QUANTUM RESONANCE FLUORESCENCE
FROM MUTUALLY CORRELATED ATOMS

Z. FICEK

Department of Physics, The University of Queensland, Brisbane,
Australia

R. TANAS

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz
University, Poznan, Poland

CONTENTS

1. Introduction

II. Master Equation
III. Nonclassical States of Light
IV. Single-Atom Resonance Fluorescence

V. Muitiatom Resonance Fluorescence
VI. Squeezing in Two-Atom Spontaneous Emission
VII. Summary

References

I. INTRODUCTION

Photon antibunching and squeezing are two unique phenomena that
reveal the quantum properties of the radiation field. These effects are just
two examples of nonclassical light, that is, light with properties that are
not predicted by the classical wave theory of light. According to quantum
mechanics, electrons in atoms can occupy only certain energy levels. An
electron can jump from its lowest energy level—the ground state—to a
second higher energy level by absorbing light of definite frequency from a
pumping beam. Next, the electron can fall back to the ground state,
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emitting a photon. It has been predicted from the statistics of quantum
theory that once the electron had returned to the ground state, there
would be a delay before the electron would be re-excited by the pumping
beam. This delay would result in an intermittent emission of light called
photon antibunching. This intermittent emission produces a radiation in
which the variance of the number of photons is less than the mean number
of photons. The classical theory of electromagnetic radiation, which does
not quantize energy, does not predict antibunching.

Yuen [1] has predicted the possibility of another nonclassical phe-
nomenon, squeezed light. The Heisenberg uncertainty principle predicts
that it is never possible to be absolutely precise in measuring one of two
noncommuting observables. The product of the fluctuations of the two
noncommuting observables must be greater than or equal to one-half of
the absolute value of their commutator. For all field states that have
classical analog the field quadrature variances are also greater than or
equal to this commutator. For the vacuum state and coherent states the
noise in the two noncommuting field quadratures is distributed symmetri-
cally between the two quadratures and the variance of the field quadrature
is equal to the commutator establishing the level of quantum noise
(vacuum fluctuations). There are, however, quantum states of the field
such that the variance of one of two noncommuting field observables is
smaller than the vacuum fluctuations. Such a field is referred to as
squeezed light. In squeezed light the quantum fluctuations in one quadra-
ture component are reduced below their vacuum values at the expense of
increased fluctuations in the other component, such that the uncertainty
relation is not violated.

Photon antibunching has been predicted theoretically for the first time
in resonance fluorescence of a two-level atom [2, 3]. Since then, a number
of papers have appeared analyzing the possibilities of obtaining photon
antibunching in various processes offered by nonlinear optics [4-11].
Significant contribution to these studies has been given by Kielich and
co-workers [12-17]. The possibility of obtaining squeezed light has been
extensively studied since the first theoretical papers by Walls and Zoller
[18] and Mandel [19] on reduction of noise and photon statistics in
resonance fluorescence of a two-level atom. Many linear and nonlinear
processes have predicted a large amount of reduction of noise below the
classical limit. Almost a complete reduction of noise (98% below the
vacuum limit) was found by Tana$ and Kielich [20] in a self-squeezed light
produced by a propagation of a coherent laser beam in a nonlinear
medium.

Several experimental groups have been successful in producing nonclas-
sical light. However, photon antibunching has been observed only in
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fluorescing sodium atoms [21]. This was the first experiment in which the
nonclassical effect was observed in optics. A number of groups have been
actively involved in the actual generation of squeezed light. Slusher et al.
[22] generated for the first time a squeezed light in which a 7% noise
reduction below the vacuum limit was observed. Wu et al. [23] reported
more than 50% reduction of noise below the vacuum limit in an optical
oscillator. Heidmann et al. [24] used a two-mode optical parametric
oscillator operating above threshold to generate two highly correlated
beams of light. The measured noise in the intensity difference of the two
beams was 30% below the classical limit. In an improved experiment,
Debuisschert et al. [25] observed a 69% noise reduction in the intensity
difference. Yamamoto et al. [26) developed semiconductor lasers with
intensity fluctuations reduced by 95% below the noise level of usual lasers.

The interest in the investigation and generation of squeezed light is due
not only to the reduction of the natural noise of light but also to the
possibilities of practical applications. For example, squeezed light may be
useful in detecting gravitational waves, which would require a very sensi-
tive detector operating at a very low noise level. Squeezed light could also
be useful in optical communications, where it might be important to cut
down noise, and in making sensitive spectroscopic measurements, for
example, in biological samples.

As mentioned above, photon antibunching and squeezing are two
nonclassical effects predicted in resonance fluorescence of two-level atoms.
In this paper we review the past work and the present status of photon
antibunching and squeezed light produced in resonance fluorescence. In
Section II, we derive the master equation for two-level atoms interacting
with a quantized electromagnetic field. In Section HI, we give the defini-
tions of photon antibunching and squeezing. Section IV deals with photon
antibunching and squeezing in spontaneous emission and resonance fluo-
rescence of a single two-level atom. In Section V, we discuss the effect of
the interatomic interactions on the two nonclassical effects. In Section VI,
we present new results on squeezing in two-atom spontaneous emission.
These results show that the interatomic interactions can create squeezed
light in spontaneous emission if the atoms were initially prepared in a
linear superposition of their ground and excited states. Finally, in Section
VII, we summarize our results.

II. MASTER EQUATION
We consider a collection of N identical nonoverlapping atoms, separated

by distances r;; (i #j) and interacting with a quantized multimode elec-
tromagnetic field. Each atom is modeled as a two-level system with
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the ground state |g;) (i = 1,2,..., N) and the excited state |e;). In the
electric dipole approximation the Hamiltonian of this system has the
following form:

H =H, + H,, (1)
with
N
Hy=tho, Z S+ hzwkalsaks (2)
i=1 k,s
and
N
= ihZ E [l‘ﬁ “Bis(r)ag (S5 +87) - h.c.] (3)

k,si=1

where o, is the atomic transition frequency, s is the polarization index
(s =1,2), S = le;){g;] and S; = |g;>{e;] are operators raising and
lowering the energy of ith atom, and S; describes its energy. These
operators fulfill the well-known commutation relations

[SF.87] =2876 [$2,87%] = +5+ 8 (4)
In Eq. (3), g, (r;) is the coupling constant between the quantized electro-
magnetic field and the electric dipole moments p; = {e¢;|nlg;), and is
given by

2Tw, 172 .
8i,(r;) = ( Py ) €xs© (%)
where é, is the unit polarization vector, r; is a coordinate of the ith atom.

A master equation for the reduced density operator p of the N-atom
system interacting with the quantized electromagnetic field is derived from
the Hamiltonian (1). It can be derived using any of a number of traditional
techniques [27].

We apply a Born-Markov method [28] adapted to the situation of a
stationary reservoir. The time evolution of the density operator W(t) of
the atoms-field system in the interacting picture obeys the equation

ad
i W) = [Hy(0), W'(1)] (6)



QUANTUM RESONANCE FLUORESCENCE FROM CORRELATED ATOMS 465

where H,, is given by Eq. (3), and the superscript I stands for operators in
the interacting picture.
Formally integrating Eq. (6) gives

1
W) = W'(0) + o [ de[Hy(1), W'(e)] Q)

Substituting this solution into the right side of Eq. (6), and taking the trace
over the reservoir states of each side of Eq. (6), we get

d
ih'a't“pl(t) = TrR[HiLt(t), WI(O)]
! (8)
+Ej;’dt’TrR{[Hif1t(t), [HL(0), wh()]])

where p'(t) = Try W'(¢) is the reduced density operator of the atomic
system.

We choose an initial state with no correlations between the atomic
system and the quantized electromagnetic field, i.e., W (0) = p'(0)p(0),
where p(0) is the density operator for the field reservoir. We also assume
that the interaction Hamiltonian satisfies the condition [29, 30]

Tre[ Ha(1), pr(0)] =0 (%)

This can easily be arranged. The left side of Eq. (9) is a system operator. If
the left side of Eq. (9) is nonzero, the system Hamiltonian can be altered
to include any part in H,, so that when added to the left side of Eq. (9)
zero occurs. On the basis of these assumptions Eq. (8) reduces to

a 1
57" (0) + 37 [ 4 Teel [Hau(0), [Hin(), W] ]} = 0 (10)

We now employ the Born approximation in which the atom-field
interaction is supposed to be weak, and there is no effect of the atoms on
the reservoir. With this approximation we can write

wi(t) = p'()pr(0) (1)
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and after changing time variable to ¢' = ¢t — 7, Eq. 10 simplifies to

3 1 .
522/ (1) + 57 [ a7 Tref [Ha (1), [Hi(t = 1), pe(0)p'(s = )] ]} = 0
(12)
After a Laplace transform over time ¢, with Eq. (3) and assuming that all

modes of the quantized electromagnetic field are in a vacuum state
defined by

TrR[pR(O)aLsak's'] = 0 TrR[pR(O)aksaIc’s’] = 53(k - kl) 6ss’ (13)
TrR[pR(O)aksak’s’] = TrR[pR(O)aLsaI(’s’] =0
we obtain (ignoring the superscript I)
p(0) —zp(z) = — ZYij(Z)[p(z)Si+Sj_ +8787p(2) - 2Sj_P(Z)Si+]
i
- iZ_Qii(Z)[S;LSi"P(Z)] (14)

- izﬂij(z)[si+sj_’p(z)]

i*j

Here p(z) is the Laplace transform of p(z), and the parameters are given
by

_ 1 . * g% (p z/c 3
vi(2) = c ‘L:’f[u gk’(ri)][u i ’)] (Z/C)2 + (ko — k)Zd ’
1. 2 k — ko
Q,(z) =;§/lu.g“(ri)| (z/c)z‘*‘(k_ko)2
k +k, Ik 15
_wﬂf+(k+hf] W

1
Q,(z) = - Z[[l‘** : gts(ri)][l‘- . gks(rj)]

k — k, k + ky
X 2 2 + 2 2 ’ ’
(z/c)" + (k—ko)" (z/c)" + (k + ko) ]
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where z is the complex Laplace transform parameter, and p = p; = p,.
To obtain Eg. (15) we have used the commutation relations (4) and made
the rotating-wave approximation [31}; i.e., we neglected rapidly oscillating
terms with frequency 2w, (the so-called counter rotating terms).

Now we employ the Markov approximation. This neglects retardation
effects [32] and is valid in the long-time limit ¢ > o, ', providing this is
short compared with the typical relaxation times of the system, and is
small in comparison with the time required for appreciable changes in
population of the atomic levels, i.e.,

(7ij) e < € AL (16)

With these approximations we can replace the v;(z), Q,(z), and €; (2)
parameters by their limiting values as z — 0. After thlS the inverse
Laplace transform of Eq. (14) leads to the master equation

dp
a E%;(PS;LS;‘_ +8787p 28;pS;")
3 J (17)
— TS8Pl — T (875 0]
i+j
where the coeflicients in the equation are

wk§

Yip = T, fkoZ [w* - gis(r)] [l" : gk:(rj)]
s

n,-i=*f _k) e MR N, (18)

3

i 2%
Q= Zfdkmfdﬂkis‘. [* - gk, (r)] 1 - i(r)]

and Q, = (6,, ¢,) is a solid angle over which the quantized electromag-
netic field is distributed.

We now examine the values of the coefficients that appear in Eq. (18).
On substituting Eq. (5) and on integrating over the total solid angle 47 we
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get
3 2 sin(kgr;)
(19)
kor. in(k.r..
-3, o) ) }
(kors;) (kori;)
3 21 c08(kori)
“f?{" R o
(20)

+[1 i fij)z] [sin(kor,-j) N cos(kgr;;) ]}

2 3
(kori;) (korj)

where 2y = 4k3u?/3% is the Einstein A coefficient for spontaneous
emission, 4 and 7; are unit vectors along the transition electric dipole
moment and the vector r;;, respectively. Moreover, r;; = [r;| and k, =
wo/c = 21 /A, where A is the resonant wavelength.

The evaluation of £);; is an involved problem. The term €}, represents
the part of the Lamb shift induced by the first-order coupling in the

interaction Hamiltonian (3). After performing integrations, (),; takes the

following form:
wC
( — + 1) } (21)
Wy

where w_ is the cutoff frequency. It is well known that to obtain a
complete calculation of the Lamb shift, it is necessary to include a
second-order, multilevel Hamiltonian including electron mass renormal-
ization [33]. If these are included, the standard nonrelativistic vacuum-
Lamb-shift result is obtained.

With the parameters (19)-(21) and on transforming Eq. (17) to the
Schrodinger picture, the master equation reduces to

2
Q. = ——yln{

wC
—< 1

113
T w

dp . . _
o = Tieo X [STe] — 1L Q,[87S] 0]
’ i (22)
= Xy (pSIS; + SS7p — 257pS)

y
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where w, is the renormalized frequency which is equal to the sum of the
atomic frequency w, and ;. The above master equation has been
derived assuming that the atoms are coupled to the vacuum modes of the
quantized electromagnetic field with no interaction and coupling to exter-
nal fields. The derivation of the master equation is easily extended to take
such interactions into account. With the external coherent laser field the
master equation (22) takes the form [27, 34, 35]

dp . . -
ot —iwg Y [S7,p] — 1 Q8787 p]
i i#J
B ZYij(PSiJrSf +8787p — 257 pS") (23)

ij

—%Z{[P’Sﬂﬂ - [Si_’P]Q*}

H

where Q = p - &,/h is the Rabi frequency describing a strength of
interaction between the atoms and an external coherent field &,. The
coefficient y;; is given by Eq. (19), and €);; is given by Eq. (20). For i # j,
they depend on the interatomic separation r;; and describe collective
properties of the multiatom system. For large interatomic separations
kqr;; goes to infinity, and then y,; and 1, go to zero; i.e., there is no
coupling between the atoms. For small interatomic separation, k,r;; < 1,
and then v,; reduces to vy, and ;; reduces to the static dipole—dipole
potential [36] which, for k,r,;; — 0, tends to infinity.

Equation (23) is the final form of the master equation and will play a
basic role in our calculations of photon antibunching and squeezing in
interaction of the atomic systems with the quantized electromagnetic field.

III. NONCLASSICAL STATES OF LIGHT

To determine the nonclassical states of light we define the normalized
second-order correlation function and variances of the electromagnetic
field E(r,t) = E*r,t) + E‘(r, t). The normalized second-order two-
times correlation function is determined by the relation [37, 38]

gPR, R, 1+ 7)

GO(R,,t;R,,t + 1) (24)
T GOR,, 1) GD(R,, t + 7)
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where

GO(R,t;R,, t +7)

={EOR,1)ET(R,, 1 + 7)EC(R,, t + 7)ECY(Ry, t))
(25)

GO(R,t) =( ET(R,t)ED(R, 1)) (26)

The correlation function GW(R,¢) is proportional to a probability of
finding one photon around the direction R at time ¢, whereas
GP[R,, t;R,,t + 1) is proportional to a joint probability of finding one
photon around the direction R, at time ¢ and another photon around the
direction R, at the moment of time ¢ + 7. For a coherent light the
probability of finding a photon around the direction R; at time ¢ is
independent of the probability of finding another photon around the
direction R, at time ¢ + 7 and the correlation function GP(R, t;R,, t +
7) simply factorizes on GPR |, )GD(R,, t + 7), giving gP(R, £;R,, ¢ +
7) =1 for all r. For a chaotic field the correlation function
GPR,, t;R,,t + 7) for 7=0 is greater than for 7> 0 giving
gPR,, t;R,, 1) > g®R, ;R,, t + 7). This is a manifestation of the ten-
dency of photons to be emitted by a chaotic light source in correlated
pairs, and is called photon bunching. Photon antibunching, as the name
implies, is the opposite of bunching, and describes a situation in which
fewer photons appear close together than further apart. The condition for
photon antibunching is g®[R,,#;R,, 1) < g@P®R,, t;R,, ¢ + 7) and im-
plies that the probability of detecting two photons at the same time ¢ is
smaller than the probability of detecting two photons at different times ¢
and ¢t + 7. Moreover, the fact that there is a small probability of detecting
photon pairs with zero time separation indicates that the one time correla-
tion function g®(R,,;R,,t) is smaller than one. This effect is called
photon anticorrelation. The normalized correlation function (24) for 7 = 0
may be written as

[P {Iel? = e d
(el

gP(R, R, =1+ (27)

where P(e) is the Glauber P representation for the electromagnetic field
with the complex amplitude e. Hence, we see that photon antibunching
has no classical analog in the sense that its diagonal coherent-state
representation cannot be nonnegative.
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Another nonclassical effect, which is very promising for further applica-
tion in science and technology, is the squeezed state of light. To define a
squeezed state of light let us introduce the quadature components
Ey, E,_, ,, at frequency w, wave vector k, and given in terms of the
positive, negative frequency components E*)(R, ¢), EC)(R, ¢) of the elec-
tromagnetic field as

Eg — E(+)(R, t) ei(out—k-R-+>8) + E(_)(R, t) e—i(mt—k~R+0) (28)
Eg_.n-/z — —i[E(+)(R, t) ei(wt—k'R+0) = E(_)(R, t) e—i(wt—k-R+0)] (29)

and satisfying the commutation relation
[Ee, Eo_w/z] =2iC (30)

where C is a positive c-number.
The fluctuations AE,, AE,__ ,, of the quadrature operators then sat-
isfy an uncertainty relation

(AE)(AE,_, ) 2 ICI° (1)

Thus, a large fluctuation in one quadrature component is accompanied by
a small fluctuation in the other. The situation for equality in (31) is called
a minimum uncertainty state.

Introducing the fluctuation operator

AE,=E, —(E, a=6,0—1m/2 (32)
and using Eqgs. (28) and (29), we can write
(AE,)* ={(AE)") =((AE)") +C (33)

where the form :E_: is referred to as the normal ordering of E, in which
all annihilation operators are placed to the right of all certain operators.
For a coherent state of ﬁeld( :(AE0)2:> = 0 and from Eq. (31) we have

((AE)Y=C a=0,0-m/2 (34)

Hence, the coherent state is a minimum uncertainty state with equal
fluctuations for both quadrature components. For a chaotic field, both
quadrature components <(AE0)2> and <(AE0_,, /2)2> are greater than C
and we call this a chaotic state. It is possible to generate states for which
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<(AEa)2> is less than C for one of the quadrature components. These
states are called squeezed states. According to (33), a squeezed state of
the field is characterized by the condition that either <:(AE,,)2:> or

<:(AE0_17 /2)2:> is negative. This condition can be written as

(:(AE)™) = j(A Rez,) P(e,) d%e, (35)

Hence, we see that squeezed states, similar to photon antibunching, have
no classical analog in the sense that their diagonal coherent-state repre-
sentation cannot be nonnegative.

In the next sections we consider the possibility of obtaining both photon
antibunching and squeezed states in resonance fluorescence of two-level
atoms.

IV. SINGLE-ATOM RESONANCE FLUORESCENCE

The interaction of the electromagnetic field with the atoms leads to the
phenomenon of resonance fluorescence. This phenomenon has attracted
the attention of many researchers in recent years in that photon anti-
bunching and squeezing were first discovered in resonance fluorescence.

To analyze photon antibunching and squeezed states in resonance
fluorescence we use the master equation (23) and the following relation
between the radiation field and atomic operators in the far-field limit [27,
34]:

R\X(R\Xp,)

N
EM(R, 1) =E{P(R,t) — k%) R
i=1

R\ .
s;(t— ?)e_""” (36)

where R is the unit vector in the direction R = RR of the observation
point, r; is the position vector of the ith atom, and E{*)(R, ¢) denotes the
positive frequency part of the vacuum field. Insertion of (36) into (25),
(26), and (33) leads to

GO(R,t;R,, t + 1)

= VR)PR) T (SO (E+DSE+DST0) (g
i,j,k,!l

X exp{ik(r,-, R, + Fy* Iéz)]
GY(R,t) = $2(R) 2<S,.+(t)Sj_(t)>exp(ikrij *R) (38)

(:(AE)™) = p*(R)[((AR,)) + 3(Ry] (39)
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with $2(R) = (2k*u?/R?)sin? ,, where ¢, is the angle between the
observation direction R and the atomic transition dipole moment p, and
r;; = r; — r; is the distance between atoms i and j.

In Eq (39) R (a = 6,0 — w/2) and R, are Dicke’s spin variables [39]
which can be expressed in terms of the atomic operators S, and §;

13

1
= (55 +87)

. (40)
R0—1'r/2 = E{(S; - So_)
and
1 e
R; = E[Sa » S ]
where
S = L5 exp| £i(kR - v, — )] (41)

Having available the fluorescent field correlation functions expressed by
the atomic correlation functions according to Egs. (37)-(39), we can
directly apply our master equation (23) to calculate photon antibunching
and squeezed states in resonance fluorescence.
First, we consider the simplest process of spontaneous emission from a
single two-level atom. In this case Eqs. (37)-(39) simplify to
GP(R,,t;R,,t +7) (422)
= 2 (R)YA(RX ST () Sy (¢ + 7)ST(t + 1) (t)>
GO(R, 1) = $2(RX ST (1)S7 (1)) (42b)
_ 2
((AE)™) = W (R)[ XS5 ()85 (0) = XS (1) +57()] (420)
where
Si = S exp +i(kR - v, = )] (42d)

From the master equation (27) it is easy to find that

(SF(D)ST(t+7)ST(t+7)S7 (1)) =(SF()SF(1)ST()ST (1)) e
(SF()S7 () = (ST (0)ST(0)) e~ (43)
(S (1))y =(SiE0) eFle
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Since [St(¢)]* = 0, we have that G@(R, t;R,, ¢ + 7) = 0 for all times ¢
and 7, and there is no photon antibunching in spontaneous emission from
a single atom. This result has a simple physical interpretation. In a
single-atom spontaneous emission we have only one photon, and a joint
probability of detecting of two photons is always zero for all ¢ and 7.

To calculate squeezed states in a single-atom spontaneous emission we
have to know one-time correlation functions (S, (£)S, (¢)) and {(S;(¢)).
From Egs. (42) and (43) we have that

Fy(1) =(«(AE))™) [6*(R)
(44)
= 151 @57 (@) — {57 (O) & +57(0) )| &7

The fluctuations in the quadrature component E, depend on the initial
values of the expectation values (S;'(0)S;(0)) and (S*(0)). It is seen
from Eq. (44) that the fluctuations F(¢) can be negative (squeezing) only if
the single atom has the nonvanishing dipole moment {S;*(¢)). If the atom
is initially in the ground |g,) or excited |e,) state then (§;7(0)) = 0 and
there is no squeezing in the spontaneous emission from a single atom. To
obtain negative values of Fy(t) we have to prepare the atom in a linear
superposition of its ground and excited states. Consider the initial (¢ = 0)
superposition state [40]:

I, > = cos38yle,> + sinzh,e'®olg,) (45)
where 0 < 8, < 7w and 0 < ¢, < 2. In this state

S (0)Sy(0)) = cos’36
(87 (0)S7(0)) 200 | (46)
(S£(0)) = cos38,sinyfye*i®

and
Fy(t) = L[cos?(36,) — 3sin?(8y)cos?(g, — 8)] e 72" (47)

Figure 1 shows the time evolution of F(¢), given by Eq. (47), for (¢, — 6)
= 0 and different 6,,. It is evident from Fig. 1 that for some values of 6,
the atom radiates field that is squeezed. However, squeezing decreases
during spontaneous emission as the atom decays toward its ground state
and disappears in the steady state. The minimum value of F,(¢ = 0) corre-
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Figure 1. Time dependence of Fy(T) = (:(AEy)*:)/¢*(R) for ¢y — 8 = 0 and different
values of 6,:6, = 120° (solid line), 8, = 100° (dashed line), 8, = 60° (dash-dotted line),
6 = 45° (dotted line).

sponding to optimum squeezing occurs for 6, = 27/3 and (po—0)=
0 when F(0) = — 1. The results presented in Fig. 1 have a simple
physical interpretation: Squeezing is sensitive to the phase 6. Spontaneous
emission does not introduce any phase information. Therefore, the essen-
tial condition of squeezing in the spontaneous emission is to prepare the
initial state of the system which includes phase information.

We have shown here that the spontaneous emission of a single atom
does not show photon antibunching, but shows squeezing if the atom is
initially in a suitable superposition of its states. The situation is different
when the atom interacts with an external coherent laser field. In resonance
fluorescence the atom is re-excited by the laser field after emitting a
fluorescent photon. This excitation allows the atom to re-establish a dipole
moment and to radiate more fluorescent photons. In this case photon
antibunching can appear and the squeezing can persist in the steady state.
To show this more quantitatively we start from the master equation (23),
which for the atomic correlation functions with € # 0 leads to the
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following equation of motion [31]:

d
FAST(@) = 310 = (ST () — QST (1) ST (1))
%(Sf(t» = —2i0 = ¥(S7 (1)) +1LST()ST (1)) (48)

d
THASTOST() = =2/ ST (D)ST (1) — (ST (1) (ST (1))

where we have assumed that the Rabi frequency is real and the laser
frequency w; is exactly equal to the atomic transition frequency w; i.e.,
detuning is zero.

The system of Eq. (48) can be easily solved by Laplace transform
techniques. The time evolution of the atomic correlation functions for the
atom initially in the ground state |g,) is given by [3]

(SiE(1)) = %jgl—z?
28 [/ 1 , ‘

+ W (Z — 48 )cos(ut) - usm(ut)]

3 (49)
Xexp(— Zt
(SH(1)ST(0) = —f‘ﬂ—{l _ [cos(ur) + isin(m)]exp(_it)}

1+ 88 | 4u 4

(50)
where, for simplicity, we have introduced the notation
Q 1\12

t=2v B=g u=(432—g) (51)

To study the normalized second-order correlation function g(R,, ¢;
R,,t + 7), we have to find the correlation function

(ST()SF(t+7)S7(t +7)S7(1)).

From the quantum regression theorem [41], it is well known that for 7 > 0
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the two-time average
(87 (2)SF(t+ )87 (2 +7)S7(2))
satisfies the same equation of motion as the one-time average
(87 (¢)S[ (¢)). By Egs. (24), (42), and (50), we find that in the steady state
(t > ©) the normalized second-order correlation function g@(R,,t;

R,,t + 7) takes the form [2, 3]

g(2)(7.) = lim g(2)(R1, LRy, 8+ ’T)

t—

3 3 (52)
1 — |cos(ur) + Esm(ufr)]exp(—zq-)

For 7 = 0, the correlation function g®(0) = 0, showing a complete pho-
ton anticorrelation between emitted photons. As 7 increases (r > 0), the
correlation function g‘®(r) increases. This effect refiects the existence of
photon antibunching in a single-atom resonance fluorescence.

Using the time-dependent solutions (49) and (50) we can discuss
squeezing in resonance fluorescence. In the steady-state (¢ — ) the
fluctuations in the quadrature component E, are [18, 42]

FG(OO) = (1—5%32—)2(832 + cos 20) (53)

Resonance fluorescence will exhibit squeezed fluctuations if 882 + cos 28 <
0, i.e., for a weak driving field. Maximum squeezing in steady-state
resonance fluorescence occurs for 8 = 7/2 and B2 = 3;, when Fy(®) =
— 3—12 This value, compared with the — ]—15 derived above, is one-half of
that obtained for the spontaneous emission. The mechanism responsible
for the generation of squeezing in resonance fluorescence differs from that
in spontaneous emission. When the initial phase information is introduced
to the single atom, then the spontaneous emission produces squeezing.
Resonance fluorescence produces squeezing through phase information
introduced by a coherent field. Resonance fluorescence, however, can
produce optimum squeezing obtained in the spontaneous emission provid-
ing that the resonance is time dependent [42]. This is shown in Figs. 2 and
3, where we plot F(T) = (:AEp?) /¢*(R), as given by Eq. 42c, versus
the time T = 2vt, for § = ¢, = 0 and various values of the parameters
and 6,. It is seen from Fig. 2 that as the intensity of the laser field
increases, the optimum squeezing in F,(T') shifts to the region of shorter
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Figure 2. Time dependence of Fy(T) = (:(AEg)%)/¢*(R) for § = 8, = ¢, = 0 and for
different field strengths B = 10 (solid line), B = 25 (dashed line), 8 = 50 (dash-dotted line).

times, and Fy(T) itself shows an oscillatory behavior reflecting the Rabi
oscillations. The optimum squeezing reaches a value of — & at a very
short time ¢ and for 8 = 50. Figure 3 shows that the optimum squeezing
can be obtained at different times ¢, depending on the initial state of the
atom. If the atom is initially prepared in an equal superposition of its
ground and excited states then the optimum squeezing appears at a time
shorter than for the atom prepared initially in its ground state.

The simple model presented here provides the underlying mechanism
for obtaining photon antibunching and squeezing in resonance fluores-
cence. In this model two-level atoms, independent of each other, interact
with the electromagnetic field. Steady-state resonance fluorescence shows
photon antibunching for an arbitrary intensity of the exciting field, whereas
squeezing occurs only for a weak intensity of the exciting field. For a
strong exciting field, squeezing occurs in the transient regime of resonance

fluorescence.
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Figure 3. Time dependence of Fy(T) = ((AE,*:)/Y*(R) for B =125, ¢o=0 and
different values of 8,: 8, = 7 (solid line), 8, = 7 /2 (dashed line), 8y = 2m/3 (dash-dotted
line).

V. MULTIATOM RESONANCE FLUORESCENCE

The remainder of this chapter is concerned with the interaction between
two-level atoms and the quantized electromagnetic field. Our analysis so
far has been concerned with a simple model in which the electromagnetic
field interacts with a single two-level atom. However, photon antibunching
and squeezing can be considerably modified when more atoms interact
with the electromagnetic field. We are particularly interested in the role of
the interatomic interactions in modifying the nonclassical effects. We focus
our attention on photon antibunching and squeezing in a two-atom reso-
nance fluorescence. Although a two-atom system is admittedly an elemen-
tary model, it offers some advantages over the multiatom problem.
Because of its simplicity, one obtains detailed and almost exact dynamical
solutions with a variety of initial conditions.

The simplest formulation of the problem of multiatom resonance fluo-
rescence is associated with consideration of two atoms in the Dicke model.



480 Z. FICEK AND R. TANAS

In this model it is assumed that the interatomic separations are much
smaller than the resonant wavelength, and level shifts associated with the
presence of the dipole—dipole interaction between the atoms are ignored.
With these assumptions the collective parameters y;; (i # j), which appear
in the master equation (23), reduce to y = y;;, whereas the parameter );;
is equal to zero. For the two-atom Dicke model the master equation (23)
reduces to [27]

a 1
a—l; = 5iQ[S++ ST,pl —v(STSTp+pSTST—25"pS")  (54)

where S*= S + S and S* = S7 + 53 are the collective atomic dipole
operators. For simplicity, the laser frequency w, is assumed to be exactly
equal to the atomic transition frequency w,.

For a strongly driven system, {) > 2y, an approximation technique has
been suggested by Agarwal et al. [43] and Kilin [44], which greatly
simplifies the master equation (54). This technique transforms (54) to new
collective operators R* and R? as follows:

= +3i(R*+ R") + R?
(R + R) -

SZ

~H(R*-R")

The operators R are a rotation of the operators S. For a strong field, the
R* vary with time approximately as exp(+iQ¢), while R? varies slowly.
Substituting $* and S* from Eq. (55) into the master equation (54) and
dropping rapidly oscillating terms such as R*R?* R*R*, we find the
approximate master equation [43-45]:

dp
Frie iQ[R%, p] — y{(R*R*% + pR*R* — 2RpR?)

+3[(R*R™p + pR*R™— 2R pR™) (56)
+(R"R*p + pR"R*— 2R*pR")]}

Equation (56) enables us to obtain the equation of motion for the
expectation value of an arbitrary operator Q as (Q) = tr{pQ). In particu-
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lar, the equations of motion for the transformed dipole operators are

—(R*) = —(3y + iQ)R* (57)
d
a<R+R+> = —(5y + 2iQ)(R*R")

Equation (57) is simple in form and can be solved exactly. Performing the
inverse transformation from R to the § operators, and using the quantum
regression theorem [41], we obtain from Egs. (55) and (57) the following
solutions for the normalized second-order correlation function [43, 46]:

g?P(1) =1+ Hexp(—3y7) + Hexp(—5y7)cos(2Qr7) (58)

— 3exp(— 3y7)cos(Qr)

And for the fluctuation in the quadrature components E,_, and E,__
of two atoms starting from their ground states [45], we obtain

((AE,_)") 202 (R)
=2 + Lexp(—3yt) — exp(—5yt)cos(201) (59)

~ exp( —3yt)sin?(Qt) — sexp(— 3yt )cos(£2¢)

and

<:(AE0=7T/2)2:>/2¢/2(R) = 2 — lexp(—3yt) — sexp(—3yt)cos(Lr)
(60)

Figure 4 shows that the photon antibunching (g®(r) > g(0)) is pre-
served when resonance fluorescence is from two interacting atoms. How-
ever, the photon anticorrelation effect (g@(0) < 1) is reduced compared
to that for a single atom. The time dependence of fluctuations in the
quadrature component E,_, is shown in Fig. 5. As for a single atom,
squeezing appears only in the transient regime of resonance fluorescence.
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Figure 4. Time dependence of the normalized second-order correlation function gA(r)
for two atoms and for various B8: 8 = 1 (solid line), B = 3 (dashed line).

Its maximum value, however, is reduced compared to that for a single
atom. These results indicate that cooperative effects reduce photon anti-
correlations and squeezing in resonance fluorescence. Moreover, as for
single atoms, there is no squeezing in the steady-state resonance fluores-
cence when the atoms are excited by a strong laser field.

In the Dicke model the dipole-dipole interaction between the atoms is
ignored. This approximation has no justification, since for a small inter-
atomic separation the parameter (};;, which appears in the master equa-
tion (23), is very large and goes to infinity as the interatomic separation r,
goes to zero. Therefore, it seems natural to study in some detail what
happens when the dipole—dipole interaction terms is included in the
two-atom Dicke model. We will also assume an arbitrary separation ry,
between the atoms and nonzero detuning between the laser frequency wy
and the atomic transition frequency w,. With the dipole-dipole interac-
tion included, the master equation (23) leads to a closed set of nine
equations of motion for the atomic correlation functions. This set of
equations can be solved exactly in the steady-state limit, and the solution
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Figure 5. Time dependent of Fy(T) = ({AE,_q)*:)/2¢*(R) for two atoms and differ-
ent B: B = 25 (solid line), B = 50 (dashed line).

is [47, 48]

(X,) = - 8p[88% + (1 +a)(1 + &) /D

(X,) =8B%[88% + (1 + A%)| /D

(X3) = 8(1 + &*)B?/D

(X,> = 8B*[(1 +a) — A(A + b)]/D

(X5) = — 32B8%/D (61)
(Xe) = 16B*/D

(X,) =8B[8AB% + (A + b)(1 + A%)]/D

(Xg> = 3248%/D

(Xy) = — 88%[A(1 +a) + (A+b)]/D
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with

D = 64* + 16(1 + A)B2 + (1 + A)[(1 +a)’ + (A + b)) (62)

where
X =S +8F+85+8; X, =88] +S87S;
Xy=587S; +87S7 X,=S/S; +S87S;
Xs=87S7S; +S7SSS; +S8585,S; + 848785

63

Xs=S88,578; X, = —i(S; +8; =87 -587) (63)
Xg= —i(S7S7S; — SFSFS; + 85878y — $15585)
Xy = —i(878; = 8787)

and

B=Q/4y a=vyp/y b=Qp/y A=(w,-w)/y (64)

The above steady-state solution, which includes the collective damping
parameter a, the dipole—dipole interaction parameter b, and the detuning
A, permits the calculation of photon anticorrelation and squeezing in the
fluorescence field emitted by the two-atom system.

Having available the steady-state solution (61), we can calculate the
correlation functions (37)—(39) for r = 0 and ¢ — . In this limit, we have

GO(R,, 1;R,, 1) = 4p2(R,)¥*(R,){X,) {1 + cos[kr, - (R RZ)]}
(65)
GO(R, 1) = ¢2(R)[(X,) + (X;)cos(kry, - R)] (66)

<:(AEa)2:> = %wZ(R)<<X4>cos(2a) — {Xysin(2a)

+(X,) + (X;)cos(kR - r,)

(67)

—3[<X>cos @ — (X )sin a]” cos?(3kR - rlz)}

Since { X is different from zero, the correlation function GPR,, t;R,, 1)
is different from zero for R = R and the photon anticorrelation effect is
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reduced. However, for R, # R, and
cos 8’ — cos 0" = A/2r, (68)

where 6 and 6" are the angles between r,, and R,(R,), respectively, we
have GP(R,, t;R,,t) = 0. Thus, we can obtain total anticorrelation be-
tween the photons emitted from two atoms, providing that the photons are
observed in two different directions. This anticorrelation effect is due to

spatial interference [49] causing
{1 + cos[kr12 . (Iél - Iéz)]} =0

It is interesting to note that for the two-atom resonance fluorescence
the phase dependence of the variance (67) of the quadrature component
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Figure 6. Normahzed second-order correlation function g®(0) in function of the
detuning A for R1 Rz L rp,, B = 0.2 and different interatomic separations ry; : ri; = 10A
(solid line), ry, = 0.25A (dashed line), r;, = 0.16) (dash-dotted line), r(, = 0.08A (dotted

line).
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Figure 7. Normahzed second-order correlation function g®(0) in function of the
detunmg A for R, = R2 L ryp, 7y, = 0.1A for different field strengths 8: B = 0.2 (solid line),
= 2 (dashed line), B = 5 (dash-dotted line), B = 10 (dotted line).

E, is introduced not only through the dipole moments ¢ X,), (X, but
also through the two-photon correlation functions { X,) and {( X,).

The normalized second-order correlation function g®(0) is illustrated
graphically in Figs. 6 and 7 as a function of the detuning A for r, 1
R(R = R1 = R2) and for different values of the interatomic separation r,,
and of the field strength B. These graphs show that g®(0) strongly
depends on the detuning A, and that the total photon anticorrelation
[gP(0) = 0] can be obtained for certain values of A. This happens for
A = —b, i.e., when the dipole-dipole interaction b and the detuning A
cancel out mutually. In other words, this means that the laser frequency is
tuned to resonance with a particular pair of energy levels of the two-atom
system that are shifted by the dipole—dipole interaction. Other levels are
far from resonance, and the two-atom system behaves like an individual
two-level system.

The variance F(8) = (:(AE,):) /¢*(R) of the quadrature component
E,, as given by Eq. (67), is plotted in Figs. 8 and 9 versus the detuning A
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Figure 8. The variance F(8) = ((AEg)*)/¢*(R) as a function of A for Rlr, 0=

0,8 = 0.2, and for various interatomic separations ry;:ry; = 10A (solid line), r; = 0.16A
(dashed line), r;, = 0.1A (dash-dotted line), r|, = 0.084 (dotted line).

for r,, L R and for various interatomic separations ry, at fixed 6 as well
as at different values of the phase 8 and fixed ry,. It is evident from Fig. 8
that, as the interatomic distance r,, becomes sufficiently small and the
dipole—dipole interaction between the atoms becomes considerable, the
squeezing in F(0), which for independent atoms has its maximum for
A = 0, shifts to region of finite A. In fact, as in the normalized second-order
correlation function g®(0), the minimum in F(@) appears for A = —b
and can again be attributed to the change in energy-level structure of the
two-atom system due to dipole—dipole interaction. Figure 9 shows that
unlike in a single-atom resonance fluorescence, large squeezing can ap-
pear for a strong driving field and 6 = m/2. At A = —b, values of
squeezing in F(8) can be obtained that are comparable to the value
obtained in the transient regime of F(@) for a single atom. Thus, station-
ary two-atom resonance fluorescence shows squeezing for a strong driving
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Figure 9. The variance F(6) as a function of A for R L ry,, ri,=A/6,8 =2 and for

different phases 6:9 = 0 (solid line), 8 = w/8 (dashed line), @ = 7 /4 (dash-dotted line),
8 = 7 /2 (dotted line).

field contrary to the single-atom resonance fluorescence which for strong
driving fields is squeezed only in the transient regime.

VL. SQUEEZING IN TWO-ATOM SPONTANEOUS EMISSION

In Section IV we have shown that only the initially different from zero
dipole moment can produce squeezing in the spontaneous emission from a
single atom. Here, we examine conditions for squeezing in two-atom
spontaneous emission. Equation (67) shows that the variance (:(AE_)%)
depends on the phase a not only through the nonvanishing dipole mo-
ments (S, *), but also through the two-photon coherences (S, S, ) and
(87 S; ). This dependence suggests that there are two different processes
that can lead to squeezing in two-atom spontaneous emission. To show
this, we start from Eq. (39), which for two atoms and R L r;, can be
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written in the form
({(AE)*) = 302 (R){(5785) 727 + (5787) €2
+(S;S7 + 8587) +(S;8; +S7S7) (69)
—1[ST Sy e+ (ST + 85y €]’

From the master equation (23) it is easy to show that for Q = 0 the
equations of motion for the atomic correlation functions, which appear in
Eq. (69), are

d

a‘;Y1 = — (vt 7y +tiQp)Y, + 2(y, +iQ,)Y;
d . .

E;Y2 = (vt v —iQp)Y, + 2(y, —1Qp)Y,
d .

E;Ys = =By + v, 1Qp)Y;

d .

E;Yat = —(3y + v, +1Qp)Y,

d

ays = = 2yYs = 2y, ¥ + 8y,Yy (70)
d

Eya = — 2yYs — 2y,,Ys

d

EY—, = - 4’)'Y7

d

EYS = — 2’yY8

d

Yo = - 29%,

where
Y, =(S; +87) Y,=(SF+S8F) Ys=(S757S; +855;)
Y, =(SFSyS; + 818585)  Ys=(8/S; +S5S;)
Yo =(SIS; +S8587) Y, =(S7S58785) Yy=(SiS])
Yy =(S785)

(71)

and y,, and €, are given by Egs. (19) and (20), respectively.
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Equations (70) are simple in form and can be solved exactly. The
solutions have the following form:

Yy(1) = Y, (0)exp[ — (v + vi2 + iQyp,)¢]

Y3(0)(712 + i‘le)
(‘Y - inZ)

Xexp[ — (v + i, +1Q4,)1]

Y,(t) = Y{(¢)

Yy(t) = Y*(1) = Y;(0)exp[ — (3y + vip — iy)¢]
4 Y,(0

Yi(t) = — Mexp(—%ﬁ)

(72 - 7122)
1 2712Y7(0)
+ {E[Ys(O) - Y(0)] + m}

xexp[ — (v = v12)1]
1 2712Y7(0)

+{'2_[Y5(0) + Y5(0)] + m}
Xexp[ — (v + vi2)¢] (72)

47122Y7(0)
—’—_CXP( _47’)
(‘)’2 - 7122)

{1 - exp[—2('y - inz)t]}

Ye(t) = —

1 2 1247 0

+{5[Y6(0) - YS(O)] - Z':_:%%}CXD[_(Y - 712)’]
1 2 1247 0

+ {E[Yﬁ(o) +Y5(0)] + %}exp[-(v + i)t

Yo(t) = Y7(0)exp(—4vt)
Yy(t) = Yg(0)exp(—2vt)
Yo(1) = Yg'(¢)
where Y,(0) (i = 1,...,9) describe the initial expectation values of the

atomic correlation functions. They are dependent on the initial population
of the atomic states. Consider the initial (+ = 0) superposition state [50]

o) = [cos38,le;) + sin3f, e'¢1lg,)]| [cos3h,le,) + sing6, e®2(g,)]
(73)
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in which the atoms are in an arbitrary linear combination of their states. If
the two-atom system is initially in the states |¢,), then

Y,(0) = 3(sin 6, e ™1 + sin 6, e ')

Y,(0) = Yi*(0)

Y3(0) = (sin 8, cos?(36,) e ¢t + sin 6, cos*(36,) e~ i)

Y,(0) = Y3°(0)

Y5(0) = 3sin 8, sin 8, cos( @, — ¢,)

Y,(0) = cos?(36,) + cos*(36,)

Y,5(0) = cos?(36,)cos*(36,)

Yy(0) = gsin 0, sin 6, exp[i(¢; + @,)]

Yy(0) = 1sin 6, sin 8, exp[ —i(¢; + ¢,)]

(74)

If we choose our initial conditions so that 6, = 8, = 8,, ¢, =0, and
@, = , then Y,(0) = Y,(0) = 0 and Y,(0) = Y4(0) = — 3sin®6,. In such a
state the expectation values of the dipole moments are zero. Nevertheless,
squeezing is still possible because the two-photon coherences Y,(0) and
Y,(0) lead to phase sensitivity in the variance (69). At the inital time ¢ = 0
the variance (69) is

(:(AE,)%) = $w(R)(1 + cos 8, — sin” f; cos® 6) (75)

The minimum value of {:(A E,)*:) corresponding to optimum squeezing
occurs for 8 = 0 and 0, = 27 /3 when

(:(8Ep)*) = —3*(R) (76)

With the parameters 8, = 27 /3, ¢, = 0 and ¢, = m the initial state |¢,)
has the form

1
|€00> = Z[3|g1>|g2> - |e1>|e2>]
(77)

V3
+ T[lel>|gz> - |€2>g1>] = |l/f1> + w/z)
where |,) is a linear combination of the atomic states in which both

atoms are in their ground or excited states, whereas |¢,) is an antisym-
metric combination of the excited and ground states of the atoms. In the
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Figure 10. Time dependence of F(T) = (:(AE,)?:) /¢%(R) for ry, = 0.124,68, = 9, =
27/3, ¢, = ¢, = 0, and for different phases 6:9 = 0 (solid line), 8 = /4 (dashed line),
6 = 7 /3 (dash-dotted line), 8 = 7 /2 (dotted line).

notation of the Dicke states [39] the state |¢,) corresponds to the
antisymmetric state |0, 0), whereas the state |¢,) corresponds to a linear
combination of the Dicke states |1,1) and |1,— 1). The state |y, ), which
is the linear combination of the Dicke states |1,1) and |1,— 1) and gives
squeezing in the quadrature component E,_,, is known in the literature
as a two-atom squeezed state [51], or pairwise atomic state [52].

In Fig. 10 we plot the variance (69) as a function of time ¢ for
ri, = 012,68, =6, = 27w/3, ¢; = ¢, = 0 and for different values of the
phase 6. These graphs show that the fluctuations in the quadrature
component E, strongly depend on phase # and can be squeezed at
different times ¢. If the quadrature component E, were squeezed initially
then it is not squeezed at later times, whereas an initially unsqueezed
quadrature component can be squeezed at later times. This effect does not
appear in a single atom spontaneous emission, and is due to interatomic
interactions which create linear superpositions of the atomic states.
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The idea of squeezing in spontaneous emission can be extended to
higher order quadrature components of the electromagnetic field. Hong
and Mandel [53] defined Nth-order squeezing and showed that resonance
fluorescence predicts this type of squeezing. Another type of higher-order
squeezing, called amplitude-squared squeezing, has been defined by Hillery
[54]. It has been shown that the amplitude-squared squeezing occurs in
multiatom resonance fluorescence, and does not appear in spontaneous
emission and resonance fluorescence from a single two-level atom [55-57].
This is an another example that shows that the interatomic interactions
can produce squeezing in spontaneous emission.

VII. SUMMARY

In this chapter we have considered two nonclassical effects: photon anti-
bunching and squeezing in the spontaneous emission and resonance fluo-
rescence from two-level atoms. Spontaneous emission from a single two-
level atom shows squeezing if at the initial time the atom were in a
suitable prepared linear combination of its excited and ground states.
Resonance fluorescence from a single atom shows photon antibunching
and squeezing independent of the initial preparation of the atom. How-
ever, squeezing strongly depends on the intensity of the driving laser field,
and in the steady-state appears only for a weak exciting field. A strong
laser field can produce squeezing only in the transient regime of resonance
fluorescence. Interatomic interactions have a destructive effect on these
two nonclassical effects. However, a considerable amount of photon anti-
bunching and squeezing can be obtained in a two-atom resonance fluo-
rescence when the detuning of the laser frequency from atomic resonance
and the dipole—dipole interaction between the atoms cancel our mutually.
Moreover, squeezing can appear in the steady-state resonance fluores-
cence even for a strong exciting laser field.

We have also discussed the possibility of obtaining squeezed states in
spontaneous emission from two interacting atoms. We have shown that the
two-atom system can produce squeezing even for the vanishing atomic
dipole moments. The system produces squeezing through having two-pho-
ton coherences different from zero [50, 51].

In conclusion, we have demonstrated nonclassical effects exhibited by
independent as well as correlated atoms. These effects are not evident
when the electromagnetic field is treated classically and easily manifest the
quantum nature of resonance fluorescence.

As a result of recent successful experiments, which have generated
squeezed light, interest is now turning to possible applications. Gardiner
[58] first pointed out that squeezed light incident upon a single two-level
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atom can in principle inhibit the phase decay of that atom, giving rise to
line narrowing in the spectrum of resonance fluorescence [58]. Since that
first paper, analyses have been extended to the treatment of atomic
absorption spectra [60, 61], atomic level shifts in a squeezed vacuum [33,
62, 63], and squeezed pump lasers {64]. Multiatom and multilevels systems
in a squeezed vacuum are now extensively studied [65-74], and show novel
effects not observed in an ordinary vacuum.
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