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Abstract. The formation of discrete superpositions of coherent states via the unitary
evolution of the m-photon apharmonic oscillator is studied. Exact analytical formulae
for the superposition coefficients are obtained. It is shown that, in contrast to the
two-photon anharmonic osciltator, for m > 2 the superposition components enter the
superposition with different amplitudes. The Pegg-Bamett phase formalism is used to

calculate the phase distributions for the resulting states and to visualize their symmetry.

1. Introduction

It is now a well known fact that the quantum evolution of the anharmonic oscillator
leads to the quantum states being discrete superpositions of coherent states if the
evolution time is properly chosen. This fact was indicated by Yurke and Stoler [1], who
considered the m-photon anharmonic oscillator and obtained some special examples
of the superposition states. Tombesi and Mecozzi [2] have discussed a possibility
of generating quantum mechanical superposition of macroscopically distinguishable
states via the non-linear interaction of two modes with orthogonal polarizations in
a Kerr medium. The two-photon anharmonric oscillator model was earlier used by
Tanas [3] to show a high degree of squeezing for a large number of photons. The two-
mode version of the model was used by Tana$ and Kielich [4] to describe non-linear
propagation of light in a Kerr medium, predicting a high degree of what was called
‘self-squeezing’ of strong light. The comparison of quantum and classical Liouville
dynamics of the anharmonic oscillator was made by Milburn [5] and Milburn and
Holmes [6]. Kitagawa and Yamamoto [7] have used the model in their discussion
of the number-phase minimum uncertainty state that can be obtained in a non-
linear Mach~Zehnder interferometer with a Kerr medium. The anharmonic oscillator
model has also been discussed by Pefinova and Luk$ [8] from the point of view of
photon statistics and squeezing. Quantum ficld superpositions have been discussed by
Kennedy and Drummond [9] and by Sanders [10]. Miranowicz et al [11] have shown
that, in the two-photon anharmonic oscillator model, superpositions of coherent states
can be obtained with not only even but also odd numbers of componenis. They have
used the Q function to illustrate the formation of such superpositions and have also
shown that the maximum number of well distinguished states is proportional to the
field amplitude. Recently, Gantsog and Tana$ [12] have applied the new Hermitian
phase formalism of Pegg and Barnett [13-15] to study the formation of discrete
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superpositions of coherent states and phase properties of elliptically polarized light
propagating in a Kerr medium. Tana$ et al [16] have compared two descriptions
of the superpositions penerated in the anharmonic oscillator model: one using the
Q function, and the other one using the phase distribution function. Gerry [17]
has considered the m-photon anharmonic oscillator model, with the interaction
Hamiltonian ~ xa'™a™, showing that squeezing can also be obtained for higher
values of m (m = 3,4). The role of the higher optical Kerr non-linearities in
self-squeezing of light has recently been discussed by Tana§ and Kielich [18].

In this paper we study the problem of formation of discrete superpositions of
coherent states via unitary evolution of the m-photon anharmonic oscillator. Exact
formulae for the superposition coefficients are obtained for the superpositions with
an arbitrary number of components. Our results are generalizations of the results
obtained earlier for the two-photon anharmonic oscillator 11, 12, 19] to the m-
photon case with arbitrary m > 2. It is shown that for m > 2, in contrast
to the m = 2 case, the Superposition components usually enter the superposition
with different probabilitics. We use the phase distribution function P(8) obtained
within the Hermitian phase formalism of Pegg and Barnett [13-15] to visualize
the superpositions. Polar plots of this function indicate the superpositions of well
distinguished coherent states in a very spectacular way showing the number of
components, their probabilities and phases. The phase distributions confirm clearly
the properties predicted from analytical formulae.

2, The state evolution

The m-photon anharmonic oscillator is described by the following model Hamiltonian
H=Hy+ H; = twa'a+ h—a'™a™ o)

and « is the anharmonicity parameter that can be associated with corresponding non-
linearities of the medium when the model is to be used to describe the propagation
of optical field in a non-lincar medium. We use here the normal ordering of the
operators in the interaction Hamiltonian. For m = 2 the model becomes that of the
well known two-photon anharmonic oscillator. The evolution of the system with the
Hamiltonian (1) is described by the Schrodinger equation (in the interaction picture)

m%v(t) = H,U(t) )

where the evolution operator U(t) has the form
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with # = @'a being the photon number operator. Replacing the time t by —z/v,
and introducing the dimensionless propagation length

r=xzfv 4
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we can write the evolution operator as
T onpa -
U(r)=exp (1:n—n(n-l)...(n—m+1)) . (5)
The resulting state of the field is thus given by

[(T)) = U()¥(0}) ®)

where [1(0)) is the initial state of the field. If the initial state of the field is a
coherent state (o), the resulting state of the field is

()} = U(7)|ey)
= exp(~layl2/2) 3 3‘\[% exp (i%ﬁ(ﬁ ~1)(A—m+1) |n)

- S 7 o
where we have used the notation
Al =n(n-1)...(n-m+1) ®)
bo = exp(—logl?/2) 2 ©
ay = |ay| exp(ivy). (10y

The state (7) differs from the initial coherent state |e,} by the additional (non-linear
in n ) phase proportional to the numbers AT, that is, the resulting state belongs 1o
a class of generalized coherent states [20, 21]. Such states under certain conditions
can become discrete superpositions of coherent states {22].

3. Discrete superpositions of coherent states

The problem of generating discrete superpositions of coherent states for the two-
photon (m = 2) anharmonic oscillator has been discussed in detail by Miranowicz
et al [11], who have shown that superpositions with both even and odd numbers of
components are possible, but all the components enter a superposition with the same
probabilities. Here, we shall give exact analytical formulae for the superpositions
with any numbers, N, of components for the generalized, m-photon anharmonic
oscillator model. We shall study some new features of the superpositions that appear
for m > 2,

It was shown by Biatynicka-Birula [22] that under periodic conditions generalized
coherent states, to a class of which the states (7) belong, become a discrete
superposition of N coherent states, and that the superposition cecefficients can be
found by solving a system of NV algebraic equations. Such a system of equations
has been solved for several N values by Miranowicz et al [11] for the two-photon
model. Averbukh and Perelman [23] have considered the problem of the evolution of
wavepackets formed by highly excited states of quantum systems showing a possibility
of ‘fractiopal revivals’ of the initial wavepacket. Their calculations effectively lead to
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the anharmonic oscillator model. They have shown that because of the periodicity
the superposition coefficients can be obtained analytically for arbitrary N. We adopt
their approach in our calculations here.

First of all, it is easy to note that the state (7) is periodic in

l(r + T)) = {¥(7)) (11)

with the period T = 2. This is true because AT /m is an integer number.
Moteover, we have

Aoy = AT +mN S ALATTS 1)
=0
and
exp (i AT, ) = exp (i- AT ) exp (if N "*Z: A AT—".;T,},N_l) (13)
which means that for
r= %{—Z‘rr = %T (14)

the exponential becomes periodic with the period mN. We assume that M and N
are mutually prime integers. This means that for = being a fraction of the period, as
in (14), the state (7) becomes a superposition of coherent states [22]

mN-1
lp(r= MNTIT) = Y c;lexpliv,)oy) (15)
k=0

where |o) is the initial coherent state.
The phases ¢, are given by

2
= — = ooy - 6
Pk me k=0,1,....mN -1 (16)

and the coefficients ¢, are given by the set of m N equations

mN-1 / M \
. - : m
kz::‘] cip exp(ing,) = exp (121r—~—mNAn ) a7
where n =0,1,...,mN — 1, Equation (17) can be rewritten as

mN-1 21
D cpexp (i—(nk - MA;;*)) =1 (18)
mN
k=0
which after summing over » and a minor rearrangement gives

mi-1 mN—-1

3 e 2 exp (i-n—z;%(nk-— MA;:‘)) =1 (19)

k=0 n=l * /
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In view of the normalization condition

Sag=1 20)
k
we immediately obtain the expression for the coefficients ¢, in the form
1 =t 2% '
o= — ,g, exp (——i—nm(nk - MA;")) . @1)

Formula (21) gives the coefficients ¢, of the superposition (15) for any M and
N. Because of the symmetry of the system formula (21) can be rewritten in the form

_1 ! 278 k — M A™-1 1 & .2nn k- MA™
€=~ ) exp (k- MART)) NZCXP —i—— (k- MAT) ).

—_]——
a=0 m n=0
22
The first sum in formula (22) is simply the Kronecker delta, §,., where
. m—1 '
. {1 if k- :MrAN__l is a multiple of m 23)
0 otherwise .

This means that only the coefficients ¢, with

k=ky+sm s=01.,N-1 (29)
where

ky = MARZ] (mod m) (25)

can be different from zero. So, the maximum number of components in the
superposition 8 equai to N. Anticipating this we have extended the summations in
formulae (15}-(21) to m N terms in order to preserve N for the maximum number
of components. Thus, the denominator in (14), which is N, defines the maximum
number of components in the superposition, and the second summation in (22) has
only NNV terms. Having defined the k for the non-zero coefficients ¢, by the equations
(24) and (25), we can rename the coefficients using the numbers s, instead of k,
omitting in this way the coefficients that are zeros. After such change of the indices
the superposition coefficients are given by

N-1
¢, = % S exp (—if:—;(ku +sm - MA::I‘)) (26)
n=>0

and the superposition (15} can be rewritten in the form

N=1
[(r = MN-IT)} = 3 c,|exp(ice, Joy) Q7

=0
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with
2%
@, =m(k0+ sm) s=0,1,....N-1. (28)

In fact, the actual number of components in the superposition can in some cases
be smaller than N, because for given m and N the sum (26) can still become zero
for a particular value of s.

In some special cases expression (26) can be summed up analytically. For instance,
it is easy to note that for N < m, nA™ ' = A™ = 0, k, = 0, and the sum (26)
is equal to zero unless s = 0. That is, for N < m, the only non-zero coefficient is
¢y = 1, and the state remains unchanged. Thus, the lowest N for which the state
(27) becomes a non-trivial superposition of coherent states is N = m. In this case
nA™ ! = AT is still zero, but ky = M(m — 1)! (mod m) is different from zero if
M (mod m) is diiferent from zero, and we have

m—1

1 .2nn .
¢, = — Zoexp (—l—m—z—(k,, + sm)) (29)

n=

where s = 0,1, ..., m — 1. The geometrical series in (29) can be summed up giving
the result

_ 1 1 — exp[—-i(27 /m) k)
“ = 1= exp[=i(2n/m2)(ky + sm)]

21 . sin[(7/m) k]
= P (”‘Fn'i[k"(m -1 - sml) sin[(7r/m?)(ky + sm)] e
In particular, for M =1and ¥ = m =2, k; = 1, we have
1 . 1 .
- —ir /4 = _enrj'-‘n. 31
“=% T TA @b

The resulting state in this case is
. . 1. .
V(7 = 20/ 2Dy = 5" Pey) + 26 e ). (32)

Apart from the rotation by = /2 in the phase space, the state (32) is the superposition
of two coherent states indicated by Yurke and Stoler [1]. The rotation is related to
the fact that we use normal ordering of the interaction Hamiltonian. The difference
between two possible orderings has been discussed by Miranowicz et af [11].

For M =1and N = m = 3, we have k; = 2 (according to equation (23)), and
the non-zero coefficients are

_exp(—gim) _exp(—jin) _exp(}im)

T WAsm(Gr) 1T 2/3sin(w) 2 2/3sin(in) 3)

and we get the superposition

(T =27/3)) =3 = Culemlgau) + Clleim”gau) + Czlemﬁyao)- (34)
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The probabilities |cy|?, |¢;|> and fc,|* with which the component states enter the
superposition (34) are different, and the superposition is not symmetrical.

In the case M =1, N = m = 4, we have k, = 2, and the non-zero coefficients
are given by

e=c=1-i(VZ+1)] ¢ =c=41-i(v2-1) (35)
The resulting superposition in this case is the following

[¥(r =27 /4)) =4
=cu|°"r/4°’u) + c1|ei3”/“au) + cz|e—i3"/40‘u) + csle—i’rla‘lu)- (36)

There are two pairs of states with mutually complex conjugate amplitudes and the
phases disposed symmetrically with respect to the phase ¢, of the initial coherent
state Joy). The two examples of the superpositions considered above already show
that for m > 2 the resulting superpositions are generally less symmetrical than in the
case of a two-photon anharmonic oscillator (m = 2) for which all the components
have the same probability [11 19].

o # alan that avmracoires Frr tha iraranoitine Aanafficiante

J.l I.ulllb Oul 480 ulal LIIG CAPICBDIUII \AU} LT Oy 1) bl.lPGIPUDlI.lUll coemcicnis c’,
which in the case m = 2 and M = 1 is an example of the Gaussian sum {24], can
also be summed up and the result is given by the following simple formula

1 . T
e, = ——\/ﬁexp (lz—ﬁls) (37
where
ls=£v-—-_—§°—_—1—2(s+1)(s+ ky). : (38)

These are important results that allow us to write down the superposition states
generated in the most important case of the two-photon anharmonic oscillator
immediately in a compact and very simple form.

For m > 2 we were unable to find formulae, similar to (37) and (38), describing
the superposition coefficients c,, and we use the formula (26) to calculate them. We
should emphasize, however, that formula (26) is exact and can be easily evaluated
numerically for any finite number of components N,

Knowing the cocflicients c, we can write down the superposition (27), in which
le,|? give the probabilities with which particular components enter the superposition.
Both amplitudes and phases of the components entering the superposition are clearly
indicated by the phase distribution for the superposition if the components are well
separated. Examples of such distributions are given in the next section.

4. Phase distributions

We use the Pegg-Barnett [13-15] Hermitian phase formalism to illustrate some
properties of the resulting superposition states. The idea of Pegg and Bamett is
based on introducing, for one mode of the field, a finite (s + 1)-dimensional space
W spanned by the number states [0), |1),...,|s). The Hermitian phase operator
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operates on this finite space, and after all necessary expectation values have been
calculated in ¥, the value of s is allowed to tend to infinity. A complete orthonormal
basis of (s + 1} states is defined on ¥ as

1 & .
16m) = == nzzuexp(mem)lm (39
where
amzeu+?’_‘_—”: (m=0,1,..,s). (40)

The value of 6, is arbitrary and defines a particular basis set of (s 4+ 1) mutually
orthogonal phase states.
The Hermitian phase operator is defined as

(f)ﬂ = Z Omlom)(gml (41)

m=0

where the subscript 8 indicates the dependence on the choice of . The phase states
(39) are eigenstates of the phase operator (41) with the cigenvalues 8, restricted to
lie within a phase window between 6, and &, + 2.

If the state of the field is (7))}, as given by equation (7), we have

(Orm (7)) = Zb oxp [~i (n(8m ~ ) — —AT)] . @)

Symmetrizing the phase window with respect to the phase y, i€. assuming

T8

s+1

and introducing a new phase label u = m — s/2, which goes in integer steps from
—s{2 to s/2, we have

8y = oy — 3)

(0,1(r)) = \/-_HD exp [—i (n8, - —AT) “4)

where 6, = u2x /(s 1). So, the probability of being in the phase state [8,,) is given
by

N8, Jw(r))? = —1—+ = Zb byoos ((n— k)8, - (AT - AD)). (49

In the limit as s tends to infinity, the continuous phase variable can be introduced
replacing u2x /(s 4+ 1) by 6 and 27 /(s + 1) by df. This leads to the continuous
phase probability distribution given by the formula

P(8) = - [1+zzb bkcos((n— )e-—(Am_Am))] (46)

nak
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Figure L Phase probability distribution P(#) plotted against  in the polar coordinate
system for m=2and r=2r/N: (a) N=1, (W) N=2, () N=3, () N=4

with the normalization
/ P(6)do = 1. (47)

For m = 2, i.e. the two-photon anharmonic oscillator, the phase properties have
been studied by Gerry [25] and Gantsog and Tana$ [19]). It has been shown [19]
that the phase distribution function P(#) when plotted in polar coordinates clearly
indicates the superposition of coherent states that appear during the evolution of the
anharmonic oscillator. Here, we use the same idea, to apply the phase distribution
P(0) for studying the superposition of coherent states appearing in the course of
evolution of the m-photon anharmonic oscillator.

in figure 1 we present the polar plots of the phase distribution P(@) for the
two-photon anharmonic oscillator. Such plots have already been shown in [19], and
we adduce them here just for reference. The distributions were obtained according to
formula (46) for the mean number of photons o> = 4. We have assumed M = 1
everywhere. The symmetry of the states is clearly visible, although for + = 2= /4
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Figure 2. The polar coordinate pictures of P(8) for m = 3 and r = 2nx/N: (a)
N=1L, (MO N=2(c) N=3, d) N=4.

the fourfold rotational symmetry is already distorted. This is caused by the influence
of the interference terms, which play an increasing role and the components start to
overlap. The maximum number of well separated states is proportional to |cy|? and
was estimated earlier [11).

In figures 2 and 3 we show a few examples of the superposition states for the three-

and four-photon processes. The differences are quite clear and confirm the results
obtained analytically for the superposition coefficients ¢,. Whenever the probability

L7 s AR uunou VWAL AV MY Swpws pruooiLIURl RAULILLANRR S e FPARLILALE AL pRVTGLAR

|e,|? for a given peak is smaller than for other peaks, the lobe in the phase d:stnbuuon
is also smaller. It is also seen that some components disappeared, as is evident for
example for m = 3 and r = = = 2= /2, where instead of two peaks only one peak
occurs. Generally, for m > 2, the phase peaks have different heights, which is in
sharp contrast with the two-photon case. This means that the phase properties of the
superposition with the same number of components are quite different. The Pegg-
Barnett phase formalism allows us to calculate any phase characteristics of the field
(such as, for example, phase variance), but we are not going to do it here. We have
treated the phase distribution rather as a useful tool to visualize our analytical results
and not as a main subject of the paper.
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Figure 3. The polar coordinate pictures of P(4) for m = 4 and r = 2x/N: (a)
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8. Conclusion

In this paper we have studied the problem of generation of discrete superpositions
of coherent states in the course of evolution of the m-photon anharmonic oscillator.
We have obtained exact analytical formulac for the superposition coefficients with
an arbitrary number of components. We have shown that, in contrast t0 the two-
photon process, the superposition components for m > 2 enter the superposition with
different probabilities making the superposition less symmetrical. We have applied the
phase distribution function P(&) obtained from the Pegg-Barnett Hermitian phase
formalism to show explicitly the symmetry of the superpositions. The polar plots of
this function clearly reflect such symmetry showing the number of components (if
the states are well separated), their probabilities and phases. The phase distributions
calculated numerically from the exact quantum state of the field, for the evolution
times 7 = 2n M /N, supported our predictions based on the analytical formulae for
the superposition coetlicients,



342 M Paprzycka and R Tanas
References

[1] Yurke B and Stoler D 1986 Phys. Rev Lett. 57 13
[2] Tombesi P and Mecozzi A 1987 J Opt Soc. Am. A 4 1700
[3] Tanas R 1984 Coherence and Quantum Optics V ed L Mandel and E Wolf (New York: Plenum)
p 645 -
[4) Tanas R and Kielich S 1983 Ope Commun. 45 351; 1984 Opt, Acta 31 81
[5] Milbum G T 1986 FPhys. Rev. A 33 674
[6] Milburn G T and Holmes C A 1986 Phys Rey Len 56 2237
[71 Kitagawa M and Yamamoto Y 1986 Phys. Rev A 34 3974
[8] Pefinowa V and Luks A 1988 J Mod Opt. 35 1513
[ Kennedy T A B and Drummond P D 1988 Phys. Rev A 38 1319
[10] Sanders B C 1989 Phys. Rev A 39 4284
[11] Miranowicz A, Tanaé R and Kielich S 199} Quanwum Gpe. 2 253
[12] Gantsog B and Tanasé R 1991 Quanmem Opt 3 33
[13] Pegg D T and Barnett S M 1988 Ewrophys. Len. 6 483
[t4] Barnett S M and Pegg D T 1989 J Mod. Opt. 36 7
[15] Pegg D T and Barnett S M 1989 Phys. Rev A 39 1665
[16] Thnas R, Gantsog B, Miranowicz A and Kielich § 1991 J Opt. Soc. Am. B 8 1576
[17] Gerry C C 1987 Phys. Lett 124A 237
[18] Thnai R and Kielich S 1990 Quantum Opt 2 23
[19} Gantsog T and Tina$§ R 1991 J Mod Opr 38 1021
[20) Titulaer U and Glauber R J 1965 Phys. Rev. 145 1041

{21} Stoler D 1971 Phys. Rew D 4 2309

[22] Bialynicka-Birula Z 1968 Phys. Rev 173 1207

[23] Averbukh I Sh and Perelman N F 1989 Phys. Lett. 139A 449

[24] Korobov N M 1989 Figonomewic Sums and their Applications (Moscow: Nauka) (in Russian)
[25] Gerry C C 1990 Opi. Commun. 75 168



