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Abstract. Phase properties of binomial and negative binomial states are studied within the
Pegg-Barnett Hermitian phase formalism

1. Introduction

Binomial and negative binomial states are the field states that are superpositions of
the number states with the appropriately chosen coefficients (amplitudes). Quantum
properties of the binomial states have been discussed by Stoler et af [1], who have
shown that such states can display antibunching and sub-Poissonian photon statistics
as well as squeezing. Some possibilities of producing binomial states in practice have
also been discussed in the literature [2]. The effect of binomial field distribution on
collapses and revivals in the Jaynes—Cummings model has been studied by Joshi and
Pari [3]. Joshi and Lawande [4] have considered the effects of negative binomial field
distribution on Rabi oscillations in a two-level atom. The properties of the negative
binomial states of the field and a possibility of their production in practice have been
discussed by Agarwal [5]. The binomial state is ‘intermediate’ between a pure number
state and a pure coherent state, and the negative binomial state intermediate between
a pure thermal state and a pure coherent state. Both binomial and negative binomial
states can exhibit squeezing, a phase sensitive effect [1—4] It can be, thus, interesting
to study their quantum phase properties.

In this paper we study the phase properties of both binomial and negative binomial
states [6] using the Pegg—Barnett phase formalism [7-9].

2. Binomial and negative binomial states

The binomial states are defined as [1]
N

= c.(p)lm) o

n=0
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where

12
cn(p)=[(:)p"(1—p)”‘“] n=0,1,2,...,N, O<sp=1l (2)

which means that the binomial state describes the state of the field having a binomial
photon distribution P,=|c,(p)|* with the mean photon number /i=Np, and the
variance (An)’=7*— 7= Np(1—p). Since the variance is always less than the mean,
the Mandel parameter Q = (An)*/fi— 1, which signifies deviations from the Poissonian
distribution, is always negative. Thus photon statistics in the binomial states is always
sub-Poissonian. For p=1, ¢,(p)=0,~ and the binomial state becomes the number
state |N}. In the opposite extreme, for p—0 and N— < but with Np =7 = const, the
binomial state becomes a coherent state with the mean number of photons 7.
The negative binomial states are defined as [6]

=S (p. wln) ©

r=ll

where

n+w . vz
etom=| (" )pra-or ] (@

with w=0, 0<p<1,12=0,1,2,..., «. The probability of finding » photons in the
state (4) is given by the negative binomial distribution

s 4w - '
sz=|crr(p$ W)|"= " Pl —p) . (5}
with the mean number of photons and the variance given by
[—p i—-p
A=(1+w)— Any=(1+w)—. 6
(+wy— (Any'=(1+w) 7 (6)
The Mandel Q parameter for the negative binomial states equals
Any 1
_{ _)—1=——1 - . D
h P

and is always positive since p lies between zero and one. This means that photon
statistics in the negative binomial states is always super-Poissonian. For w—0 the
photon number distribution (5) reduces to the Bose—Einstein distribution with the
mean number of photons 7 —(1—p)/p. In the opposite limit, for w— 0, p— 1, but
with 7= (14 w) (1 —p)/p=const it reduces to the Poissonian distribution.

3. Phase properties

To describe quantum phase properties of the binomial and negative binomial states
we apply the Hermitian phase formalism introduced by Pegg and Barnett [7-9]. This
formalism is based on introducing a finite (s + 1)-dimensional space ¥ spanned by the
number states |0}, |1),...,|s), for a given mode of the field. The Hermitian phase
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operator operates on this finite space and, after all necessary expectation values have
been calculated in W, the value of s is allowed to tend to infinity. A complete
orthonormal basis of (s+ 1) states is defined on ¥ as

b= S in,,)|n) 8
| ”'>_7§—__}__T”§=;I exp(ln m) fl ( )
where
2am
91; 9“ +1 m=0,1,..._5. B (9)

The value of @, is arbitrary and defines a particular basis set of (s+1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

po=">, Ornl 6 (Ol (10)

m=0

where the subscript 8 indicates the dependence on the choice of 6. The phase states
(8) are eigenstates of the phase operator (10) with the eigenvalues 8, restricted to lie
within a phase window between &, and 6+ 2. The unitary phase operator exp(igq) is
defined as the exponential function of the Hermitian operator @, and has the form
[7-9]

s—1

exp(ige)=>, ) {n+ 1| +expli(s + 1)8][s}{0]. (11)

=0

The last term in {11) ensures the unitarity of this operator. The first sum reproduces
the Susskind—Glogower [10] phase operator in the limit s— .
The expectation value of the phase operator (10) in a state [¢) is given by

W|delw) = Z RICHEE (12)
m=0

where [(6,./y)|* gives the probability of being found in the phase state |6,,). The
density of phase states is (s + 1)/27, so in the continaum limit as s tends to infinity, we
can write equation (12) as

n Op+2m
wliwr= " oree) a0 13
6o
where the continuum phase distribution P(8) is introduced by
P(6) = lim - |6l 4
(6) = lim——={6]y)] (14)
with 6, being replaced by the continuous phase variable 8. Once the phase distribu-
tion function P(6) is known, all the quantum mechanical phase expectation values can
be calculated with this function in a classical-like manner by integrating over 8. The

choice of @, defines a particular window of phase values.
Equation (14) defining the phase distribution function can be generalized for any
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physicaily reaiizable field state described by the density matrix p, and it takes the form

1> ,
PO)=57 2 puwe™e (1)

r.n'=0

where p, ,» are the matrix elements of the density operator in the number state basis.
Of particular interest in description of the phase properties of the field is the phase
variance that can be calculated according to the formula

(A= f &*P(0) de—( f 6P(0) de)z. (16)

Since the number and phase are conjugate quantities, they obey the uncertainty
relation [9] '

AnAg=H([#, 3]} (17)

Knowing the variances for the number of photons and phase one can calculate the
uncertainty product

AnAg =[{(An)) (A" (18)

and, on the other hand, the number-phase commutator appearing on the right-hand
side of equation (17) can be easily evaluated, for any physical state, from the relation

{4, $1=i[1-2aP(6,)]. (19)

So, both sides of the uncertainty relation (17) can be calculated independently for a
given state of the field, and the uacertainty relation itself can be tested for finding, for
example, the minimum uncertainty states.

To describe the relative quantum fluctuation, with respect to the minimum
uncertainty, it is convenient to introduce the notion of the number and phase
squeezing defined by {11, 12]

G @
Sy=p B . 1)

35, D))
The value of —1 of these equations means perfect squeezing of the photon number or
the phase.
We use the field characteristics defined above to study quantum properties of the
binomial and nepative binomial states of the field mode.

3.1. Binomial states

The binomial states given by (1) and (2) are finite superpositions of the number states.
In the two limits they become either the number state |N) or a coherent state. One can
thus expect that their phase properties will reflect this feature and will interpolate
between the completely random phase of the number state and the phase nroperties of
the coherent state. The build-up of the phase peak in the phase distribution P(8) given
by (15), with the density matrix elements being the products of the amplitudes (2), is
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Figure 1. Phase distribution P(#) for the binomial states with different ¥, for the mean
number of photons #=73: N=§ (dotted curve), N =10 (chain curve), and N =30 (broken
curve). The full curve corresponds to the phase distribution of the coherent state with

A=35.
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shown in figure 1, for the mean number of photons 7 =35 and various N. It is seen that
for N 7 the phase distribution P(#) for the binomial state becomes indistinguishable
from the corresponding distribution for the coherent state. As one could expect the
phase distribution for the binomial states with smalt & is much broader than the phase
distribution for the coherent state with the same mean number of photons, and it
becomes narrower and closer to the coherent state phase distribution as N increases.
The binomial states have their phase properties that are intermediate between the
number states with completely random phase and the coherent states. In figure 2 we
plot the phase variances with respect to p for given N (figure 2(«)) and with respect to
N for given p (figure 2()). It is seen that for given N the phase variance approaches a
minimum for p=10.5. This means that the state with p =0.5 has the best defined phase
for given N. For given p, the phase variance decreases as N increases and asymptoti-
cally tends to zero as N— . This could be expected, since the mean number of
photons 7 = Np tends to infinity in this limit, and the phase of the field becomes well
defined.

The other interesting quantities characterizing the states are the number and phase
squeezing defined by (20) and (21). It is seen from figure 3 that these two quantities
when plotted with respect to p show opposite behaviour in the sense that if one of
them goes down the other one goes up. This behaviour confirms the fact that the
number of photons and the phase are conjugate quantities. Moreover, it is interesting
to notice that for N>>1 the number-phase uncertainty product has a maximuom in the
vicinity of the point where the number and phase squeezing curves cross. At the
maximum the number—phase uncertainty product differs significantly from the half of
the modulus of the number—phase commutator (rus of equation (17)), which sets the
level of quantum noise. For 7i=Np 1, the binomial states become intelligent states
[11], that is the states for which inequality (17) becomes equality (see figure 3(c)). The
maximum of the uncertainty product appears for the mean photon numbers 7i~1,
which means p~1/N. This is also the region where the curves for the phase and
number squeezing cross. However, the crossing point does not correspond exactly to
the maximum uncertainty product, but they become closer as N increases. The
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Figure 2. Phase variances for the binomial states.

crossing point means the state with the quantum noise for the phase variable being
equal to the noise for the photon number, {(An)*)={(A¢)?). Our considerations show
that the binomial states have really, as expected, phase properties that interpolate
between the number and coherent states and can be used to model fields with such
phase properties.

3.2. Negative binomial states

The negative binomial states defined by equations (3) and (4) are, in contrast to the
binomial states, infinite superpositions of the number states with the extra index w=0
defining particular states. Their phase properties can be studied in the same way as has
been done for the binomial states. The results are presented in figures 4-6. In figure 4
the phase distribution calculated according to the formula (15) is shown for several
negative binomial states (w=0, 1,3) for the mean number of photons i=5. For
comparison, the phase distribution for the coherent state with the same mean number
of photons is also plotted. It is interesting to see that the negative binomial states have
a phase peak narrower than the coherent state, so the phase peak for such states
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Figure 4. Phase distribution P{6) for the negative binomial states with different w, for the
mean number of photons A=3: w=0 (dotted curve), w=1 (chain curve), and w=3
(broken curve), The full curve corresponds to the phase distribution of the coherent state

with 2=35.
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Figure 5. Phase variances for the negative binomial states plotted against w for several
values of the mean photon number.
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Figure 6. Plots of the number and phase squeezings and the uncertainty product for the
negative binomial states: (@) =1, (b)) A=2, {¢) fi=5 and {d) A=10.
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should be easier to detect. However, they have broader wings as compared to the
coherent state. The state with sharpest and highest peak has the value of w=0, but it
also has the most pronounced wings, which cause the phase variance for this state to
be greater than the corresponding variances for the other negative binomial states
with higher w. This is clearly seen from figure 5 where the phase varjance is plotted
against w for several values of the mean photon numbers. Next we have calculated the
phase—number uncertainty product as well as the phase and number squeezings for
the negative binomial states which are shown in figure 6. Here we see that for i>1,
the quantum noise level (RHs in equation (17)) is practically equal to 0.5. The
number—phase uncertainty product has its maximum for the states with w =0, but as w
increases its value monotonically decreases to the value represented by a coherent
state with the same mean number of photons. Unlike the binomial states, the negative
binomial states always have their photon statistics being super-Poissonian (the Q
parameter is always positive), so the number squeezing monotonically decreases as w
increases. Since the phase squeezing also decreases, the two squeezings never cross.
The negative binomial state with w=0 has the Bose—Einstein photon number
distribution with the mean number of photons 7 = (1 — p)/p, which is characteristic of
thermal states. However, the states (3) cannot be identified with the pure thermal
states because the off-diagonal elements of the density operator p = |)u,.x(y| in the
Fock state basis are not zeros. This explains the sharp phase peak for the state with
w=0. Pure thermal states with zero non-diagonal elements have flat phase distribu-
tion. For w— and 1—p—0, but A=(1+w)(1—p)/p being finite, the negative
binomial states reduce to a coherent state with mean number of photons 7. In this
limit, the phase properties of the negative binomial states correspond to the properties
known for coherent states.

4. Conclusions

In this paper we have studied quantum phase properties of the binomial and negative
binomial states. Using the Pegg—Barnett Hermitian phase formalism we have found
the phase distributions as well as phase variances for such states. We have explicitly
shown that the phase properties of the binomial states interpoiate, as one could
‘expect, between the number states and the coherent states. We have also shown that
the photon number fluctuations and phase fluctuations for such states exhibit opposite
behaviour, and there is a possibility to find the binomial state for which the photon
number variance is equal to the phase variance. This behaviour is convincingly seen
when plotting the number and phase squeezing curves, which cross when the two
fluctuations are equal. This happens in the vicinity of the maximum of the number—
phase uncertainty product.

For the negative binomial states we have found an interesting feature of the phase
distribution for the state with w=0, for which the phase peak is sharper than for the
coherent state, but because the wings of the distribution are more pronounced, the
phase variance is still greater than that for a coherent state with the same number of
photons. We have also studied the number-phase uncertainty product and the
number and phase squeezing for such states. ‘

In conclusion, we believe that the work discussed above adds some new facts to the
already existing knowledge on the quantum properties of the binomial and negative
binomial states.
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