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Abstract

The phase distribution obtained within the Pegg~Barnett Hermitian phase
formalism is compared to the phase distributions obtained from the s-
parametrized quasiprobability distributions integrated over the “radial”
variable for some real states of the field. Exact analytical formulas for the
s-parametrized phase distributions of coherent states, squeezed states, and
displaced number states are obtained. A general formula relating the s-
parametrized phase distributions to the Pegg-Barnett distribution is
derived. Numerical examples illustrating the similarities and differences are

presented in a graphical form.

1. Introduction

The Hermitian phase formalism introduced recently by
Pegg and Barnett [ 1-3] has successfully overcome the prob-
lems that existed earlier with the proper description of the
phase in quantum mechanics [4, 5]. The Pegg—Barnett for-
malism has been applied for studying quantum phase
properties of a number of real field states [6—33] revealing
new features of optical fields. Simultaneously, the appear-
ance of the Pegg—Barnett Hermitian phase formalism pro-
voked a renewed interest in older attempts to introduce a
Hermitian phase operator [34-38] and triggered a dis-
cussion resulting in some alternative ways that can
be applied to describe phase properties of optical fields
[39-46].

For real field states, or “physical states” according to the
terminology used by Pegg and Barnett [3], the continuous
phase distribution characterizing such states can be intro-
duced. Such a distribution should be 2n-periodic and nor-
malized to describe properly phase properties of the field.
However, phase distributions that are 2n-periodic and nor-
malized can also be obtained by integrating the Wigner
function or the Q function over the “radial” variable. It 1s,
thus, interesting to know to what extent such phase dis-
tributions reproduce the Pegg-Barnett phase distribution.

In this paper we give a general relation between the s-
parametrized phase distribution (the phase distribution
obtained by integrating the s-parametrized quasidistribution
over the “radial” variable) and the Pegg—Barnett phase dis-
tribution. We have also obtained exact analytical formulas
for the s-parametrized phase distributions for coherent
states, squeezed states, displaced number states. The results
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obtained according to these formulas are compared to the
corresponding results obtained from the Pegg—Barnett for-
malism.

We should mention here that the phase distribution
associated with the Q function is significant from the experi-
mental point of view, because it can be measured according
to some realistic experimental schemes [46—49].

The earlier attempts to construct the Hermitian phase
operator mentioned above [34-38] are rather unsatisfactory
because they lead to the phase distributions that exhibit an
asymmetry which is incompatible with the symmetry of the
other phase distributions. The asymmetry appearing in the
Garrison and Wong [34] and all equivalent to its phase dis-
tributions has been discussed by us elsewhere [33], and the
details can be found there. The Garrison and Wong phase
distribution, moreover, does not satisfy the 2n-periodicity
demanded from the phase distribution. Thus, there are
physical reasons for not using such phase distributions, and
we refrain from discussing them here.

2. The Pegg-Barnett phase distribution

Pegg and Barnett [1-3] introduced the Hermitian phase
formalism, which is based on the observation that in a
finite-dimensional state space the states with the well-
defined phase exist [ 50]. Thus they restrict the state space to
a finite (s + 1)-dimensional space ¥ spanned by the number
states |0, {1), ..., | s). In this space they define a complete
orthonormal set of phase states by

1 Y exp (inf,)|nd, m=0,1,...,s, (1)

I9m>=\/s+ 1 n=0

where the values of 8,, are given by

2nm
s+ 1
The value of 8, is arbitrary and defines a particular basis set

of (s + 1) mutually orthogonal phase states. The Pegg-—
Barnett (PB) Hermitian phase operator is defined as

(2)

6m=90+

Be = 3. 0010, 3

Of course, the phase states (1) are eigenstates of the phase
operator (3) with the eigenvalues 8,, restricted to lie within a
phase window between 8, and 6, + 2n. The Pegg—Barnett
prescription is to evaluate any observable of interest in the
finite basis (1) and only after that take the limit s — oo.
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Since the phase states (1) are orthonormal, (6,8, > =
Onm» the kth power of the Pegg—Barnett phase operator (3)
can be written as

&, = ;e::.w.,.xe...l, @

and the expectation value of the kth power of the phase
operator can be calculated as

3

(SOl f) = Zo9i.l<9...|f>lz, (5)
where the quantity |{6,,|f)|* gives a probability of being
found in the phase state | 6,,).

When “physical states”, according to their definmition by
Pegg and Barnett [3], are considered, we can simplify the
calculation of the sum in eq. (5) by replacing it by the inte-

gral in the limit as s tends to infinity. Since the density of

states is (s + 1)/2n, we can write eq. (5) as

o+ 2%
SflOpslf> = J; d66" Peg(6), (6)

where the continuous-phase distribution Ppg(6) is intro-
duced by

S

: + 1

Pesf0) = lim —— <6, | /12 ™
and 0,, has been replaced by the continuous-phase variable
6. If the state | f > has the number-state decomposition

1 f> =2, baln), ' (8)

The Pegg—Barnett phase distribution is given by [3]

Ppgp(0) = -zl; {1 +2Re ) b, b¥exp [—iim— n)&]}. (9)

ma>n

In the case of fields being in mixed states described by the
density matrix p, formula (9) generalizes to
Ppg(0) = 5!; {l +2Re ) pusexp[—i(m — n)e]}, (10)
where, p,., = {(m|p|n), are the density matrix elements in
the number state basis. Formulas (9) and (10) can be used
for calculations of the Pegg—Barnett phase distribution for
any state with known amplitudes b, or matrix elements p,,,.
Formulas (9) and (10), although exact, can rarely be
summed up into a closed form, and usually numerical sum-
mation must be performed to find the phase distribution.
Such numerical summations have been widely applied in
studying phase properties of optical fields [10-32] (see also
[51]). The Pegg—Barnett phase distributions, eqs (9) or (10),
is obviously 2zn-periodic, and for all states with the density
matrix diagonal in the number states the phase distribution
is uniform over the 2n-wide phase window. These are non-
diagonal elements of the density matrnix that lead to the
structure of the phase distribution. The Pegg—Barnett dis-
tribution is positive definite and normalized.

3. Quasiprobability distributions and phase distributions
associated with them

According to Cahill and Glauber [52, 53] the s-
- parametrized quasidistribution function describing a field
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state can be derived from the formula

1

W(a, s) = - Tr {pT(a, s)}, (11)

where the operator T(a, s) 1s given by

T(a, 5) = ;lr- J‘ exp (a* — a*&)D(E, 5) d%¢, (12)
and
D(¢, 5) = e¥1*2D(g) (13)

with D(£) being the displacement operator; p is the density
matrix of the field, and we have introduced the extra 1/n
factor with respect to the original definition [53]. The oper-
ator T(a, s) can be rewritten in the form [52]

s+1
s—1

T =1 D(a)|n>( )"<n|D+(a), (14

which explicitly gives its s-dependence. So, in the number-
state basis, we have

W)=~ T uadnl T@, )1m)

o) (&) CH)

2
% e—i(m-u}ﬂ'alm—n exp (_ 2|al ) |

1—s5
m—n | 212
* L. (1 —-sz)’

where we have used (14), and the fact that the matnx ele-
ments of the displacement operator are given by [52]

(15)

n!

<m | D{a@)|n) = (—)llza"-" e~ =2 m=n(| 5 2),

m!

(16)

where L™ *(|a]?) is the associate Laguerre polynomial. In
(15) we have also explicitly separated the phase of the
complex number a by writing

(17)

The phase 6 is later on treated as the quantity representing
the field phase.

With the quasiprobability distributions W(a, s) the expec-
tation values of the s-ordered products of the creation and
annihilation operators can be obtained by proper integra-
tions in the complex a plane. In particular, for s = 1,0, —1,
the s-ordered products are normal, symmetric, and anti-
normal ordered products of the creation and annihilation
operators, and the corresponding quasiprobability distribu-
tion are the P, Wigner, and Q functions.

When we integrate the quasiprobability distribution
W(a, s) over the “radial” variable | a|, we get the “phase dis-
tribution” associated with this quasiprobability distribution.
The s-parametrized phase distribution is thus given by

o = |o|e®

P(o, S)='LmW(a, )l dfal, (18)



which after inserting (15) gives

1 n! 1/2 pi m~n+1 S+1 n
ro.9= Seu(i) (25 (55)
im0 | 1 e 2| af?
i(m —n)0 m-—n _
X € L | o] exp( - s)

4jal?,
xL:"‘"( L1 )Ialdlal.

1 —s? (19)

If the definition of the Laguerre polynomial is invoked, the
integrations in (19) can be performed explicitly, and we get
for the s-parametrized phase distribution the formula which
is similar to the Pegg—Barnett phase distribution (10), and it
reads -

P@, s) = 21—” {1 +2Re ¥ ppae ™GO (m, n)}. (20)

m>n

The difference is in the coefficients G*(m, n) that appeared
in (20), and which are given by

(m-+n)/2 min(m, n) l
emn=(25) " T ()

1—s5

(21)

r(’” AL P 1)
() Jemme
X —,
INL] Jm—-Dn-— 1)
For s = —1, only the term with ! = 0 survives in (21), and
we get the coefficients obtained by us earlier [25] for the
phase distribution associated with the Q function. For s = 0,
we have the coefficients for the phase distribution associated
with the Wigner function, which have been used in our
studies of phase properties of the displaced number states
[31]. It is seen from (21) that for s = 1 (the P function) the
coefficients G*(m, n) become infinity, and the phase dis-
tribution is indeterminate. Qur formula (20) allows for cal-
culations of the s-parametrized phase distributions for any
state with known p,, and compare them to the Pegg-
Barnett phase distribution, for which G*(m, n) = 1.

The phase distributions associated with particular quasi-
probability distributions have been used in literature to
describe phase properties of field states. For example, the
integrated Wigner function (s =0) has been applied by
Schleich, Horowicz and Varro [39, 40] in their description
of the phase probability distribution for a highly squeezed
states. The integrated Q function (s = — 1) has been used by
Braunstein and Caves [49] to describe phase properties of
the generalized squeezed states. Eiselt and Risken [54] have
used the s-parametrized quasiprobability distributions to
study properties of the Jaynes—Cummings model with cavity
damping. In their approach, Eiselt and Risken have used the
series expansions of the quasiprobability distribution func-
tions, and they have found an expression relating the Pegg-
Barnett phase distribution to the quasiprobability
distributions in a form of the integral relation and applied it
to the Jaynes-Cummings model. Their formulas, however,
do not work for s = —1, i.e. for the Q function.

For some field states the quasiprobability distribution
functions W(a, s) can be found in a closed form via direct
integrations according to the definitions (11)—(1 3), and
sometimes the next integration leading to the s-
parametrized phase distributions can also be performed
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according to the definition (18). We have found the exact
analytical formulas for the s-parametrized phase distribu-
tions for coherent states, squeezed states, and displaced
number states.

3.1. Coherent states
For a coherent state | a,) we have

|ag) = D(ao)| 0, (22)

and the s-parametrized quasiprobability distribution func-
tion can be calculated from (11)—(13) as

Wenle, ) = =3 I exp (% — a*E + 5| E1%/2)
x (0] D*(@o)D(OD(x0) |0 d2¢
- fexp [« — ag)e* — (o* — aB)E + s|E[/2)]
x <01 D()|0) d?
- I exp [(2 — xo)* — (@* — b}

+ 51 €1%/2) = lao /2] d%¢

_1_2 exp { — 2 Jot — oo | 23
Srl—s P 1 —s5 orf (23)
The corresponding phase distribution is
P.ou(6, s) = - J; Ween(, s)la| d|a]
1
= o exp [—(X§ — X*){exp (— X
+ /7 X[1 + erf (X)]}, (24)
where
X =X(,s) = flislaolcos(e—%), (25)

and X, = X(05, s), 0, is the phase of o, .

Our formula (24) is exact, it is 2n-periodic, positive defi-
nite and normalized, so it satisfies all requirements for the
phase distribution. Moreover, formula (24) has quite simple
and transparent structure. For small |a,|, the first term 1n
braces plays an essential role, and for |ag| =0 we get
uniform phase distribution. For large | o, |, the second term
in the braces predominates, and if we replace erf (X) by the
unity, we obtain the approximate asymptotic formula given
by Schleich et al. [55] (for s = 0)

2 .
Pear(6, 5) = ﬁ- |40 cos (6 — o)

x exp [—~2]ao|* sin® (0 — o)), (26)

=0

which however, can be applied only for —n/2 < FZJ /2.
After linearization of (26) with respect to 0, the approximate
formula for coherent states with large mean number of
photons obtained by Barnett and Pegg [2] is recovered. The
presence of the error function in (24) handles properly the
phase behaviour in the total range of phase values
- O<T
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3.2. Squeezed states

Similar calculations can be performed for squeezed states
defined by [56]

|0, §) = D(ao)S(0)] 0D, (27)
where S({) is the squeezing operator [56]
S() = exp (3{*a® — 3{a™?), (28)
and { 1s the complex squeeze parameter

{=|{]e*™,
Il =r. ' (29)

The direct integrations lead to the s-parametrized quasi-
probability distribution (for n = 0)

qu(aa s) = me}[p {_

2
- wf—s [Re (o — ao)]z}, (30)
where we have used the notation
u = e, (31)

After the integration over ||, assuming that «, is real, we
arrive at the formula

1 :{(u-s)(p" — 5)

Pul6, s)— 27 (u — s)cos? 0 + (u~! — 5) sin? @
x exp [—(X3 — X?)]}{exp (—X?)
+ /T X[1 + erf (X)]}, (32)
where
X =X(6,s) = _12
pu=—*t —s
Oo~/ M — SCOS 6 (33)

X :
J{p—s)cos? 0+ (u~! — s)sin2 6

Although the variable X is slightly different, the main struc-
ture of the phase distribution is preserved. Formula (32) is
valid for both small and large a,. For «, = 0 we have the
resuit for squeezed vacuum. After appropriate approx-
imations one¢ can easily obtain the formula obtained by
Schleich et al. [39] for a highly squeezed state. Again, our
formula is exact and works for all phase values.

3.3. Displaced number states

Other states that are interesting from the point of view of
their phase properties are the displaced number states [57],
for which corresponding formulas are given by

Wolo, §) = = —— (— 1)"(‘ + S)

l—s )

2 4|a — ag|?
X €XP {"" 1 — < Ia — aoIz}Ln(‘-l—i—:?'ﬁ_lm): (34)

=) 2S00

. 2k — 2))!
x;; ( ) 22k I(ZI(k 1;)1
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and

P dn(ei S) = (

(X5 — X*YPr_(X), (35)

QX) =

here
N1

27 exp
X eXp (—-X’)Q,,(X) + VX1 + erf (X)]},

22(p1) 22|
2n) kzo X kzl 20!

P.(X) = (X3 - X%
(36)

2k
X7,

(37)

and the normalization constant is equal to

N,=1+exp (- Xo) {Q..[X(e)]—l} do

227 1)2

=1+ exp (-—Xg){—

(2n)!
n o (2Kk)! n
L, 5P X0 T 2 X ‘z’k} '

The X variable in this case is

(38)

X

2 g cos 6, (39)

X =X09= [T

and we have assumed a, being real. Despite its more
complex structure, formula (35) contains phase distributions
P(X) that exhibit main features of the previous phase dis-

tributions.

4. Quasiprobability versus Pegg—Barnett distributions
4.1. General relation

Now, we are going to illustrate the differences between the
Pegg—Barnett phase distribution and s-parametrized phase
distributions obtained by integrating the s-parametrized
quasiprobability distribution functions. For any field with
known number state matrix elements p,, of the density
matrix the s-parametrized phase distribution can be calcu-
lated according to formula (20) with the coefficients
G“Ym, n) given by (21). The distribution of the coefficients
G“Ym, n), for s = 0, — 1, is illustrated in Fig. 1. It is seen that
for s = —1 (the Q function) the coefficients monotonically
decrease as we go far away from the diagonal. This means
that all nondiagonal elements p,, are weighted with
numbers that are less than unity, and the phase distribution
for s = —1 1s always broader than the Pegg—Barnett phase
distribution [for which G®(m, n) = 1]. For s = 0 the situ-
ation is not that simple, because the coefficients G'®(m, n)
show oscillations with values that are both smaller and
larger than unity. This leads to the phase structure that is
sharper than the Pegg—Barnett distribution. Moreover, since
the Wigner function (s = 0) can take on negative values, the
positive definiteness of the P(f, s) is not -guaranteed,
although there 1s no problem even for displaced number
states, where the Wigner function oscillates between positive
and negative values. From the form of the coefficients G®(m,
n) it is evident that there is no s such that G*m, n) = 1 for
all m, n. This means that there is no “phase ordering” of the
field operators, that is, the ordering, for which P(6, s) would
be equal to Ppg(6). However, for a given state of the field one
can find s such that the two distributions are “almost identi-
cal”. Formula (20) 1s quite general, and it has been used in



Fig. 1. Distributions of the coefficients G*Xm, n) for (a) s =0, and (b)

s= —1.

our earlier studies of phase properties of the anharmonic
oscillator [25], parametric down-conversion [58] and dis-
placed number states [31]. A disadvantage of the formula
(20) is the fact that the numerical summations can be time
consuming and even difficult to perform for the field states
with slowly converging number state expansions. This, for
example, is the case for highly squeezed states. In some
cases, instead of using the number state expansions we can
find analytical formulas for P(@, s) via direct integrations, as
shown in Section 3. In many cases such formulas can be
treated as good approximations to the Pegg—-Barnett phase
distribution. |

4.2. Coherent states

The exact formula for the s-parametrized phase distrnibu-
tions for coherent states is given by (24) and (25). In Fig. 2
we show the phase distributions Ppg(6), P(6, 0), and P(6, —1)
for coherent states with the mean number of photons
lao |2 = 2 (a), and | g |> = 0.01 (b). It is seen that the Pegg-
Barnett phase distribution is located somewhere between
the phase distribution associated with the Wigner function
and that associated with the Q function. It becomes closer
to P(6, 0) for |ao |2 > 1, and closer to P(6, —1) for ja,|* < 1.
For |ag|*> = o0, the Pegg-Barnett distribution tends to the
distribution associated with the Wigner function [2, 39],
and for |a,|?> — 0 all the distributions tend to the uniform
distribution, but the Pegg-Barnett distribution In this
region tends to the distribution associated with the Q func-
tion. This means that for coherent states with large mean
numbers of photons P(@, 0) is a good approximation to the
Pegg—Barnett phase distribution, while for small numbers of
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photons P(6, — 1) becomes a good approximation to the PB
distribution.

4.3. Squeezed states

The exact analytical formula for the s-parametrized phase
distribution for squeezed states is given by (32) and (33). For
the squeezed vacuum, we have

1 (u—s)u~' —s)
2n(u—s)cos’ @+ (u~ ! —s)sin* 0’

where u = exp (2r). This formula exhibits a two-peak struc-
ture with the peaks for 8 = +=r/2 for r > 0). It is easy to find
that the peaks heights are

P sq(es' S) = (40)

P, (n/2, s) = 1l jnr=s

41
2\ u-t ==+’ €)

which means that for s = 0 the peak height goes as u. In
Fig. 3 we have illustrated the dependence of the peak
heights on the squeeze parameter r. It is seen that the Pegg—
Barnett result lies between the s = 0 and s = —1 curves, but
the three curves are divergent for large r. Qualitatively all
three distributions give the same two-peak phase distribu-
tions, but quantitatively they differ: the sharpest peaks are
those of P(6, 0), and the broadest those of P(6, —1).

For squeezed states with different from zero displacement
%o, an additional factor of the form identical to that for
coherent states, except for the different meaning of X(6),
appears in the phase distribution P,(6, s). Since this extra
factor shows a peak at 0 = 0, a competition arises between
the two-peak structure of the squeezed vacuum and the one
peak structure of the colierent component. This competition
leads to the bifurcation in the phase distribution discussed
by Schieich, Horowicz and Varro [39, 40]. In Fig. 4 we
show the pictures of such a bifurcation for o, = 1, exhibited
by all three distributions plotted in the same scale to visual-
ize the differences. Qualitatively the pictures are quite
similar, and the differences are only in the widths of the
peaks. To calculate the Pegg—Barnett phase distribution we
have applied formula (9) with b, given by [56]

1

b, = <{n|ag, (D =W

ao + aX e tanh r
% HH[_.Q_-_I-_.O_.————-——]

<2 e*"tanhr

x exp {—4[| #o|* + a3?e*" tanh r]},

[4e?" tanh r]*/?

(42)

assuming 1 = 0 (results for n = n/2 can be obtained from
our formulas replacing r by —r)..

4.4. Displaced number states

Both for coherent states and squeezed states there was no
qualitative difference between various phase distributions.
So, one could say that, at least qualitatively, all the phase
distributions carried the same phase information. Here, we
give an example of states for which such statement 1s no
longer true. These are displaced number states. Phase
properties of such states have been discussed earlier [31]
with the use of our general formula (20). It has been shown
that there is qualitative difference between the phase dis-
tribution associated with the Q function on the one side,
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P(®)

0.1
-3.14 -1.57 0.00 1.57 3.14

©

Fig. 2. Phase distributions for the coherent states with the mean number of
photons: (a) |2y |* = 2, and &, |*> = 0.01; the Pegg-Barnett distribution -
solid line, P{6, 0) — dashed line, and P(6, — 1) - dotted-dashed line.

and the PB phase distribution and the phase distribution
associated with the Wigner function on the other side. There
is an essential loss of information in the case of the phase
distribution associated with the Q function. The differences
can be easily interpreted [31] when the concept of the area
of overlap in phase space introduced by Schieich and
Wheeler [59] is invoked. A possibility of deeper insight into
the structure of the s-parametrized phase distributions gives
us formula (35). The phase distribution P,.(6, s) is a result of
competition between the functions P,(X), which are peaked
at ¢ = 0, and the functions (X3 — X?)', which have peaks for
6@ = +n/2. For s= —1 only the term with n — k = 0 sur-
vives, and there is no modulation due to (—1)"~* factor.
This 1s the reason for which the phase distribution associ-
ated with the Q function can have only two peaks, no

Fig. 4. Pictures of the phase bifurcation for the squeezed state with the
mean number of photons |x,)* = 1. The distributions are: (a) P(8, 0), (b)

8 Pegg-Barnett, and (c) P(9, — 1).
,...\6 matter how large is n. Both for the PB phase distribution
g and P(6, 0) there are n + 1 peaks. It is also worth mention-
E:4 ing that despite the fact that the Wigner function (34) oscil-

lates between positive and negative values, the phase
2 distribution (35) is positive definite. An illustration of the
differences between the phase distributions for the displaced
number states with n =2 and |a,}* = 9 is shown in Fig. 5.

0.0 0.5 1.0 1.5 2.0 It 1s seen that the PB phase distribution is very close to the

r P4.(0, 0), and they carry basically the same phase informa-

Fig. 3. Height of the peak vs. the squeeze parameter r for the squeezed tiON, While there is an essential loss of phase information
vacuum. Meaning of the lines is the same as in Fig. 2. carried by P4, (0, —1). This is even more convincingly shown
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0.5
0.0
150 075 000 075 150

Fig. 5. Phase distributions for the displaced number state with n =2 and
&, = 3. Meaning of the lines is the same as in Fig. 2.
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in Fig. 6, where we present phase distributions for the
displaced number states with numbers n=0, ..., 4. The

Pegg-Barnett and P(6, 0) are very similar for given n,
while P(6, — 1) has only two peaks that become broader as n

increases.

5. Conclusions

In this paper we have made a comparison of various phase
distributions for several real field states. The general
formula relating the phase distributions obtained by the
integration of the s-parametrized quasiprobability distribu-
tion functions to the Pegg—Barnett phase distribution has
been derived. It has been shown that for any state of the
field with known number state matrix elements the s-
parametrized phase distribution is obtained by multiplying
the nondiagonal elements of the density matrix by the coeffi-
cients G®'(m, n) given by eq. (21). We have also derived exact
analytical formulas in closed form for the s-parametrized
phase distributions of coherent states, squeezed states, and
displaced number states. In many cases such formulas can
be treated as a good approximation to the Pegg-Barnett
phase distribution. Numerical examples illustrating the simi-
larities and differences between various distributions are
given. From these examples, it is clear that qualitatively the
Pegg-Barnett phase distribution is well represented by the
phase distribution associated with the Wigner function,
which is sharper than the Pegg-Barnett distribution, but
contains all the details of the latter. However, since the
Wigner function can take on negative values it can lead to

" troubles with positive definiteness of P(8, 0), whereas, of

(a)
™
.
®
X~
S
¢ -
(b)
™y
-
S
S
-
P
(c)
L]
~
e
3.

10

T
O~

Fig. 6. Phase distributions for the displaced number state with the
numbers n=0, ..., 4 and a, = 3. The distributions are: (a) P(6, 0), (b)
Pegg-Barnett, and (c) P(6, —1). -

"19.

course, no such troubles appear for the PB distribution.
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