cooperative atomic emission and absorption has been a subject of continuous interest
since it was first proposed by Dicke [1]. The question of to what extent the radiation
scattered by a cooperative atomic system is altered, compared with the single atom
case, has become of interest as it contains information about the inter-
atomic interactions. It has become common to describe this situation using the
approximation of many two-level atoms confined to a region much smaller than the
wavelength of the driving field and coupled identically to a single radiation mode.
While this description does not include physical features such as spatial separations
and dipole—dipole interactions between the atoms, it is nevertheless of interest, as the
simplest model of a group of atoms with a cooperative decay.

Because it is difficult to treat N atoms with the dipole—dipole interaction and a
driving laser field, some previous work has been devoted to study collective effects in
the case of several atoms. These include superradiance [2, 3], two-photon absorption
[4-6], and non-classical effects such as photon antibunching [7-9], squeezing [10, 11},
and quantum jumps [12-14]. Although the several (two or three) atom system is
admittedly an elementary model, it offers some advantages over the multiatom
problem. Almost exact analytical solutions for a two-atom system interacting coopera-
tively and driven by a coherent laser field have been obtained, in order to understand
possible deviations from the single atoms. Many of these results are analogous to
phenomena that one would expect in multiatom systems.

1 Permanent address: Nonlinear Optics Division, Institute of Physics, A. Mickiewicz University, 60-780
Poznaii, Poland.
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Figure 1. Energy-level diagram for two identical atoms represented as a single four-level
system. The frequency shift of the intermediate levels |2} and |4) is due to the dipole—
dipole interactions Q,,. The ground state |1) and the most excited state 13) remain in
two-photon resonance 2y, where «, is the resonant frequency of a single ator.

The earliest analytical and numerical treatments of the two-atom model with the
dipole—-dipole interaction assumed a constant interatomic separation during the
radiation process. This is equivalent to a study of the collective effects for an idealized
atomic beam consisting of a random distribution of atoms moving with the same
velocity. For a real beam, whose atoms move with non-uniform velocities the dipole-
dipole interaction is important only for large atomic densities. However, for more
dense atomic beams three-and-more atom effects should be included into the calcula-
tions, which makes the algebra exceedingly lengthy.

Recently, there has been a renewal of interest in the system of two or three atoms
due to the experimental progress made in confining a few atoms or ions at small
interatomic separations in ion and neutral-atom traps [15]. The trapped atoms are
essentially motionless and lie at a known and controllable distance from one another,
permitting qualitatively new studies of interatomic interactions not accessible in a gas
cell or an atomic beam. Moreover, this enables the single-atom effects to be separated
from those arising from the correlations between the atoms. For example, the
phenomena of superradiance and subradiance have recently been observed in an
experiment involving a microscopic planar Pauli trap [16].

In view of the above it is useful to consider the squeezing properties of the
fluorescence field emittted from two trapped atoms and to incorporate the modifica-
tion in the fluctuations due to the cooperative decay as well as the dipole~dipole
interaction. It is now well established that interactions between a pair of identical
atoms give rise to new resonances in the fluorescence and weak-probe absorption
spectra [17-21], especially the dipole—dipole interaction induces novel two-photon
resonances on the double frequency of the atomic transitions [4-6]. These resonances
are induced by the simultaneous transitions in the two-atom system, where the atoms
jump simultaneously from their ground to excited states. A correct interpretation of
the origin of these simultaneous transitions is possible by referring to the collective
states of the two-atom system [1, 22]. In the collective level scheme, the two-atom
system behaves as a single four-level system (figure 1), in which energies of the
intermediate |2) and [4) levels depend on the dipole—dipole interaction 2, between
. the atoms. For large interatomic separations ry,, the level shift due to the dipole-
dipole interaction is very small, Q;,=~0, and the excitation of the atoms proceeds by
two degenerate transitions, with resonant intermediate states. These intermediate
states have a normal spontaneous lifetime so that the double excitation from |1} to |3}
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proceeds by sequential process. For small ry,, the intermediate states suffer a large
shift due to the dipole~dipole interaction Qi,, and remove themselves from one-
photon resonance. Nevertheless the double excitation between the ground state |1)
and the most excited state |3) remains in two-photon resonance via a virtual state
which lives only for a time of order of the reciprocal of the one-photon detuning given
by the dipole-dipole interaction shift €,,. In this way the large r,, sequential
transitions are replaced at small ri, by effectively simultaneous two-photon trap-
sitions.

Photon antibunching and squeezing properties of the fluorescence field emitted
from a two-atom system have also been shown to yield information about the
interatomic interactions {10, 11]. In particular, if the laser field is tuned to resonance
with the transition |1)—|2) and its intensity is not too large, a pronounced photon
antibunching can be obtained in such a two-atom system, well known from single-
atom resonance fluorescence [23, 24]. Squeezing, which for single-atom resonance
fluorescence has its maximum for the laser field on resonance with the atomic
frequency [25, 26], shifts to the region of finite detuning A (see figure 2). In other
words, this means that the Jaser frequency is tuned to resonance with a particular pair
of energy levels of the two-atom system that are shifted by the dipole—dipole
interaction. In this case, however, the two-atom system behaves like an individual
two-level system with transition frequency characteristics of the |1)— |2} transition.

The fluctuations of the fluorescence field, apart from the large squeezing at finite
detuning A, exhibit also a small dispersion-like structure near A =0 (see figure 2). In
contrast to the resonance occurring at finite A, which has a clear physical interpre-
tation, the dispersive structure centred on A =0 is not $o easy to understand. To our
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Figure 2. Normalized quadrature component F, of the fluorescence field as a function of
the detuning A between the atomic and laser field frequencies for two independent atoms
(full curve} and two interacting atoms (broken curve). The dipole-dipole interaction
between the atoms shifts squeezing (nepative values of F,) to the region of finite detuning.
For interacting atoms F, exhibits also a small dispersion-like structure near A =0, the
interpretation of which is the subject of this paper.
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knowledge no explanation has been offered so far for the appearance of the dispersive
structure at A=0. :

In this paper we reconsider squeezing properties of the fluorescence field emitted
from two two-level atoms. In particular, we make a detailed study of the physical
origin of the dispersive structure in the fluctuations of the fluorescence field. Previous
work [10, 11] has emphasized squeezing at finite detuning which is of a two-level-atom
character. The effect that we are concerned with occurs when the Iaser field is tuned to
the atomic resonance. In order to explore this we extend the previous studies [10] to
the case of large intensities of the driving laser field and small interatomic separations.
We show that the dispersive structure at A=0 becomes more dominant as the
intensity of the driving field increases. In addition, a large squeezing is generated near
A =0, which can be as much as twice the squeezing found previously at one-photon
resonance. The origin of the dispersive structure and squeezing at A =0 is attributed
to the two-photon coherences, which are significant for small interatomic separations
and large intensities of the driving field. This is inherent collective effect arising from
the presence of the interactions between the atoms.

2. Master equation and evolution of the density matrix elements

Consider a system of two identical two-level atoms separated by a distance ry, and
driven by a coherent laser field of constant amplitude %;, and of frequency w; tuned
close to the atomic transition frequency e. Simultaneously the atoms are coupled to
all other modes of the electromagnetic field being initially in their vacuum states. The
ground state |g;) and the excited state |e;) (i=1, 2) of each atom are assumed to be
connected by an electric dipole transition, with a dipole matrix element g.

The equations of motion used to describe the system can be equally derived from
the master equation approach, or from the Heisenberg equation of motion. Here we
choose to vse the master equation for the reduced density operator describing the
atomic dynamics, which in a frame rotating with the laser frequency @, and in the
rotating-wave approximation is [22, 27]

dp & -1 _
=3 0I5 RIS 5 ) 1)
2
—1 >, QulS'St, 01— 3, vulS ¢ p+pSi Si — 257 pS}). (1)
I#k Lk

Here Q= |p-%|/# is the Rabi frequency associated with the driving field of ampli-
tude &, and phase ¢, 6 = (@o—wL), 2y,=2y.=2y is the Einstein A coefficient, and
87 are the atomic raising and lowering operators, which together with the population
inversion operator S5} fulfil the well known commutation relations:

[S7, Sz }=2S76x (57, Skt ] =+ SFdu. (2)

The parameters y;, and Q,(!# k), which appear in equation (1) describe the collective
damping and the collective frequency shift, respectively, and are produced by the
mutual interaction of the atoms through their own electromagnetic field. These
parameters depend on the interatomic distance ry;, and on the geometrical configur-
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ation of the atomic dipoles, and are given by [22, 27, 28]

_ R sin(kyry ) L. cos(kory) sin(kory)
?’m-%?’[[l"(ﬂ'fm)zl'm"‘ll “‘“3(#"‘:&)2}( kot - (kora)® )]

ko ' ko

where g and ry are unit vectors along the transition electric dipole moment and the
vector ry, =r,—r;, respectively, and k;=wy/c.

In equation (1), we have specified the orientation of the interatomic axis to be
perpendicular to the direction of propagation of the laser beam. This is not an
essential feature as we are interested in effects which occur at very small interatomic
separations where the orientation of the atomic axis is not important. Some interest-
ing effects, which are sensitive to the orientation of the interatomic axis relative to the
direction of propagation of the laser beam, have been recently reported [29-31].
However, these effects are significant for large interatomic separations.

For the purpose of the following development it is convenient to employ the
collective (Dicke) atomic states [1, 22]

3

J1=|g:}|g2) [2)=27"%(le;}|g2) + g1} e2)) )
|3)=1er}|ex) |[4=27""(|e;}|g2) — |g1}|ex))

in which the density matrix elements are
pi={lplf} ,j=1,2,3,4. ' ©®

The elements p; are the populations of the collective states (i), and py(i#]) the
coherences. From equation (1) we find that the density matrix elements satisfy the
equations of motion

P =(1+a) (0~ p2) + B[(P— ) + (P2 = P2)],
P=—205~13(pn—pPn).

 pu=(1—a)(p—Pu),

pn=—1(3+a)—i(A—B)lon+iBlput+ (P —p2)],

pr=—18 -3 +a)— (A +b)]pn+(1+2)ps+if[20n+ P+ Pu— Pis],
pi=— (1 —iA)pu+if(pn—~pr);

and

(7a)

Pu=— ’H(l —a)—i(A —=b)]py— (1 —a)ps+iBp,
pu=—3(3—a)—i(A+b)]ps—iBps. - (7b)
Pu=~ (1 +18)0s + F{ o1y + ps4)

where the dot indicates differentiation with respect to v =2yt. The other parameters
have also been made dimensionless: A =d/y, b=Qp/y, a=pply, and =Q/2V2y. In
obtaining equation (7), use has been made of the relation

Put Pzt Pntpu=1 (8)
stemming from the trace condition. The Hermiticity of p further implies that pyy, o3
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and pus are real functions and p, = ph, 1= %, P1:=Ph, P = 0%, P = P4, Pu=P%,
43 = P 34

8 It is evident from equation (7) that the system of equations decouples into two
groups. One consists of nine equations for the matrix elements describing transitions
via the superradiant state [2), and the other consists of six equations for the matrix
elements describing transitions via the subradiant state |4), However, as long as rp#0
the matrix element p,, is coupled to the coherences involving the superradiant state |2)
rather than the coherences involving the subradiant state |4). Assuming that the atoms
are in their ground states just before the laser is turned on, the matrix elements (7b)
retain their initial zero values, and only the set of nine equations (7a) can have non-
zero steady-state solutions.

Setting ;=0 in equation (7) gives the steady-state values of density matrix
elements '

Pu=pu=48YD
Po=48%(1+ A*+82)/D )]
Pre=20802B8(8+iA)+ (1+AY)[(1+a) +i(A+ BV D
Pu=—4i8%(1+iA)/D
pu=—28(1+iA)[(1 +a)+i(A +5)]/D

where
D=168*+8(1+ A%+ (1 + AV [(1+a)*+ (A +b)]. (10)

The steady-state solutions (9) are identical to that obtained previously [10, 11], and
have been used to discuss photon antibunching and squeezing in the two-atom
resonance fluorescence. However, previous calculations have been specifically
oriented towards studying the effects near one-photon resonance |1)— 12). It has been
shown [10, 11] that a pronounced photon antibunching and squeezing can be obtained
in resonance fluorescence from a two-atom system, when the laser driving field is
tuned to the one-photon transitions |1)—>|2). What happens near two-photon reso-
nance |1)—>[3) has not been discussed previously. It is seen from equations (9) and
(10) that the populations of the collective atomic levels as well as the coherences
exhibit resonant behaviours not only on the one-photon resonance A= —b, but also
on the two-photon resonance A = 0. The existence of the resonance at A = 0 illustrates
the occurrence of multi-photon processes in the two-atom system. We will use
equation (9) to discuss squeezing properties of the fluorescence field near two-photon
resonance, and show that for this effect two-photon coherences are important.

3. Fluctuations of the fluorescence field
In order to calculate squeezing properties of the fluorescence field let us introduce the
quadrature components at frequency « and wave vector k

Ey=ER, §) expli(wt— k- R+6)] + EOXR, §) exp[—i(wt—k - R+ )], -
Eoman=—HE™M(R, 1) expli(wt—k - R+ 6)]— E(R, 1) exp[—i(wt—k - R+ 8)]}

satisfying the commutation relation
[EH! Eﬂ—m'z] = ZIC (12)



Squeezing in two-atom resonance fluorescence 101

where ECYR, ) (E(R, t)) is the positive (negative)-frequency part of the fluores-
cence field and C is a positive ¢ number.
Introducing the fluctuation operator

AE,=E,—{E.) a=0,0—x/2 (13)
we can write the variance of E, as
{(AE,)=((AE,) )+ C (14)

where the colon stands for normal ordering of the operators. Since squeezing is
defined by the requirement that the variance of one of two non-commuting observ-
ables shall be less than half of the absolute value of the expectation value of their
commutator, the variance ((AE,)*) has to be less than C to meet this requirement.
According to (14), squeezing of the field is characterized by the condition that either
(:(AE,)%) or (:(AEg_nz)":) is negative.

To analyse squeezing in the fluorescence field we use the following relation
between the scattered field and atomic operators in the far-field limit [22, 27]

ESR, )= —(wo/c) 2 Ex_(l;x—_u)' 87 (t— Ric) exp(—ikR - ;) (15)

i=1

where k=w,/c, R is the unit vector in the direction R = RR of the observation point,
is the position vector of the ith atom and S7 are the atom operators.

Having available the fluorescence field operators expressed by the atomic opera-
tors and by using the identities [22]

($1Y=2"*(pz— pus+ Przt P1a)

(83)=2"(pp+ pa+tpu—pP1)

{S783)=pn (16)

(ST8TY=(8357)= P+ H{ P+ Pas)

(S785) =302~ Pas) — 2Pz — P2a)

(ST ST ST8)=ps
we can directly apply the steady-state solutions (9) to calculate squeezing in resonance
fluorescence.

From equations (14)—(16) we find that the normalized normally ordered variance
(:(AE.):) is given by '

F=G(AE Y UAR)
=2pp+ P+ pu+ (P Pu) 0S(kR -110) + p5 exp{2i[(w — w1 )t + al}
+ py exp{ — 2i[(w — @)t + al} +i( P — pze) sin(kR - riz)

- H[( Pntpy) 305(%“? P} —1(P35— Oa) sin(%kﬁ 2]
X explil(w — wp )t + alt+ [( P+ o) cos(3kR - r1z) 0]

+i( 03— Pra) sin(3&R - ri)] exp{ —i[(w —w }t + a]}]2
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Figure 3. F, as a function of the detuning A for kr;;=0.1z, §=2.5, R L ry,, and different
phases a: e =n/4 (full curve), a=x/2 (broken curve),

where a=0—k-R, and UX(R)=(4k*u*/R% sin® y,, with 3, the angle between the
observation direction R and the atomic transition dipole moment g.

Equation (17) shows that the normalized normally ordered variance F, depends on
phase a not only through the one-photon atomic coherences but also through the two-
photon atomic coherences. This dependence suggests that there are two different
processes that can lead to squeezing in two-atom resonance fluorescence. This is
illustrated in figure 3, where the variance F, calculated at the frequency w =wy, is
plotted against the detuning A for kr;,=0.1%, §=2.5, R L r;;, and different phases c.
The variances F, show a strong dependence on phase o near both one- and
two-photon resonance. Moreover, a considerable amount of squeezing is found at
these resonances. It is seen from figure 3 that near a two-photon resonance a change
by /4 of the initial phase of the driving field changes a dispersion-like structure of the
variance F, into an absorption-like type. According to equations (9) and (17), the
normalized normally ordered variance F, for 5> §>>1 can be written as

44% A 1 .
F, =T ,:(:l—-l-A_z) cos2g— a"_l_—Az)- sin 2a] (18)
where we have retained only those terms which contribute near two-photon reso-
nance. Equation (18) predicts a dispersion-like structure for a=0 or z/2, and an
absorption-like structure for @ =x/4. Moreover equation (18) shows that the presence
of the dipole—dipole interaction is essential to obtain squeezing near two-photon
resonance. The emergence of an additional dipole—dipole interaction induced squeez-
ing is a clear indication of a totally different process, which can appear in two-atom
resonance fluorescence. The dipole-dipole interaction induces two-photon transitions
|1)—>|3), which are responsible for the origin of the two-photon coherences. These
coherences cause squeezing near two-photon resonance, whereas near one-photon
resonance squeezing is caused by the one-photon coherence |1)—|2). This is shown in
figure 4, where we plot the one-photon coherences |pp+ px| and the two-photon
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Figure 4. Two-photon coherence |py| (full curve) and one-photon coherences | oz + 02
(broken carve) as a function of the detuning A for kri,=0.1x, and f=2.5.

coherence | oy in function of the detuning A for the same parameters as in figure 3. It
is seen that near one-photon resonance the two-photon coherence is zero and only the
one-photon coherences |py, -+ py| are large, but near two-photon resonance only the
two-photon coherence |p;;| is significant.

It is interesting to note from equation (17) that the angular distribution of the
squeezing properties of the fluorescence field about the line joining the atoms
(proportional to cos(14R-r,) and sin(}kR-ry)) depends only on the one-photon
coherences, whereas the contribution from the two-photon coherences is completely
independent of the direction of observation.

In figure 2 we have chosen the parameters in such a way that at A=—5 the
varlance F, becomes minimal and reaches its minimum vzlue —0.125, which corre-
sponds to maximum squeezing of the steady-state resonance fluorescence produced by
a two level atom [10, 11, 25}. Two-atom resonance fluorescence, however, can
produce significantly larger squeezing near two-photon resonance A =0, provided
that the Rabi frequency of the driving field is large. This is shown in figure 5, where
the variance F, is plotted near A=0 for a=0, kr,=0.027, R Lr;;, @ =, and
different 5. As the Rabi frequency increases the squeezing increases and attains its
maximum value —0.21 for very large Rabi frequencies. This value, compared with the
—0.125 derived above, is almost two times larger that that obtained near a one-photon
resonance. The result shows that the squeezing in two-atom resonance fluorescence
can be enhanced if the interatomic separation is small and the laser frequency is tuned
to the two-photon resonance.

Until now we have calculated the squeezing properties of the steady-state fluores-
cence field, which is reached after the atoms have interacted with the driving field for
several natural lifetimes, For a strong driving field (3>>1) we find from equation (9)
that the collective atomic states saturate at identical values

Pu=Pn=Pp=p0u=1. (19)
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2

Figure 5. F, as 2 function of A for =0, kr,;=0.027, L ry, and different 8; §=25 (full
curve}, #=50 (broken curve), =75 (chain curve).

It is seen from equation (74) that the subradiant state |4) experiences a variation on a
time scale of order (y—y)™', which time must be small compared to typical
observation times (~50y~") in order that the steady state be reached, with the
subradiant state participating fully in the interaction. For 1< (y —y,,) ! the subradiant
state does not participate in the interaction, and the system reaches a steady state
between the symmetric states [1), |2) and |3). The question then arises as to whether
the observed fluorescence is from atoms which have been interacting with the laser
field for less than, or greater than, the characteristic time (y—y)~!. This can be
estimated as follows. Suppose that atoms are typically in the interaction region for a
time T~Ky~'. If kr;,<<0.1, then (1—a)"'>>100 and the values of K should be
sufficiently large to ensure that the subradiant state is important. For values of K ~ 50
the interaction time T 'is smaller than (¥ —y;,) ~* implying that the fiuorescence is taken
from the symmetric states only. In this case a change of the steady-state solutions for
the density matrix elements is required. Assuming that kr,<< 1 we can approximate y,,
by y. In this case the subradiant state [4) remains unpopulated (0,,=0) during the
time T<(y—y1,)~", and the steady-state values of the density matrix elements are

ps=48%D’
Pu=48%(1+A%+8%/D’
Pe=2ipL2B(B+iAY+(1+A)[2+i(A+ b))/ D' (20)
Prn=—4if%(1 +iA)/ D’
pu=—2B%(1+iA)2+i(A + b))/ D’
where

D' =128+8(1+ AHB*+(1+ AD[4+ (A +b)Y. (21)
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Figure 6. Same as in figure 5 but for the detection time short compared to the decay time
of the subradiant state |4).

For a weak driving field (8<< 1) the steady-state solutions (9) and (20) are essentially '
equal if we set =1 in equations (9). However for a strong driving field we find that

the steady-state populations of the collective atomic states are

Pu=Pn=Pn=1%.
This result is significantly different from that given in equation (19), where the
subradiant state was coupled to the symmetric states. It is worth repeating that if the
detection time is short compared to the decay time of the subradiant state, then the
steady-state populations of the symmetric states are enhanced by a factor 4. Despite
this, the variance F,, near A =0, is not changed significantly from the values given for
the detection time long compared to the decay time of the subradiant state, leading to
the same qualitative behaviour of squeezing in the fluorescence field. This is shown in
figure 6, where we plot the variance F, as a function of the detuning A, for a=0,
kri;=0.027 and different Rabi frequencies. It is obvious from figures 5 and 6 that the
variances of the fluorescence field are almost identical independent of the relation
between the detection time and the decay time of the subradiant state.

(22}

4, Conclusions

We have shown that it is possible to obtain squeezing in two-atom resonance
fluorescence through two-photon transitions induced by a cooperative atomic interac-
tion. The squeezing occurs near a two-photon resonance and is not sensitive to the
duration of the detection time. In contrast to squeezing appearing near a one-photon
resonance, which strongly depends on the direction of observation about the line
joining the atoms, the squeezing near a two-photon resonance is completely indepen-
dent of the direction of observation. Moreover, the maximum of squeezing near a
two-photon resonance can be almost twice as large as for one-photon transitions. In
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order to explore this, small interatomic separations and large Rabi frequencies of the
driving field are needed. Current technology can produce an ion crystal with atom—
atom separations comparable to the wavelength of the driving field [15, 16]. To
explore effects near two-photon resonance separations much smaller than the reso-
nant wavelength are required. Despite this, in this paper we have demonstrated that
the fluorescence field from two identical atoms can show a large squeezing near two-
photon resonance, as a resuit of the two-photon coherences induced by the interato-
mic interactions.
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