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Quantum phase properties of the field generated in the nondegenerate down-
conversion with quantum pump are studied within the framework of the Pegg-
Barnett Hermitian phase formalism. It is shown that, unlike the ideal two-
mode squeezed vacuum, the solutions are oscillatory, and the sum phase locking
observed for the two-mode squeezed vacuum is not perfect when the quantum
fluctuations of the pump mode are taken into account. The long-time evolution
of the quantum phase fluctuations for the phase sum of the signal and idler
modes as well as for the pump mode exhibits collapses and revivals of phase
properties of the field.

I. INTRODUCTION

Two-mode squeezed states that can be generated in the nondegenerate down-
conversion process have been a subject of considerable interest in quantum optics
(1]-(6]

The two-mode squeezed vacuum was in fact the first squeezed state obtained
experimentally {7]. The two-mode squeezed states have very interesting properties
because of the strong correlations between the modes. Quantum phase properties
of the two-mode squeezed vacuum have been shortly discussed by Fan and Zaidi (8]
within the framework of the Susskind and Glogower [9] phase formalism. Recently,
Barnett and Pegg [10], and Gantsog and Tanad [11] have discussed the quantum
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phase properties of the two-mode squeezed vacuum using the Hermitian phase
formalism introduced earlier by Pegg and Barnett [12]-{14]. It has been shown
[10, 11] that the joint phase distribution for the two-mode squeezed vacuum depends
only on the sum of the phases of the two modes, and that the sum of the two
phases is locked to a certain value as the squeezing parameter r increases, while
the individual phases as well as the phase difference remain random.

The two-mode squeezed vacuum can be generated in the nondegenerate down-
conversion process in which the pump mode is assumed to be classical and non-
depleted. Within this parametric approximation the resulting state , i.e. the two-
mode squeezed vacuum, has relatively simple analytical form, and asymptotically
as r tends to infinity the sum of the phases of the two modes becomes well defined.
However, the parametric approximation breaks down when a considerable amount
of power is transferred from the pump mode to the signal and idler modes. In such
situations the pump mode must be treated dynamically and its quantum mechan-
ical evolution must be taken into account. Owing to the energy conservation the
intensity of the signal mode cannot grow infinitely, and the solutions become oscil-
latory. The resulting field state is no longer the ideal two-mode squeezed vacuum,
and its quantum phase properties are also different. This effect is known for the
case of degenerate down-conversion [17]. Recently, Drobny and Jex [18] and Buzek
et al. [19, 20] have discussed photon statistics, mode entanglement and squeezing
of the fields generated during the quantum evolution with the trilinear interaction
Hamiltonian drawing attention, in particularly, to the problem of the collapses and
revivals in such a model.

In this paper we address the problem of collapses and revivals of quantum
phase fluctuations in the nondegenerate down-conversion with quantum pump.
The Hermitian phase formalism of Pegg and Barnett [12]-[14] is applied to describe
the phases of the interacting modes. The quantum evolution is found with the
numerical diagonalization of the interaction Hamiltonian. The quantum phase
fluctuations of the phase sum of the signal and idler modes for both short as well
as long times are studied showing the collapses and revivals of the phase properties
in the long time evolution. A comparison is made to the results for the ideal two-
mode squeezed vacuum showing essential differences in the long-time behaviour.

II. QUANTUM EVOLUTION OF THE FIELD STATE

The nondegenerate down-conversion process is described by the following model
Hamiltonian

H=Hy+ H = husata+ hopb’b+ hwcete
+hg(atdle + abel), (1)

where a (at), b (bt) and ¢ (c!) are the annihilation (creation) operators of the
signal mode at frequency w,, the idler mode at frequency w1, and the pump mode
at frequency we, respectively. The coupling constant g, which is assumed real,
describes the coupling between the three modes. Under conditions of perfect energy

75



conservation, i.e., we = wy + wp, the free field Hamiltonian Hy can be written in
the form

Ho=H{" + H{Y (2)
where
H§)=g@a+umXJa+Hb+2&d, 3)
and
HE) = 2(wn — w)(ala - b1b), @

and the Hamiltonians commute with each other
(HSD, B = (B, B = (HP, ) = 0. (5)

Thus, there are three constants of motion, H, (1), H(g?) and Hy. Hy determines the
total energy stored in all modes, which is conserved by the interaction Hj. This
allows us to factor out exp(—iHot/h) from the evolution operator and, in fact, to
drop it altogether. In effect, the resulting state of the field can be written as

P(t)) = exp(—iH1t/R)[¥(0)), (6)

where |¥(0)) is the initial state of the field. If the Fock states are used as basis
states, the interaction Hamiltonian Hj is not diagonal in such a basis. To find the
state evolution, we apply the numerical method of diagonalization of Hy [21].

Let us assume that initially there are n photons'in the pump mode (¢) and no
photons in the signal (a) and idler (b) modes, i.e., the initial state of the field is

10,0,n) = {0)a]0)p|n)c. Since Hc(,l) and H(()z) are constants of motion, we have the
relations

%((a*a) + (6'8)) + (cle) = const = n, (1)
and
(ala) — (b'b) = const = 0, (8)
which implies that the annihilation of £ photons of the pump mode requires creation
of k photons of each the signal and the idler modes, simultaneously. Thus, for given
n, we can introduce the states
) =k kon - k), k=0,1,..n, (9)

which form a complete basis of states of the field for given n. We have

( (n )I in = &b (10)
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which means that the constant of motion Ho splits the field space into orthogonal
subspaces, which for given n have the number of components equal to n + 1. The
basis states I;bf_,")) given by (9) are numbered by the total energy (in units of hw.)
which is n and by the number of photons in the pump mode which is n — k.

The matrix elements of the interaction Hamiltonian are given by

W Hlp))
hg(k + 1)vn — k. (11)

This is a tridiagonal matrix which can be diagonalized efficiently allowing for the
numerical evaluation of the matrix elements of the evolution operator.

If we assume that initially the pump mode is in a coherent state with the mean
number of photons |a.|?, and both the signal and idler modes are in the vacuum,
the resulting state of the field can be written as

WO Hy™)

Il

(1)) = Y bueinee Z en ()|, kyn— E), (12)

n=0 k=0
where
by = exp(-—|ac|2/2)|a¢'"/\/;l_! (13)

is the Poissonian weighting factor of the coherent state |a.) of the pump mode
represented as a superposition of n—photon states, and the coefficients ¢, (t) are
the matrix elements of the evolution operator

cnk(t) = (B exp(—iH t/B) 4™ (14)

that are calculated numerically. This allows us to find the evolution of the state

(12).

III. PHASE PROPERTIES OF THE FIELD

To study phase properties of the field produced in the down-conversion process,
we use the Pegg-Barnett [12]-[14] Hermitian phase formalism. According to Pegg
and Barnett, the Hermitian phase operator can be constructed in a finite (s + 1)~
dimensional state space ¥ spanned either by the number states, |n), or , (s + 1)
orthonormal phase states, |6,,). The phase states can be expanded in terms of the
number states as

1 3
[6m) = T n§=oexp(in0m)|n), (m=0,1,..,s) (15)
where
2rm
O0m =86 . 6
m 0 + + 1 (.] ))
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The value of 65 is arbitrary and defines a particular basis set of (s + 1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

$6= Y Om|bm)(Bml, (7

m:=0

where the subscript 6 indicates the dependence on the choice of 5. The phase
states (15) are eigenstates of the phase operator (17) with the eigenvalues 6y,
restricted to lie within a phase window between 8y and 6 + 27. Recently Buzek et
al. [15]) have analyzed algebraic properties of the phase operator (17) and introduced
interesting concept of the annihilation and creation operator of phase quanta. Luks
and Pefinova [16] have proposed another approach to the quantum phase problem
based on the mapping and operator ordering.

Physical results are obtained in the limit s — oo, and according to Pegg and
Barnett prescription this limit has to be taken only after ¢ numbers, such as the
expectation value and variance of the phase, have been calculated in the finite basis
(15). Here we are interested in phase fluctuations, so we need the phase distribution
function. Projecting the field state ( 12 ) onto the phase states ( 15 ), defined for
each mode entering the process, we find a probability amplitude for the field state
being in a definite phase state. In our case of field produced in the down-conversion
process with quantum pump, the state of the field (12) is a three-mode state, and
the Pegg-Barnett phase formalism generalized to the three-mode case gives

(Om . [Omo (O, (1)) = (52 + 1) 3 (86 + 1) (sc + 1)~/

S n
X 37 5265 S exp {=ilk(Bm, +Omy) + (n — K)mDYens(t).  (18)
n=0 k=0
We use the indices a, b and ¢ to distinguish between the signal (a), idler (b) and
pump (c) modes. There is still a freedom of choice in (18) of the values of 03"“,
which define the phase values window. We can choose these values at will, so we

take them as

s
02 = o — 2 b"‘"’+'°1 (19)
a,b,c

and we introduce the new phase values

0#.,b,c = 0m.,b,c = Yab,c, (20)

where the new phase labels papc run in unit step between the values —sap.c/2
and s, p,c/2. This means that we symmetrize the phase windows for the signal,
idler and pump modes with respect to the phases @,, @b, and @, respectively.
We are free to choose the parameters s, as large as they are needed, and for
real physical states it is always possible to choose s, . much larger than the
contributing number states. So, the parameters s, ¢ in the sum of Eq. (18) can
be replaced to any desired degree of accuracy by the infinity.

On inserting (19) and (20) into (18), taking the modulus squared of (18),
and performing the continuum limit transition we arrive at the continuous joint
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probability distribution for the continuous variables 8,, 6, and 6., which has the
form

P(0,,6,6.)

Zb ch k(t)

n=0

(2 (@r)?

2
x exp{=ilk(0a + 8u) + (n = K)0. + klipa + 0 ~ @]} (21)

The distribution (21) is normalized so as

L3 © T
/ / / P(6a, 05, 8)d0.d6,d6. = 1. (22)

-_—K =X =7

To fix the phase windows for 6,, 6, and 6. we have to assign to ., b and @,
particular values. It is interesting to note that the distribution P(6a,8s,6.) given
by (21) depends on the phase combination ¢, + @, — ¢ only. This reproduces the
classical phase relation for the parametric amplifier, and classically this quantity
should be equal to —m/2 to get the amplification of the signal mode (if the coupling
constant g is positive). Such choice means that a peak should appear in the phase
distribution at 8, 4+ 6, = 0
Marginal phase distributions of the a and b modes are

n x
1 1
/ / PO, 05, 6)d6d0c = 5=, P(B) = 5. (23)

- -7

We introduce new variables

8, = 0+ 6, (24)
- = 0, — 0b (25)

and get the new joint probability distribution P(6,,6_,8.) for the phase sum 6,
and difference #_ for the signal and idler modes, and the phase 6. of the pump
mode. The Jacobean for this transformation is 2. However, for this new probability
distribution the ranges of values that 6, and 4. can take are —27 < 3 < 2.
While physically distinct values of the phase sum and difference exist only in a
27 range. Therefore it is desirable to reduce the possible values of phase sum and
difference into a 2 interval. This is achieved by means of the casting procedure
proposed by Barnett and Pegg [10]. We select central 27 ranges, from — to =, for
6+, by adding or subtracting 27 as necessary to values of #, and §_ outside these
2m ranges. As a result of this procedure we obtain the joint mod(2r) probability
distribution
oc n
P2’r(0+10*—)0€) = (27!' Z_:O Ecn L(’)
2
x exp{=ilkfy + (n — k)fe + k(s + 0o — )]} . (26)

1
i
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where now —7r <04y < vrand —vr <6f. < 7.
Since Pox(6+,0-,6.) is independent of 8., the integral of the distribution over

0+ and 6. will also be independent of 6_, so we have for the 27 range marginal
phase-difference distribution :

1
P21r(0—) = 27!'. (27)
This means that the phase-difference for the signal and idler modes is random.
Again, this effect is known from the case of the ideal squeezed vacuum [10, 11], and
it is not affected by the quantum fluctuations of the pump mode.
Integrating ( 26 ) over 8_ leads to

T
/ Pax(84,6_,6:)d0_

1
@n)?

P21r(9+> HC)

o0 n
S8 can()
0

n=0 k=
2

x exp{—i[kf; + (n — k)8 + k(pa + b ~ @)} - (28)

The phase distribution P (64, 6.) is the mod(2x) joint phase distribution that de-
pends on two variables 84 and 6., the two phase variables that describe the essential
phase dynamics of the nondegenerate down-converter with quantum pump.
Integrating Pox(64,0.) over one of the variables leads to the marginal phase
distributions Par(6,.) and P(6.) for the phase sum 64 and phase of the pump mode
8., respectively. Performing the integrations we have
Pir(0y) = / Pae(64,6¢)d6
1 .
= ﬂ{l + 2Re Z bnbm exp[—i(n — m)(64 — 7/2)]

n>m
m
X ch,"_m.,.k(t)c:"’k(t)}, (29)
k=0

and

P(6) = / Por(4,0:)d0,
-

1 .
oy { 1+ 2Re Z bnbm exp[—i(n — m)d.]

n>m

x ch,w‘)c;l,k(t)}. (30)

k=0
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Since the phases 8, and 8, of the individual modes as well as the phase difference
6_ are all random, the quantum phase properties associated with them are well
known. The nontrivial quantum phase properties that are related to the quantum
evolution of the nondegenerate two-photon down-converter are described by the
phase distributions ( 28 ), (29 ) and ( 30 ). Knowing these phase distributions we
are able to calculate all necessary phase expectation values by simple integrations
over the phase variables. This gives us for the mod(2x) phase variance of the phase
sum 8, the following expression

Ase(do. +d0,)? = / 02 Pye(04)d0,
= —3—+4R Zb,,bmg————)n—)”:exp[z(n m)x/2)
n>m
XD cnnmk ()i & (0), (31)
k=0

and for the phase variance of the pump mode we have

(Ads) = / 02 P(0.)d6,
= TR Y babn ”':n)";zcnk(t)cmk(t) (32)
n>m

The 27 subscript of A in ( 31 ) denotes that the variance is calculated with the
mod(2r) phase distribution according to the casting procedure of Barnett and
Pegg {10]. This means that we study the phase properties of the phase sum being
rather a single phase variable and not a sum of two phase variables. Since 8, is a
single phase variable from the outset and there is no need to cast it into a new 27
range.

The results described by the formulae ( 28 )—( 32 ) are illustrated graphically
in Figures 1-3. In Figure 1 the mod(2x) joint phase probability distribution given
by formula ( 28 ) is plotted for several values of the scaled time gt. Initially,
(gt = 0), the sum of the phases for the signal and idler modes 6y = 6. + 6
is uniformly distributed, and we see a completely flat distribution of this phase,
while the phase 8. of the pump mode shows a phase peak associated with the initial
coherent state of this mode. As time elapses a peak of the phase sum appears for
64 = 0, as expected for our choice of the phase windows. At the initial stages of
the evolution the sum phase distribution becomes narrower, but at later times it
starts to broaden back. One can also observe appearance of additional peaks for
the pump mode phase .. Such bifurcation of the phase distribution is known from
the degenerate case of the down-conversion process [17]. In contrast to the the sum
of the phases for the signal and idler modes 6, = &, + @, is uniformly distributed,
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Fig. 2. Phase-sum variance Azr (o, +do, ) (solid line), phase variance for the pump mode
(Ade.)? (dot-dashed line) and phase variance for the two-mode ideal squeezed vacuum
(dashed line). The initial mean number of photons of the pump mode Ne = |acf? is equal
to 4.

and we see a completely flat distribution of this phase, while the phase . of the
pump mode shows a phase peak associated with the initial coherent state of this
mode. As time elapses a peak of the phase sum appears for 6, = 0, as expected
for our choice of the phase windows. At the initial stages of the evolution the sum
phase distribution becomes narrower, but at later times it starts to broaden back.
One can also observe appearance of additional peaks for the pump mode phase 6.
Such bifurcation of the phase distribution is known from the degenerate case of the
down-conversion process [17]. In contrast to the degenerate case for which there
are two peaks in the phase distribution for the signal mode, here we have only one
peak of the phase sum similarly as for the ideal two-mode squeezed vacuum [10, 11].
However, contrary to the two-mode squeezed vacuum, the phase sum distribution
does not tend asymptotically to the 6 function but retains finite width, and as
time elapses it is even broadened meaning randomization of the phase. This effect
is better seen from Figure 2, where the phase variances evolution is shown. We
see the oscillatory behaviour of the phase variances in the case when the quantum
fluctuations of the pump mode are taken into account. For reference we have also
plotted the phase variance for the ideal squeezed vacuum, which asymptotically
approaches zero as time increases (the squeezing parameter r is related to the
scaled time gt by the equation r = /N.gt). The horizontal line marks the value
x2/3, which is the phase variance for the randomly distributed phase. It is seen
that both the phase sum and pump mode variances oscillate around the value
for the randomly distributed phase approaching this value. This character of the
oscillation resembles the collapse of some other properties of such a system like
a mean number of photons, photon statistics, or squeezing [18]. Thus, a question
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Fig. 3. Long-time evolution of the phase sum variance: (a) Nc = 4, (b) Ne =9, (c)
Nc = 16.

arises: Whether after a collapse of the phase properties one can expect also a revival
of such properties? Drobny and Jex [18] have noticed revivals of other properties
in a similar system under special conditions. In Figure 3 we have plotted the long
time evolution of the phase sum variance for the initial values of the mean number
of photons of the pump mode N, equal to: 4 (a), 9 (b), and 16 (c). The collapse-
revival character of the evolution is clearly visible, and it is more evident for larger
mean numbers of photons. Similar behaviour of the quantum phase fluctuations
for the signal as well as pump mode of the degenerate down-conversion has been
found by Gantsog [22].

Since the phase of the pump mode is strongly correlated with the phase sum
of the signal and idler modes, one can expect similar behaviour also for the phase
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variance of the pump mode. We have really obtained similar behaviour for the
pump mode too, but because the picture is very similar to Figure 3 we do not
present it in this paper.

IV. CONCLUSION

We have shown that in the down-conversion with quantum pump phase prop-
erties of the phase sum are different from those of the ideal two-mode squeezed
vacuum. They have oscillatory behaviour exhibiting collapses and revivals, which
is in marked contrast to the asymptotically well defined phase sum in the ideal
two-mode squeezed vacuum.
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