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Abstract. The photon number and phase quantum fiuctuations in the field produced by
the down-conversion process with a quantum pump are studied. The fully quantum
approach using the method of numerical diagonalization of the interaction Hamiltonian is
applied to find the evolution of the system. The evolution of the photon number
fluctuations, the joint number of photons probability distribution, the quadrature vari-
ances, the joint phase probability distribution, the marginal number and phase distribu-
tions for the signal mode, the number and phase uncertainty products and squeezing
parameters are calculated and illustrated graphically. The results for the signal mode are
compared to the corresponding results for the ideal squeezed vacuum to show the range of
validity of the parametric approximation.

1. Introduction

The parametric down-conversion process is a well known non-linear process that
produces optical fields with non-classical properties [1-10]. It is essential for the
quantum properties of fields generated in the process that the high-frequency pump
photons are split into highly correlated pairs of lower-frequency signal and idler
photons. In the simplest case of a non-depleted degenerate parametric process, the
pump mode is assumed as classical and non-depleted, and the signal and idler modes
become one mode of the subharmonic field with half the frequency of the pump mode.
In this case the time evolution of the subharmonic field can be found analytically and
is described by a Bogoliubov transformation that maps the initial vacuum state into an
ideal squeezed state [1-6]. The parametric down-conversion process turned out in
practice to be very effective in producing squeezed states [11-16].

The states produced by the two-photon down-converter have interesting phase
properties studied recently by Vaccaro and Pegg [17], Schleich et al [18] and
Grenbech-Jensen et al [19] for the process with a classical pump and by Gantsog et al
[20] for the process with a quantum pump. The phase distribution of such states has
two sharp peaks at the initial stages of the evolution that reflect the two-photon
character of the process. If the quantum fluctuations of the pump mode are taken into

+ Permanent address: Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz University, 60-780
Poznan, Poland.

% Permanent address: Department of Theoretical Physics, Mongolian State University, Ulan Bator 210646,
Mongolia.

0954-8998/92/040245 + 19 $4.50 © 1992 IOP Publishing Ltd 245



246 R Tanas and Ts Gantsog

account the two peaks of the signal mode are broadened, and in the long-time limit
the phase distribution becomes uniform [20].

The parametric approximation assuming the pump mode as classical and non-
depleted, which leads to closed form analytical solutions for the ideal squeezed states,
is not applicable if a considerable amount of power is transferred from the pump mode
into the signal mode. In such situations the pump mode must be treated dynamically
and its quantum mechanical evolution must be taken into account. Since no closed
form solutions are known in this case, some approximations or numerical calculations
are needed to find the field evolution. Owing to energy conservation the intensity of
the signal mode cannot grow infinitely, and the solutions become oscillatory. The field
states of the signal mode are no longer- ideal squeezed states, and their properties
become different.

In this paper we study the photon number and phase quantum fluctuations in the
field produced in the down-conversion process with a quantum pump. The fully
quantum approach using the method of numerical diagonalization of the interaction
Hamiltonian [21] is employed for getting the evolution of the system. The evolution of
quantities such as the photon number fluctuations in both signal and pump modes, the
joint phase probability distribution, the joint number of photons probability distribu-
tion, the quadrature variances, the marginal number and phase distributions for the
signal mode, the number and phase variances for both modes, the number and phase
uncertainty products and the number and phase squeezing parameters are obtained
and illustrated graphically. The results for the signal mode are compared to the
corresponding results for the ideal squeezed states to show the range of validity of the
parametric approximation. The Hermitian phase formalism of Pegg and Barnett
[22-24] is used to describe the phase properties of the field.

2. Quantum evolution of the field state

The two-photon down-conversion process is described by the following model
Hamiltonian ,

H=H,+ H,=hwa'a+2hwb'b + hg(b'a’+ ba™) (1)

where a(a’) and b(b") are the annihilation (creation) operators of the signal mode at
frequency w and the pump mode at frequency 2w, respectively. The coupling constant
g in the interaction Hamiltonian H,;, which is assumed real, describes the coupling
between the two modes. The Hamiltonian (1) is identical to that for the second-
harmonic generation, and these are the initial conditions that distinguish between the
two processes. In the case of harmonic generation mode b is initially in the vacuum
state and mode a is populated. For the down-conversion process discussed in this
paper, mode b (pump mode) is initially populated, while mode a (signal mode) is in
the vacuum state. The distinction between the two processes is far from being trivial,
and the states generated in the two processes have quite different properties.

Since H, and H; commute, there are two constants of motion, H, and H,. H,
determines the total energy stored in both modes, which is conserved by the
interaction H;. This allows us to factor out exp(—iHyt/h) from the evolution operator
and, in fact, to drop it altogether. In effect, the resulting state of the field can be
written as

W (#)) = exp(~i Hyt/ )| ¥(0)) @)
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where |W(0)) is the initial state of the field. If the Fock states are used as basis states,
the interaction Hamiltonian H; is not diagonal in such a basis. To find the state
evolution, we apply the numerical method of diagonalization of H; [21].

Let us assume that initially there are n photons in the pump mode (b) and no
photons in the signal mode (a), i.e. the initial state of the field is |0, n) =|0),|n),. Since
H, is a constant of motion, we have the relation

(a'a) +2(b'b) = constant =2n 3)

which implies that the annihilation of k photons of the pump mode requires creation
of 2k photons of the signal mode. Thus, for given n, we can introduce the states

lw& D=2k, n—k) k=01,...,n €Y
which form a complete basis of states of the field for given n. We have
<1/J£2"'—')‘|7/Jg'1)1) = 6nn’6kk’ . ‘ ‘ (5)

which means that the constant of motion H, splits the field space into orthogonal
subspaces, which for given n have a number of components equal to n+ 1. The basis
states |y?")) given by (4) are numbered by the total energy (in units of Aw) which is 2n
and by the number of photons in the pump mode which is n—k. Such a choice of
indices makes it easier to compare the results obtained for the second-harmonic
generation [25, 26] and the two-photon down-conversion process considered here. In
fact, if we replace n—k— k' and 2n—>n', we get the states |y{*’) used to describe the
second-harmonic generation. This means that in the ‘primed’ notation the matrix
elements of the interaction Hamiltonian are the same as for the second-harmonic
generation, and they are given by [26]

W H )y = (| Hlp )
= hg[(k’ + 1)(n’ —2k")(n’ — 2k’ = 1)]'2. (©6)

This allows us to use the same computer program that we used in the case of the
second harmonic to diagonalize the interaction Hamiltonian. If the matrix U is the
unitary matrix that diagonalizes the interaction Hamiltonian matrix given by (6), i.e.

U~HH ™ U=hg x diag(ho, Ay, . - - , An) 0

we get as a result of the diagonalization procedure the eigenvalues 4, of the interaction
Hamiltonian (in units of #g) and the elements of the matrix U which are defined for
given n’ (to shorten the notation we have omitted the additional index n').

To find the state evolution, we need the matrix elements of the evolution operator

Con, k() = (W | exp(—iHt/h) |y &), 8)

Knowing the eigenvalues 4; and the elements of the unitary matrix U, we can calculate
the coefficients c,, (f) according to the formula

c2n,k(t)=2 exp(—igA) Ui U%- 6]
i=0

A comparison of the coefficients (9) with the coefficients that describe the second-
harmonic generation [26] shows that the only difference between the two sets consists
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in the different matrix elements of the matrix U that define them. In fact, one can
introduce generalized coefficients

% (0) = (Wl exp(—iHut/h) |y ()
[n'12]
= exp(—igrA{")UEUL)* (10)

i=0

where [n'/2] is the integer part of n'/2. These coefficients can be used to describe the
field evolution for any initial conditions, the vaccum not necessarily being one of the
modes.

Since, for real g, the interaction Hamiltonian matrix has real elements, the
transformation matrix U is a real orthogonal matrix, so the asterisk can be omitted in
(9) and (10). Moreover, due to the symmetry of the Hamiltonian the eigenvalues 4,
are distributed symmetrically with respect to zero, with one eigenvalue equal to zero if
there is an odd number of them. When the eigenvalues are numbered from the lowest
to the highest value, there is an additional symmetry relation

Uy =(—1)+* USc":{n’/Z]—i U’ e, iwim-i (11)

which makes the coefficients c{ % (¢) either real (k—k’ even) or imaginary (k—k’
odd). This property of the coefficients is very important and allows exact analytical
results to be obtained.

The assumption that the signal mode at frequency w is initially in the vaccum state
reduces the number of coefficients to those given by equation (9). One immediate
consequence of this assumption is that, according to the conservation law (3), only the
sectors of the Hilbert space with n' = 2n contribute to the state evolution, i.e. photons
of the signal mode are created in pairs. This is not the case if the second-harmonic
generation is considered [26], when all sectors with both odd and even n’ contribute to
the state evolution.

In this paper we assume that initially the signal mode is in the vacuum state,
whereas the pump mode is in a coherent state, so the initial state of the field is

[w(0) =" b,|0, n) (12)

where
b,=exp(—|B|/2) "1 Vn! (13)

is the Poissonian weighting factor of the coherent state |8) of the pump mode
represented as a superposition of n-photon states. With these initial conditions the
resulting state (2) can be written as

W)=Y by D, cani(B)2k, n—k) (14)
k=0

n=1

where the coefficients c,, ,(f) are given by (9), and they are calculated numerically.

3. Number and phase statistics

Properties of the ideal squeezed states generated in the parametric down-conversion
process have been studied extensively [1-10]. It is known, for example, that for the
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Figure 1. Evolution of the mean number of photons. The initial mean number of photons
of the pump mode N, is equal to 4 for all the figures.

squeezed vacuum the mean number of photons of the signal mode is equal to
(a'a) =sinh? r, which is a monotonic function of the squeeze parameter r (or the
evolution time gf). This means that the mean number of photons can become
~ arbitrarily large in the long time limit (large r limit). Of course, it is a result of the
parametric approximation in which the pump mode remains undepleted. If the pump
mode is quantized and its dynamics included into consideration, the total energy
stored in both modes is conserved, and the solutions become oscillatory. Using the
~ state (14) of the field, we obtain for the mean number of photons of the signal mode
the following expression

(a'a)=(yp(t)|a'aly ()

= > 1b* D) 2klca k(O (15)

k=0

and the mean number of photons of the pump mode can be found from the
conservation relation (3)

(a'a)+2(b'by=2|B|?=2N,. , (16)

The solutions obtained numerically from equations (15) and (16), for the mean
number of photons in the pump mode N, =4, are shown in figure 1. For comparison,
we have also plotted the solution for the ideal squeezed state (squeezed vacuum),
which is given by (a'a) = sinh? r with r related to the scaled time gt by r=2V/N,gt. The
oscillatory behaviour of the quantum solutions is clearly visible, and only at the initial
stage of the evolution can the ideal squeezed state solution be treated as a good
approximation to the quantum solution. One can roughly say that the first maximum
of the signal intensity sets a limit to the applicability of the ideal squeezed states, i.e.
there is a limit on the squeeze parameter values that can be obtained in practice. Thus,
one can also expect that the states generated in the down-conversion process with a
quantum pump will have different properties from those of the ideal squeezed states.
. To make the differences more explicit, we study in this paper the number and phase
* statistics of the states produced in the down-conversion process with a quantum pump
and compare them to those of the ideal squeezed states.
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From equation (14) we can directly derive the joint probability amplitude of
finding n, photons in the signal mode and n, photons in the pump mode, which is given
by

| W(O)= by Can 1()8r,, 20 -k (17)
n=1 k=0

The joint probability P(n,, n,) is thus given by
P(na, nb) = I(naanW(t))lz

1By 4 mag2 0y + mar2), mar2 O for n, even (18)

0 for n, odd.

Figure 2. The joint photon number distribution P(n,, n,), for different evolution times gz.
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One immediate result of equation (18) is that only even numbers », can appear in the
signal mode. The joint photon number distribution P(n,, n,) depends upon the initial
probabilities |b,|*> in the pump mode, and its evolution is determined by the coef-
ficients c,, «(£). In figure 2 we plot the joint distribution P(n,, n,) against n, and n,, for
different evolution times gt. It is seen how the initially Poissonian distribution with the
mean number of photons N, =4 of the pump mode spreads over both modes during
the evolution. Only even numbers #, can appear in the signal mode, as is clearly seen
in the figures. This property is the same as in the ideal squeezed states, so one can
expect squeezing in the signal mode. However, for g¢=0.65, when the signal intensity
approaches its maximum (see figure 1), one can see that almost all odd numbers n,,
except for the remnants of the initial distribution along n,=0, disappeared from the
distribution. At this time of the evolution the two-photon character of the interaction
is also reflected in the pump mode, so one could also expect squeezing in the pump
mode. To check the squeezing properties of the field, we have plotted in figure 3 the
evolution of the field quadrature variances for both the signal and pump modes. The
initial phase @, of the pump mode is taken to be 7/2 (8="VN,exp(ig,)) for this
figure. As expected, squeezing appears in the out-of-phase quadrature of the signal
mode at the initial stage of the evolution, and with some delay squeezing also appears
in the in-phase quadrature of the pump mode. The maximum of squeezing in the
pump mode is observed around gt=0.65, which coincides with the maximum of the
signal mode intensity. For comparison we have also plotted quadrature variance for
the ideal squeezed state. In contrast to the ideal squeezed state, the squeezing in both
modes dlsappears at later times. This corrroborates the statement that the pump
quantization imposes a limit on the squeeze parameter values.

The marginal photon number distribution for the signal mode can be obtained
from P(n,, n,) by summing over n,

P(na)'—'z P(naa nb)' (19)

This distribution is shown in figure 4 for the time at which the signal mode exhibits the

~~ 0.5
. 5\1« —— SIGNAL (OUT-OF-PHASE)
Q ..~ PUMP (IN-PHASE)
S - - IDEAL SQUEEZED VACUUM
< - T
— -
< P
/{ —A ———————
e ~
~
>
g Po=1/2
~ ,
1.0 2.0

Figure 3. Evolution of the field quadrature variances ((AX;)")=4[A(a+4a")]) and
((AY,)?) = —3{]A(b - b")]*). The horizontal line marks the level of vacuum fluctuations.
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Figure 4. The photon number distribution P(n,), for gt=0.3, i.e. for the maximum of
squeezing in the signal mode.

maximum of squeezing. For reference we also show the distribution for the ideal
squeezed states assuming r = 2V'N,gt. It is seen that the two distributions do not differ
significantly, but the ideal squeezed vacuum exhibits a longer tail for the large n,
values.

Similarly to the mean number of photons, given by equation (15), one can
calculate the variances of the number of photons for both modes. We have

(A2y={(a'a)’)

=152, 2k)lca 1) (20)
n=1 k=1
(A3 =((b'b)?
=D 1ba* Y, (n—=k)can O (1)
n=1 k=0

and the number of photon variances calculated in this way are plotted in figure 5. The
photon number variance for the ideal squeezed vacuum is given by [27]

((AR)’) =2(A)((A) + 1) =% sinh*(2r) (22)

and is also plotted, for reference, in figure 5. The photon number fluctuations in the
signal mode increase rapidly at the initial stage of the evolution, but after reaching the
maximum they oscillate around a finite value (depending on the mean number of
photons of the pump mode). This is in contrast to the behaviour of the photon number
variance for the squeezed vacuum which grows to infinity.

Another characteristic of the field that is related to the photon number variance is
the g® function defined by

we-1)_ (AR)D—(A)
ny (h)?

@=

(23)
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Figure 5. Evolution of the photon number variances.

which is plotted in figure 6. For the squeezed vacuum this function asymptotically
approaches the value of 3. In the case of down-conversion with a quantum pump the
g® function of the signal mode oscillates taking the values that dip below this
asymptotic value. The photon statistics, however, are super-Poissonian for both
modes. This may not seem to be true for the pump mode in view of figure 5, where it is
seen that the photon number variance for the pump mode falls below 4, which is the
noise level for the coherent state with mean number of photons equal to 4. However,
as is evident from figure 1, the mean number of photons of the pump mode also falls
below its initial value of 4, so the g function calculated according to equation (23) at
time ¢ is greater than unity.

Since H, is a constant of motion, H3is also a constant of motion, and we can obtain
for the fluctuations of H, the following relation

((AHo)) =(H3) —(H,)* = 4N, (hw)’ (24)
which in terms of the numbers of photons can be rewritten as
((AR)H + H(ARL)D + K ARARL) =4N,,. (25)
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40}
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Figure 6. Evolution of the g function.
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Formula (25) establishes the relation between the fluctuations of the individual-mode
photon numbers and the intermode photon number correlation. All these quantities
on the left-hand side of (25) can be calculated numerically using the state (14), so that
formula (25) can serve as a test of numerical precision. The value of 4N, sets the level
of fluctuations for the initially coherent state of the pump mode.

The quantity conjugated to the photon number is the field phase. Recently, Pegg
and Barnett [22-24] have introduced the Hermitian phase formalism, which allows
construction of the Hermitian phase operator for the field mode and, as a result,
systematic study of the phase properties of the field. We use here the Pegg—Barnett
phase formalism to study the phase properties of the field produced in the down-
conversion process with a quantum pump. This formalism is based on introducing a
finite (s + 1)-dimensional space W spanned by the number states |0), |1), . . ., s}, for a
given mode of the field. The Hermitian phase operator operates on this finite space
and, after all necessary expectation values have been calculated in W, the value of s is
allowed to tend to infinity. A complete orthonormal basis of (s + 1) states is defined on
W as

1 & |
6,,)= Vstl ; CXP(lyngm)l‘n)‘ (26)
where
=g, 4 2" =0,1 | | 27
0+ +1 (m_ ’ ,...,S). ( )

The value of 6, is arbitrary and defines a particular basis set of (s+1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

po="Y, 0,n|0,XO0] | (28)
m=0 )

where the subscript 6 indicates the depéndence on the choice of §,. The phase states
(26) are eigenstates of the phase operator (28) with the eigenvalues 8, restricted to lie
within a phase window between 6, and 6y + 2. The unitary phase operator exp(i @) is

defined as the exponent1a1 function of the Hermitian operator ¢,. This operator acting
on the eigenstate |6,,) gives the eigenvalue exp(if,,), and it has the form [23, 24]

s—1

exp(ide) =, In¥n+ 1|+ expli(s + 1)8]IsX0}- (29)

n=0

The last term in (29) ensures the unitarity of this operator. The first sum reproduces
the Susskind—Glogower [28, 29] phase operator in the limit s—> .
The expectation value of the phase operator (28) in a state |y) is given by

@Bl =" 0.0, (30)

where [(6,,|)|* gives the probability of being found in the phase state |6,,). The density
of phase states is (s+1)/2x, so in the continuum limit, as s tends to infinity, we can
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write equation (30) as
8y+2m

Wloly)= f 6P(6) do €20

where the continuum phase distribution P(6) is introduced by
P(§) =1 s+l 6 2 32
(6) =lim ——[(6,|y)] , (32)

where 6,, has been replaced by the continuous phase variable 8. Once the phase
distribution function P(6) is known, all the quantum mechanical phase expectation
values can be calculated with this function in a classical manner by integrating over 6.
The choice of 6, defines a particular window of phase values.

In our case of a field produced in the down-conversion process with a quantum
pump, the state of the field (14) is in fact a two-mode state, and the phase formalism
must be generalized to the two-mode case. The generalization is straightforward and
obvious, and for the state (14) we get

K6, (O, |9 (2)) = (s.+ 1)1
xj by >, exp{—i[2k0,, + (n— k)6, Iicrn s (). (33)

We use the indices a and b to distinguish between the signal () and pump (b) modes.
There is still a freedom of choice in (33) of the values of 6¢®, which define the phase
values window. We can choose these values at will, so we take them as

8‘b=¢a,b_‘nsa, b/(sa,b+ 1) (34)
and we introduce the new phase values
eﬂa'b = oma,b - ¢a) b (35)

where the new phase labels g, , run in unit steps between the values —s, ,/2 and s, ,/2.
This means that we symmetrize the phase windows for the signal and pump modes
with respect to the phases ¢, and g,, respectively.

On inserting (34) and (35) into (33), taking the modulus squared of (33), and
taking the continuum limit by making the replacement

s,, b2
. f a6, , (36)

HBa b=

we arrive at the continuous joint probability distribution for the continuous variables
6, and 6,, which has the form

1
P(em eb) =W

| E |b,| exp( — ing;) 2 Con, (0
n=0 k=0

X exp{—i{2k6, + (n— k)8, + k2@, — @)} 37)

The distribution (37) is normalized so that

f f P(6.,6,) d6,d6,=1. (38)
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Figure 7. The joint phase distribution P(8,, 8;), for different evolution times gt.

To fix the phase windows for 6, and 6,, we have to assign to ¢, and @, particular
values. It is interesting to note that the distribution P(6,, 6,) given by (37) depends on
the phase difference 2¢, — @, only. This reproduces the classical phase relation for the
parametric amplifier, and classically this quantity should be equal to —z/2 to get the
amplification of the signal mode (if the coupling constant g is positive). Such choice
means that a peak should appear in the phase distribution at §,=0. As will become
clear later, the phase distribution for the two-photon down-conversion process
exhibits a two-peak structure along the 6, direction, and the choice of the window with
a peak for 6, =0 would maximize the phase variance. To minimize the phase variance
we choose 2¢, — ¢, = /2. The phase distribution P(8,, 6,) is illustrated in figure 7, for
the mean number of photons N, in the pump mode equal to 4 and different evolution
times gt. This distribution can be compared with the photon number distribution
presented in figure 2. The two-photon character of the process, which is seen in the
photon number distribution by the presence of holes in the distribution of odd n,, is
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reflected in the phase distribution by the presence of two peaks along the 6, direction.
It is interesting to see that for g¢=0.65, i.e. for the value of the maximum intensity of
the signal mode and the maximum value of squeezing in the pump mode (compare
figures 1 and 3), the phase distribution along the 6, direction of pump mode assumes
the two-peak structure characteristic of the squeezed states. This means that the state
of the pump mode becomes close to the squeezed state. The photon number
distribution (figure 2) with holes that appeared for odd n, confirms this statement. So,
the squeezing has been transferred from the signal mode to the pump mode. A
bifurcation of the phase distribution along the 6, direction indicates the transition of
the process from the down-conversion regime to the second-harmonic generation
regime. In the long time limit the phase distribution goes through a sequence of such
bifurcations towards the multipeak structure, which means randomization of phases
[20]. »

Integrating P(6,, 6,) over one of the phases leads to the marginal phase distribu-
tions P(6,) and P(6,) for the phases 6, and 6, of the individual modes. We have

P(6,)= f " P(6.,6,)do,

1 S~
- {1 +2Re D [blIbu] 3, > Can ()3 1(0)

n>n' k=0 k'=0
xexp[—i(k—k')(20,+ 29, ~ <pb)]6n_,.',k-k'} (39)
and
P(6,) =51; {1 +2Re . |b,flby| Z Con k()3 £ (2) exp[—i(n— n’)G,,]}. (40)
et k=0

The phase distribution P(6,) for the signal mode is shown in figure 8 for gz=0.3, i.e.
for the time at which the squeezing in the signal mode has its maximum value. For
comparison we show the phase distribution for the ideal squeezed vacuum for

!
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Figure 8. The phase distribution P(8,), for g¢=0.3.
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r=2V N,gt=1.2. The phase distribution for the squeezed vacuum can be obtained
from the known number state decomposition of the squeezed vacuum state [27]

w®

10}, )= z a,|n) ' 41)
n=0
where
( 1)"/2 \/_ n/2
a,={ Veosnr w2y G an 0" expling) - meven @)
0 nodd

with r being the squeeze parameter and » being the phase that we assume equal to
zero later on. With the amplitudes (42) the phase distribution can be calculated
according to the formula

P(9)——

o0
E —in6

Zln <1 +2 E a,a,, cos[(n— m)()]) (43)

n>m

where we have assumed a, real. Since only the amplitudes with even n are different
from zero, the phase distribution is periodic in  with the period 7, i.e. within the
phase window —z=60=us there are two identical, symmetrically disposed phase
peaks. As seen from figure 8, the phase distribution for the squeezed vacuum is
narrower than the distribution in the case with a quantum pump. Comparing figures 4
and 8, we see that the squeezed vacuum has a broader photon number distribution
and narrower phase distribution than the signal mode in the down-conversion with a
quantum pump.

The Pegg—Barnett phase formalism allows the phase variances to be calculated for
the individual-mode phases as well as the intermode phase correlation function. The
phase variance for the signal mode can be calculated according to the formula

((A‘Igo,,)z) = <¢3ea>2
- J " 62P(6,) do,

exp —i(n—n")2¢,~ )]
(n—n')?

X 2 Con k()3 k= n=n (D) (44)

k=n-n'

and for the pump mode we have
(A, )= f 63P(6) 46,

iz +4Re S [b,b, |(‘),)ZZcZn.k(t)c;,,r.k(t) (45)

n=>n'
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Figure 9. Evolution of the phase variances.

~ where we have used (39) and (40), and we take 2¢, — @, = 7/2. The phase variances
are plotted in figure 9, and for reference we plot the phase variance for the squeezed
- vacuum. The squeezed vacuum phase variance asymptotically approaches the value
7*/4, which corresponds to the phase distribution with two symmetrically placed delta
functions

P(0)=46(0—317) + 6(6+3m)). : (46)

The phase fluctuations in the signal mode have oscillatory character, although at the
- initial stage of the evolution they are indistinguishable from those of the squeezed
vacuum, and at the long time limit they approach the value 7%/3 characteristic of the
uniformly distributed phase [23, 24]. The phase fluctuations in the pump mode start
from the small value characteristic for the initial coherent state and grow rapidly,
next, they oscillate approaching the value $7% So, the quantum fluctuations lead to
randomization of the phases for both modes in the long-time limit.

Since the number and phase are two conjugate quantities, they obey the uncer-
tainty relation [24]

AnAgo=3([A, §ol)l. (47)

Knowing the variances for the numbers of photons and phases for both modes we can
calculate the uncertainty products

An, s Agg, , = [((AR 5 X(A o, O™ (48)

The number—phase commutator can also be easily evaluated for any physical state |p)
from the relation [24]

(plo, Allp) = —i[1—22P(60)]. (49)

In figure 10 we have plotted both the uncertainty product and one-half of the modulus
of the expectation value of the phase—number commutator (evaluated according to
(49) with 6,=—um). It is seen that the uncertainty product remains finite in the
long-time limit for a finite mean number of initial photons, which is in contrast to the
squeezed vacuum for which it tends to infinity. For any finite r the ideal squeezed
vacuum, however, can be considered as a physical state and we can apply (49) to
calculate the mean value of the number-phase commutator. When  tends to infinity,
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the phase distribution tends to the form of two delta functions given by (46), i.e.
P(—n) tends to zero, and asymptotically the expectation value of the commutator
tends to —i. This is clearly seen from figure 10, where the asymptotic value of } is
reached for the ideal squeezed vacuum. So, this is the infinitely growing photon
number uncertainty that causes the infinite growth of the number—~phase uncertainty
product for the ideal squeezed vacuum.

The notion of number and phase squeezing can be introduced for the two
conjugate quantities, and the degree of number and phase squeezing can be defined
by [30, 31]

o _ (AR =1, daD)
" %l(ﬁ’ $91)|

(50)

(AP — 3K0A, S

=" 3N, BoD 1)

These two quantities give the relative quantum fluctuations, with respect to the
minimum uncertainty, and the value of —1 means perfect squeezing of the photon
number (or the phase). We have plotted the two squeezing parameters for the signal
mode in figure 11 for the pump mode in figure 12. There is initially number squeezing
in the signal mode and phase squeezing in the pump mode.

The number squeezing, which can also be considered as amplitude squeezing, in
the signal mode is understandable because this mode starts from the vacuum, that is,
the eigenstate of the photon number operator. We should, however, emphasize that
the number squeezing, defined by (50), does not imply sub-Poissonian photon
statistics, i.e. g®<1. The two are different characteristics of the photon number
noise, and we can see here that the signal mode exhibits number squeezing and at the
same time is super-Poissonian.

The phase squeezing, as defined by (51), gives us information about the degree of
squeezing in ¢,. For the coherent state with |a| > 1 the phase is squeezed, and for high

10
AnaAq)ea

1/2I([na,Pe,])!

gt

Figure 10. Evolution of the number—phase uncertainties for the signal mode.
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Figure 11. Evolution of the number and phase squeezing parameters, defined by equa-
tions (50) and (51), for the signal mode.

intensities of coherent fields S, tends to —1, which means that such states are close to
the phase states with well defined phase. In our case, we observe phase squeezing in
the initially coherent pump mode which is, however, revoked rapidly during the
evolution.

It is interesting to see the sharp peaks of relative phase fluctuations that appear in
both modes. They are related to the minima of intensities in particular modes (see
figure 1) and the minima of the commutator expectation values (see figure 10). There
is no such peak for the ideal squeezed vacuum. Moreover, from the asymptotic value
1a? of the phase variance and the asymptotic behaviour of the number-phase
commutator expectation value, we get the asymptotic value of 4m?—1 for the phase
squeezing of the ideal squeezed vacuum. Thus the phase properties of the signal mode
are essentially different from those of the ideal squeezed vacuum in the oscillatory

c-;).._._...
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| &
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Figure 12. Same as in figure 11, but for the pump mode.
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part of the evolution, but they are similar in the initial part of the evolution before the
first maximum of the signal intensity has been reached.

4. Conclusions

We have studied the photon number and phase quantum fluctuations in the field
generated in the down-conversion process with a quantum pump. That is, we have
used a fully quantum description of both modes of the field avoiding the parametric
approximation. The method of numerical diagonalization of the interaction
Hamiltonian has been employed to find the quantum evolution of the system. This
method allowed us to calculate and illustrate graphically the evolution of a number of
quantities characterizing the number and phase quantum fluctuations of the field. To
deal with the phase quantum fluctuations we have applied the Hermitian phase
formalism of Pegg and Barnett, which allows the quantum phase of the field to be
treated on an equal footing with the photon number. We have studied and compared
quantum fluctuations in both conjugate quantities for the signal and pump modes. The
properties of the signal mode generated in the down-conversion process with a
quantum pump have been compared to those of the ideal squeezed vacuum resulting
in the parametric approximation.

Our results show that the quantum character of the pump mode, when taken into
account, essentially changes the properties of the field at later stages of evolution,
* while at earlier stages of evolution the signal mode properties are very close to those
of the ideal squeezed vacuum. The quantum fluctuations of the pump mode set, in
fact, a limit on the values of the squeeze parameters that can be obtained in a real
physical situation. :

It is also seen from our results that the two-photon character of the process is
clearly reflected in the photon number distribution of the signal mode through the
absence of odd numbers of photons (or more precisely through the presence of pairs
of photons only), and in the phase distribution it is reflected through the two-peak
structure of the signal-mode phase distribution. Moreover, it is seen that the pump
mode can also become squeezed, and at the time of maximum squeezing the photon
number distribution and the phase distribution of the pump mode exhibit the same
characteristic features, although not in their pure form. This can be considered as an
illustration of the conjugate character of the number and phase variables.

We have also studied the number—phase uncertainty product as well as the
expectation value of their commutator. Contrary to the ideal squeezed vacuum, the
uncertainty product remains finite (for finite initial mean number of photons N,) in
the long time limit. Since the expectation value of the number—phase commutator sets
the lower bound for the uncertainty product, it is sometimes convenient to character-
ize the number and phase quantum fluctuations as relative quantities calculated with
respect to the minimum uncertainty. This leads to the notion of number and phase
squeezing. The degree of such squeezing for both modes has also been calculated
showing the presence of sharp peaks of the phase squeezing.

In our numerical calculations we have assumed the mean number of initial photons
in the pump mode (being in a coherent state) as N, =4. This value is small enough to
make the numerical calculations fast and reliable but, nevertheless, allows some
classical features of the field to be observed (appearing for N, > 1) while the quantum -
properties of the field are still clearly visible. ‘
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