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LETTER TO THE EDITOR

Phase properties of displaced number states
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Abstract. Phase properties of the displaced number states are studied. Exact analytical
formulae describing phase distributions based on different phase approaches are obtained
and illustrated graphically. It is shown that the Pegg-Barnett phase distribution P(6) and
the phase distribution P,(8) associated with the Wigner function are very close to each
other, while the phase distribution Py{#) associated with the  function carries less phase
information. The results have clear interpretation in terms of the area of overlap in phase
space.

Properties of displaced number states have recently been studied by de Oliveira et al
[1], and their interaction with two-level atoms by Kim et @/ [2]. It has been shown that
such states have interesting and unusual physical properties. Since the displaced
number state is obtained from a number state by adding a non-zero value to the field
amplitude, the state becomes phase dependent because of the phase of the displace-
ment. The quasiprobability functions such as the @ function and the Wigner function
for displaced number states have simple analytical forms which allow for clear
interpretations of the oscillations in the photon number statistics [1] in terms of
interference in phase space [3]. The fact that the states are phase dependent makes it
interesting to study their phase properties which, to our knowledge, have not been
studied so far.

The aim of this letter is to study the phase properties of the displaced number
states. We use the Pegg—Barnett [4-6] Hermitian phase formalism to find the phase
distribution function P(8) for the displaced number states. It is shown that this
distribution has a multi-peak structure. The Pegg—Barnett phase distribution is
compared 10 the phase distributions obtained from the Wigner and Q functions by
integrating them over the ‘radius’. It is shown that the structures of the latter two
distributions differ essentially when the number of photons is greater than one. It is
also shown that the phase distribution obtained from the Wigner function reproduces
quite well the Pegg—Barnett phase distribution, although it is not identical to it. This is
in agreement with the area of overlap in phase space concept [7]. The distribution
obtained from the @ function is smoother and some structure is lost.
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The displaced number states are defined by acting with the displacement operator
D(a) on the number state |N), that is
¥} =la, Ny=D(a)|N) ey
where
D(a)=exp(aa’' —a*a). (2)

The number state decomposition of the displaced number state (1) can be written as

@)= In)nly)= " |n)(n|D()|N)

=" be™n) : (3)
where forn=N
bu=(55) ol L) @
and
n=(n—N)g | ®)

with ¢ being the phase of a=|a|exp(ip) and L5 ™(|a|?) are associated Laguerre
polynomials. For n <N, we have

1\ 172
bn=(%) (__1)N-n;a]N—ne—la\212LnN—n(|at2) (6)

and the phase ¢, remains the same as (5). The above amplitudes are obtained from
the well known matrix elements of the displacement operator [8].

Knowing the number state decomposition (3) of the displaced number states, we
can employ the Pegg—Barnett [4—6] Hermitian phase formalism to find the phase
distribution function for such states. The Pegg-Barnett formalism is based on
introducing a finite (s + 1)-dimensional space W spanned by the number states |0),
{1),...,|s). The Hermitian phase operator operates on this finite space, and after all
necessary expectation values have been caleulated in ¥, the value of 5 is allowed to
tend to infinity. A complete orthonormal basis of (s + 1) phase states is defined on ¥
as

1 ul )
|8m)=ﬁ§)exp(ln6m)ln) (N
where
0,=0 il 0,1 8
o = °+s+l (m=0,1,...,5). (8)

The value of 8, is arbitrary and defines a particular basis set of (s+1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

qSGEZ Bmlgm)<9m|' (9)

m=0
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The phase states (7) are eigenstates of the phase operator (9) with the eigenvalues 6,
restricted to lie within a phase window between 6, and 6, + 2x.
The expectation value of the phase operator (9) in a state |y} is given by

@l bslwy =" 80w (10)
m=0

where [(8.}y)|® gives the probability of being in the phase state {6,,). The density of
phase states is (s + 1)/2x, so in the continuum limit, as s tends to infinity, we can write
equation (10) as

R B+ 2
widwr= [ or(0) a0 ay
g
where the continuum phase distribution P(6) is introduced by
P(0)=1i s+l 7} z 12
(8) = Lim —— (6|9} | (12)

where 6, has been replaced by the continuous phase variable 8. When the phase
distribution function P(8} is known, all the quantum mechanical phase expectation
values can be calculated with this function in a classical-like manner by integrating
over 0. The choice of §; defines the particular window of phase values.

In the case of the displaced number states we have

1 il .
(Onl9y =7 2 b, exp| — i(n6,,— @,)]

—iNg 5

e .
=777 gobn exp[ —in(6, — ¢)]. (13)
We choose 8, as
f © 14
Y 541 (14)

that is, we symmetrize the phase window with respect to the phase @. On inserting
(14) into (13), taking the modulus squared of (13) and taking the continuum limit, we
arrive at the continuous phase probability distribution P(8) which has the form

1 oz
P(O)=5- |1 +2néﬂbnbk cos[(n—k)0) (15)
nxk
where b, are given by (4) and (6), and the phase window is now from —x to 7. This
form of the phase distribution is common for the partial phase states [5, 6]. However,
due to the particular choice of b, this phase distribution shows some interesting
features that characterize the displaced number states.

Another phase distribution can be obtained by integrating the Q function Q(a)
over the radial variable |a|. This phase distribution was referred to as ‘classical’ by
Braunstein and Caves [9] since the @ function applies to simultaneous measurement
of two non-commuting observables, a process that inevitably introduces additional
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noise. It has been shown by Tanas$ et al [10] that the phase distribution obtained in this
way can be obtained from the Pegg—Barnett distribution by multiplying the non-
diagonal elements in (15) by additional factors. Tana$ and Gantsog [11] have shown
that these additional factors F(n, k) can be calculated using a simple recurrence
formula and that the non-diagonal elements are less than unity. This means averaging
the Pegg~Barnett phase distribution leading to a distribution which is broader than
the Pegg—Barnett distribution. We have [10, 11]

Py(6) = f " 0B)18ld18|
1}

) "
=5 {1+2 2;0 b,by cos[(n — k)B)F(n, k) (16)

n>k
where the coefficients F(n, k) are given by {10, 11]
IT'G{n+k)+1)
F(n, k) = W (17)

Since Q(a) is positive definite, Fy(@) is also positive definite, and normalized, and it
can be treated as a phase distribution.

The concept of interference in phase space introduced by Schleich and Wheeler [3]
when applied to describe phase properties of the field indicates still another possibility
for obtaining the phase distribution [7] by integrating the Wigner distribution over the
radial variable. This leads to the following phase distribution

P.(6)= f " W)l pldlBl

; -
== [1+2 ’Z:Ob,,bk cos[(n — k)0)G(n, k) (18)
n>=k

where the coefficients G{n, k) are given by

G(n’ k) = i (_1)P—m2(|n—k\+2m)f2 [(’i) (pfm)jl HZF(m,ln—kl +m)
m=0
(19)

where
p=min(n, k) g =max(n, k) (20)

and F(m,|ln—k|+m) are given by (17). The coefficients G(n,k) are symmetric
G{(n, k)= G(k, n), and G(n, n)=1. Relation (18} is quite general and can be applied
for any states with known amplitudes b,. Here, we apply to the displaced number
states. Since the coefficients G(#n, k) take on values that are smaller or larger than
unity, their effect on the phase distribution is not as simple as in the case of Py(#). In
figure 1, we show the plots of the phase distributions, calculated according to the three
formulae (15), (16) and (18), in polar coordinates, for the displaced number states
with |a| =3, and N=0, 1, 2. It is seen that the Pegg—Barnett phase distribution and
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Figure 1. Polar plots of the phase distributions
P(6} (full curves), Py (@) (short-dashed curves)
and Pg{#) (long-dashed curves} for the dis-
placed number states with |a| =3 and (a) N=0,
() N=1, (c) N=2.

Py(0) are very similar and have the N+ 1 lobes, while Py(8) is much broader and has
only two lobes for N=2. To understand this behaviour of the phase distributions we
relate them to the forms of the @ function and the Wigner function for the
corresponding displaced number states. The two functions have in the case of the
disptaced number states (1) quite simple analytical forms [1]

—|B-af lﬁ - allN

I (21)

1
OuB)==e
and
2
War(B) =" exp(~2(B—af) (= D'Lu(4|B~al*) (22)

where La{x) is the Laguerre polynomial of order N. In figure 2, we plot the Q
functions, and in figure 3 the Wigner functions for the displaced number states with
la| =3, and N=0, 1, 2. The Q function for N=1 has the minimum for |§—a|=0
equal to zero, so there are only two maxima in the phase distribution P,(6) that
correspond to the two symmetrically disposed maxima of the area obtained when the
@ function is intersected by the vertical plane along the radial coordinate. This s the
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idea of area of overlap in phase space [7] employed for the Q function. Since the
Wigner function shows oscillations, the same idea applied to the Wigner function
gives the number of peaks in the phase distribution Py(8) equal to N+ 1. So there is
an essential difference in the phase information carried by Py(6) and Py(8). Because
of the averaging procedure with the ‘probabilities’ F(#, k) some phase information is
lost in Py(6). The Pegg-Barnett phase distribution is very close to the distribution
Py/(0), although it is not identical to it and, at least in the case of the displaced number
states, they carry basically the same phase information. The phase peaks of Py(8) are
slightly narrower than those of P(8). This similarity is in agreement with the area of
overlap in phase space arguments, which is that the Wigner function represents
quantum states in the phase space. However, the Wigner function can take on
negative values and the positive definiteness of Py(6) is not automatically guaranteed,
while there are no such problems with the Pegg—Barnett phase distribution.

In conclusion, we have discussed the phase properties of the displaced number
states showing that the Pegg—Barnett phase distribution for such states exhibits the
multi-peak structure with N+ 1 peaks. We have compared the Pegg-Barnett distribu-
tion with the phase distributions Py(6) and Pw(¢) obtained by integrating the Q
function and the Wigner function over the radial coordinate. We have shown that
while the Pegg-Barnett and Py(6#) distributions carry basically the same phase
information, the distribution Py(8) has lost an essential part of the phase information.
Since the displaced number states are the states for which the @ function and the
Wigner function differ essentially for N=2, they can serve as a good test of various
phase approaches.
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Figure 3. Plots of the Wigner function for the
displaced number states. The parameters are the
same as in figure 2.
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