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Abstract—The quantum ‘theory of light propagation in a nonlinear Kerr medium is applied
to calculate quantum phase fluctuations and correlations of elliptically polarized light
propagating in the medium with dissipation. The Hermitian phase formalism of Pegg and
Barnett is applied to describe the phase properties of the field. Exact analytical formulas
that describe the mean phase, the phase variance, the inter-mode phase correlations and
the phase-difference variance are derived. The results are illustrated graphically for
different initial intensities of the field to show explicitly their intensity-dependence. The
effect of dissipation on the nonlinear quantum effect of phase randomization is exactly

accounted for.

L INTRODUCTION

It is a well known experimental result [1] that
when strong elliptically polarized light
propagates through an isotropic nonlinear medium
the medium becomes birefringent, which resuits in
the self-induced rotation of the polarization

- ellipse. Nowadays, propagation of light in a

nonlinear Kerr medium is a standard subject of
textbooks on nonlinear optics [2,3]. To understand
phenomena like optically induced birefrigence
there is no need for field quantization. If, however,
the quantum properties of light propagating
through a Kerr medium are taken into account, some

- - new effects like photon antibunching [4}-{6] and

squeezing (7] can occur. Quantum description of
elliptically polarized light propagating in a
nonlinear Kerr medium requires, in general, a two-
mode description of the field. When the light is
circularly polarized, the problem can be reduced to
the one-mode problem that is equivalent to the

‘ anharmonic oscillator model. This model, due to its

simplicity allowing exact solutions, became very
popular for studying various aspects of nonlinear
quantum-field evolution {8]-{27]. To discuss effects

- associated with elliptical polarization the two-

mode description is needed. Such descriptions have
already been used in the early studies [4]-[7] of the
quantum field effects that appear during the
propagation. In those studies the Heisenberg
equations of motion for the field operators were
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" solved and their solutions were used to calculate

the degree of photon antibunching or squeezing.
Recently, Agarwal and Puri [28] have re-examined
the problem of propagation of elliptically
polarized light through a Kerr medium discussing
not only the Heisenberg equations of motion for the
field operators but also the evolution of the field
states themselves. The polarization state of the
field propagating in a Kerr medium can be
described by the Stokes parameters which are the
expectation values of the corresponding Stokes
operators in the quantum description of the field.
Quantum fluctuations in the Stokes parameters
have recently been discussed by Tana$ and Kielich
{29].

The effect of dissipation on the dynamics of the
anharmonic oscillator, i.e., the one-mode
propagation problem, has already been considered
by Milburn and Holmes {10], and recently the exact
solutions of the master equation for the system

have been discussed {17,20,23,24). For the two-mode : -
case, the effect of losses and noise has been = -

discussed by Horadk) and Petina [30] whose
approximate approach was based on the
Heisenberg-Langevin equations of motion for the
operators of the two coupled nonlinear oscillators.
Quite recently, using the thermofield dynamics
notation, Chaturvedi and Srinivasan (31,32] have
found an elegant, exact solution of the master
equation for a single nonlinear oscillator [31] as
well as for coupled nonlinear oscillators {32].

In this paper we discuss phase properties of
elliptically polarized light propagating through a
Kerr medium with dissipation. To describe the
phase properties of the field we use the Hermitian
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phase formalism introduced by Pegg and Barnett
{33]-[35] which enables direct calculations of the
expectation values and variances of the Hermitian
" phase operators for the two modes of the field as
well as the correlations between the two phases. To
include the dissipation into the system we adopt
the master equation solution obtained by
Chaturvedi and Srinivasan [32] to the propagation
problem. Exact analytical formulae describing
quantum phase fluctuations and correlations of the
two-mode field propagating in a Kerr medium with
dissipation are derived and illustrated
graphically for different values of the mean
initial numbers of photons to show explicitly the
intensity-dependence of the phase properties of
the field.

2. QUANTUM DESCRIPTION OF ELLIPTICALLY
POLARIZED LIGHT

In the quantum description of the
electromagnetic field it is convenient to write the
field as a sum of the positive and negative
frequency parts

Er,t)=EMr,£)+ EXr. 1), "

where i denotes a polarization component of the
field. A mode decomposition of the field can be
performed next, which for the plane-wave
decomposition of the free field propagating in a
medium with (linear) refractive index n(w) gives

' onho, T2 - ;
E,-(*)(r,t = i[ X J el expl-i{@yt - k-r
3 ) k'z;. nZ(m)V ki p[ ( k )]

(2)

where e,(:) is the i = th component of the
polarization state A and the propagation vector k,
and V is the quantization volume. The operators
oy and af, are the annihilation and creation

operators of photons with the propagation vector k
and polarization A satisfying the commutation
relations

[au,a{w] =8; 1By 2 (3)

The polarization vectors satisfy the orthogonality
conditions
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zi e‘(:).eg") = 81,1.

M =0, e
> .ei'ki=0 D

For a monochromatic field of frequency ®
propagating along the z-axis of the laboratory
reference frame, we can drop the index k in our
notation and write :

1/2 : '

) F ] opior ] T

n ((D)V A=1,2 - (5)
with k = n(w)o/c. Since the summation over the
two mutually orthogonal polarizations still
remains in Equation (5), we have a two-mode
description of the field. If the field is a
superposition of these two modes, the two-mode
description can be replaced by one mode of the
elliptically polarized field :

{6)

é;a= e,ma, + e,(z)dz,

where el(l) and el(z) are the i-th components of the

orthogonal unit polarization vectors ¢ and &é® of
the modes a, and a,, and ¢; is the i-th component of
the polarization vector & of the mode a. Relation
(6) can also be considered in the reverse sense as a
decomposition of initially elliptically polarized
light into two orthogonal modes. Applying the
orthogonality condition (4) for the polarization
vectors, we obtain the formula

a=ea, + exa,,
where
g =eel) g =g

So far the decomposition (6) (or, equivalently,
(7)) is quite general and can be further specified
either for two modes with mutually perpendicular
linear polarizations or for right and left-circularly
polarized modes. ,

If a Cartesian basis is chosen, the unit

»
polarization vectors are &) =%, = y, whereas
in a circular basis we have

#0260 = (24.5) 2, 6 = 80 - (2 gy V2
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with X and 3 being the unit vectors along the x and

y axes, respectively. The unit vector ¢ of the
elliptically polarized light can be written in
either a Cartesian or a circular basis as

E=e X + ey =e,6t) 4+ ¢_20)

(8)
with ¢, and e, given by [36] .
e, = oSN cosB -isinnsin0,
€y =CosT}cos O +isinnsing, )
and .
e, = 1 (e, Fie )= —l-(cosn +sinm)e¥®,
VTR (10)

The parameters 8 and 1 define the polarization
ellipse of the field -9 is the azimuth of the ellipse
“denoting the angle between the major axis of the
ellipse and the x-axis measured positive from the
+x-axis. towards the +y-axis, and 7 is the
ellipticity parameter, -n/4 <n<n/4, where tan |
describes the ratio of the minor and major axes of
the ellipse with the sign defining its handedness
(plus means right-handed polarization in the
helicity convention). : :
~ According to Equation (7) the annihilation

operator of the elliptically polarized field can be
written as X

~ .

- L4 . L .
- =6l +ehy=ea, +ea, an

“where ¢,, ¢, and e, are given by Equations (9) and
(10), and the operators a are

-

1
ay =—{a, Fia,)
= (o7 ) (12)
Hence, the annihilation operator a of the
elliptically polarized light is a superposition of
two orthogonal modes in either a Cartesian or a
circular basis.
- On defining a coherent state of the field with
respect to the operator a by the relation

we have simultaneously

o) =l ) ey ) =l Ne), (14)

where |a, ),

a,)= and |a,)Jo_) are the coherent

states defined with respect to the annihilation
operators a,,a, and a,,a_, respectively. According
to (11), (13) and (14) the following relations hold

a=e.qa, + €0, =e,a, +el0_,

(15)
and,‘ due to the normalizations
e, +ee, =eie, +ee =1,
one obtains
o, = e
y= ey“} (16)
o =e,0, (17)

where ¢,, ¢, and e; are given by Equations (9) and
(10), and

e

ol ol f -

So the Cartesian or circular bases can be used
alternatively to describe the propagation of
elliptically polarized light in a nonlinear Kerr
medium. In isotropic media, however, the circular
basis is much more advantageous over the
Cartesian one.

Relations (15)-(17) together with (8)—(10)

_ allow for the decomposition of a coherent state of

elliptically polarized light, with the

polarization ellipse described by the azimuth 6

and the ellipticity 7, into two orthogonal modes
being also in a coherent state, and vice versa. .
However, if the nonlinear interaction between the
field and the medium takes place, the resulting
state may no longer be a coherent state, even if it
was initially. In this case relations (13)-(17) are
valid only for the initial coherent states. Quantum
evolution of the field propagating through a
nonlinedr Kerr medium will change these initial
states, and the equations of motion will be the
subject of the next section.
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3. QUANTUM EVOLUTION OF ELLIPTICALLY
POLARIZED LIGHT PROPAGATING IN A KERR
MEDIUM

Before writing down quantum equations of
motion, we remind the main points of the classical
description of light propagating through a
nonlinear Kerr medium. The classical approach
involves the third-order nonlinear polarization of
the medium and can be sketched as follows. A
monochromatic light field of frequency o
* propagating in the medium induces the third-order
polarization of this medium at frequency ® which
can be written as [2,3]

IJl(+) (m) = Z Xl’” (—(ol—ml ml(‘o)
jd

xE}')(m)Eﬁ*)(m)E,M(m), (18)
where X;(-0,-0,0,0) is the third-order

nonlinear susceptibility tensor of the medium, and
the decomposition of the field into the positive
and negative-frequency parts as in Equation (1) has
been used; albeit, in the classical description, the

field amplitudes E*)(w) are classical quantities.

For an isotropic medium with a center of
inversion, the nonlinear susceptibility tensor

Xi;'kl(m)'_"xijkj('w:‘m,(l),ﬂ)) can be written as
follows [2,3] -

+xxyyz((’))8ilsfk (19)

with the additional relation
X e (0) = Xy (0) = Xy (0) + Xryry () + X (0).

(20)

Taking into account the permutation symmetry of

the tensor X;(w) with respect to its first and -

second pairs of indices, we have, moreover,
Xy (0) = X 4yyx(©)- The light beam is assumed to
propagate along the z axis of the laboratory
reference frame.

One insertion of the polarization (18) into the
Maxwell equations and applying the slowly
varying amplitude approximation, one obtains the
following equation for the amplitudes of the field

3]
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dE'(t)((D) = i21t(.o I)'("')(m)’ : ' - -
dz n(co)c @1

" where the slowly-varying amplitudes E,(*)(m) are
-assumed to be dependent on z. If the circular basis is

introduced, which is the natural basis for isotropic
media, with the circular components of the field

Ei*)(m)=71"£[E£+)(°’)‘T'i5‘.(,+)(0))]{ L

(22)
the nonlinear polarization takes the form —
, :
P{w) = 2, (0)| B ()] B (w).
2 ;

4 Xy () + Xy (0)[E 0 B 0], 23
which after insertion into (21) gives -
dES) () _ idne (+) )r ’

dz  nfo) Xeey ()" (0
+[X,,yy(m) + X,y,y(a))] E?)(m)r EMN o).
‘ (24)

One easily checks that (d/dz)E:S:")(m)'2 =0, the

) .
intensities IE@(&))' of both circular components are

constants of motion. This is a clear advantage of
the circular basis over the Cartesian basis, which
allows for the following simple exponential
solution of equation (24) [37]:

- E{(0:2) = explior, (2) [ (w;2=0),

(25)‘
where :
®,(z)= %(!%ZZ {Xxy:ry (0)ES) 2
o 4] Xy (0) ,Xw(m?] EOF g

determines the light-intensity-dependent phase of
the field (self-phase-modulation or intensity-
dependent refractive index). These are well known
classical nonlinear effects [2,3], that are not the
subject of our interest here.

In this paper we are interested in quantum
phase properties of the field propagating in a Kerr
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medium; so we need quantum equations of motions
for e field. Equations of that type, the
Heisenbcrg ~quations of motion for the field
operators, can be Abtained. from the following
effective interaction Hamiltoruan [7}:

H, é'%hk{a'zaf +a2a? + 4data'a a+}

(27)
where the nonlinear coupling constant k is real and -
is given by

v( 2nn )2
T
=—| —1 2X, r,(0)
Y 2 xyry
o (" (0)V (28)

with V being the quantization volume. We have
introduced in (27) a nonlinear asymmetry
parameter d defined as

X ey (©0)
2d=1+ X
X

If the nonlinear susceptibility tensor X is symmetric
with respect to all its indices, the asymmetry
parameter d is equal to unity. Otherwise d # 1 and
describes the asymmetry of the nonlinear
. properties of the medium. When the medium is an
assembly of independent, identical molecules the
asymmetry ' parameter d is related to the
hyperpolarizability of individual molecules [7].
Ritze [6] has calculated this asymmetry parameter
for atoms with a degenerate one-photon transition
and obtained the results

’(21-1)(2]+3)/[2(2}2+21+1)]
for ] «» ] transitions

<

(212 +3)/[2(67*-1)]

for] <> J - transitions

(30)

The operators a; in the Hamiltonian (27) are the
annihilation operators for the circularly right and
left-polarized modes.

Using the interaction Hamiltonian (27) and the
commutation rules (3), one can easily write down
the Heisenberg equations of motion describing the
time evolution of the field operators. Here, we
consider the travelling wave case instead of the
field in a cavity; so we replace the time t by
.~n(w)z/c, and we obtain the following equation:

Xepy(@) (29)

daﬁiz) = "l(fo-) K[a} (2)as(2) + Zda;(z)a;(z)]a,(z).(sn
When the relation, obtained from (5),
(+) 2mho |
E(0)= [ z(w)V} a .

is applied, Equation (31) takes the form (24), that
makes the quantum-classical correspondence quite
transparent, but now we deal with the quantum
field.

Our approach is based on the discrete-mode
approach, and the transition from the cavity
modes to the travelling waves suffers from the
cavity-size dependence of the results. Recently, the
quantum theory of optical wave propagation
without recourse to cavity quantization has been
formulated [38], and the exact solution for quantum
self-phase modulation within this new approach
has been obtained {39].

Since the numbers of photons a}a, in the two
modes are constants of motion, equation (31) has the
simple exponential solution [6,7]

a,(1) = explinfa} (0)a, (0) + 242} (0)a. (0)]} (0)

(33)
where we have introduced the notation
_ n{o)z
c - (34)

The solutions (33) are exact operator solutions for
the field operators of light propagating through a

‘nonlinear isotropic Kerr medium without

dissipation. These equations were used for
calculations of such quantum effects as photon
antibunching [6] and squeezing (7].

To describe the evolution of the field states we
can use the evolution operator U(t) which,
according to (27) and (34) and after replacement ¢
= n(w)z/c, has the form

Ut)= exp{i%[ﬁ,,(rL -1)+a(A.-1)+ 4dﬁ+ﬁ_]},

) (35)
where we have introduced the number operators
n, =ala, for the two circularly polarized modes.
The resulting state of the field is thus given by

~



l(2)) = U(x)w(o), (36)

where |y(1)) is the initial state of the field. If the
initial state of the field is a coherent state of

elliptically polarized light, one obtains [28]
() =U(r)a,0.) - o
= 2 b,(,f)b,(,f) exp{i(n,,cp+ + n_(f)_)'

[n+(n+—1)+n (n- —l)+4dn+n ]}[n“n ),

_ (37)
‘where

(t) =

_exp( |a,| /2) *'

(38)

and the state |n,,n_)=ln, )}n_) is the Fock state. We
have used here a, =|o,|exp(ip, ).

If the dissipation is present in the system the
pure state description of the field is no longer

valid, the mean numbers of photons (ala,) are no
longer constants of motion, and the above formulas
do not properly describe the field evolution.
Nevertheless, even including damping, the master
equation for two coupled nonlinear oscillators has
the exact solution [32] which, on assumption of zero
temperature reservoir and initially coherent state
of the field, can be easily adopted to the travelling
wave situation with linear losses. In the presence
of damping we have, instead of the solution (37) for
the field state, the following solution for the
matrix elements of the field density operator:

Pm,,m_in, n (t) =(m, ,m_ |p('t)|n+ ’ n_}
= 80D

x e#p{i[(@ -m, -n,)
o]

xf(metn)f2 ()("'+")/2 (7)

m,~n,;m_-n_ m_-n_;m,-n,

1- fm‘—n.;vv!.-n. (t)}

X exp {NJ» -
m,-n,,m_-n_

xexp { N_A - f'f"-"' m.on. ()
}\. - mm_ -n_,m, -n, (39)
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where 1 is given by (34), and we have introduced
the following notation

A=v./x=Y/x, (40)
with y, and y. being the damping constants for the
two modes, .

‘ n‘m=n+2dm, _ (41)

fmn exP[ ;" mm,n)t] (42)

b( ) are given by (38), and ¢, are the phases of the
1mt1al coherent states Amplitudes o, whxle '

Iatl are the mean number of photons The
dxssxpatlon is assumed to be equal for both modes
and its value (relative with respect to the coupling
constant x) is described by A _

The solution (39) is exact, and it enableés
calculations of-all one-time expectation values of
the field operators. In this paper it is used to
calculate quantum phase properties of the field
propagating in a Kerr medium with dissipation.

4. QUANTUM PHASE FLUCTUATIONS AND
CORRELATIONS :

To study phase properties of elliptically
polarized light propagating in a Kerr medium we
use the new Hermitian phase formalism introduced
by Pegg and Barnett [33]-[35)}. Their idea is used on
introducing, for one mode of the field, a finite (s +
1)-dimensional space ¥ spanned by the number
states [0)]1),...,Js). The Hermitian phase operator
operates on this finite space, and after all
necessary expectation values have been calculated
in ¥, the value of s is allowed to tend to infinity. A’
complete orthonormal basis (s + 1) states is defined
onY¥as

-l [
0,)= exp ine,,,)‘n),
' . s+l % ( I (43)
where
= — 1,...5). '
0,, =6 + (m 0,1,...s) @)
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The value of 0, is arbitrary and defines a
partizular basis set of (s + 1) mutually orthogonal

phase staice. The Hermitian phase operator is
defined as

§
60 = 2 emlem)(em|'
m=0 (45)
where the subscript 8 indicates the dependence on
the choice of 6. The phase states (43) are
eigenstates of the phase operator (45) with the
eigenvalues 6, restricted to lie within a phase

~ window between 6, and 6, + 2x. The unitary phase
~ operator exp(i&)e) is defined as the exponential

function of the Hermitian operator ¢,. This
operator acting on the eigenstate |9,,) gives the
eigenvalue (i8,, ), and it can be written as [33]-[35]

- s=1
exp(i%) =) |n)n+ ll+ expli(s + 1), ]ls)(ol.
n=0 . (46)

This is the last term in (46) that assures the
unitarity of this operator. The first sum reproduces
the Susskind-Glogower [40,41} phase operator in
. thelimits = .

If the field is described by the density operator
P the expectation value of the phase operator (45)
is given by

-

~Go)=Tr{pho}= 3 0n(enlplon),
m=0 (47)

. where (6,,)p]8,,) gives a probability of being found

in the phase state |8,,). The density of phase states

is (5_+ 1)/2rx; so in the continuum limit as s tends to
" infinity we can write (47) as

0y +2x
tbe)= [ oP(0)ds,
% | (48)
where the continuum phase distribution P(@) is
introduced by

s+1
P(8) = lim =—(6,,|p|6,,)-
(8) = lim =—(6,|p[6) )

where 0, has been replaced by the continuous
phase variable 6. As the phase distribution
function P(6) is known, all the quantum mechanical
phase expectation values can be calculated with
this function in a classical-like manner by
performing integrations over 9.

Taking-into account the defirition (43), we
have

P(8) = ll_r.n-—z z exp[-—z(n k)em]pnk

T pz0 k=0 (50)

If we symmetrize the 'phasé distribution with
respect to a phase ¢ by taking
1S
0, =0Q-—

AP (51)

and introducing a new phase label p=m ~s/2,
which goes in integer steps from —s/2 to s/2, the
phase distribution becomes symmetric in , and we
get

)_?1;2 2 exp[—zm n (P+0 m]pmn
m=0 ‘u=0 (52)

Now, all integrals over 8 are taken in the
symmetric range between - and =, and the phase
distribution P(6) is normalized so that

‘%
_ J’ P(8)d0=1.
= : (53).

. All the above formulas defmmg phase
propertles of the field can be easily extended into
the two-mode case we are interested in. Proceeding
along the same lines, we arrive at the following

formula for the joint phase probability distribution
P(G +)9 ) which is symmetrized w1th respect to the

phases @, and @_

'lp(e;,e_)-

2 Z exp{ 1[

+(m- - n-)(q)- + e—)]}pm.'m_ it (t)
(54)

+— Ny (Q)++9 )

<
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~

On inserting into (54) the solution (39) for the
density matrix, we finally obtain the joint phase
probability distribution for the continuous phase
variables 6, and 6_ describing phases of the two
modes. This gives us the following formula

P(o,,0_)=

2 Z b(*)b(‘*)b( )b(-

m, Un, m_

X exp {--E-(c,, +0_ )+ F(8+,8_)}
x c0s{5,0, +5_6_- %[8,,'(0,, +2do_-1)

+8_(o_+2do, -1)]—1\(8,,,8_)},
' (55)

where, for brevfty, we have comprised the
summaton indices into the following combinations:

6*=m++nt} .
’

By =m, —ny (56)

and we defined the quantities

I'(m,n)= X[A,(:,Z. (1) "’ Ar(u_) (")]
+n;;|,riBr(:,)n(1) + M, mBEL (1), (57)

A1) =0 AL () + 1, ACL (2)
K[B(‘”) (7)+BE)( 'r)] )

where 1, , is given by (41), and
A® (q)= N*" [l exp(-At)cos(n,, . )]
(59)
B (1) = N*l ——25—exp(-At)sin(n,, ,,t)]
Tlm n (60)

Formula (55) is the exact analytical expression
describing the joint probability distribution
P(6,,8.), and it allows calculations of all phase
expectation values by simple integrations over 6,
and 6_ in the symmetrical range between ~x and x.
Despite the complexity of I'(5,,5.) and
A(8,,5.), the structure of formula (55) is quite

transparent. If there is no dissipation in the
system, A = 0 and both these quantities are also

(58)
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equal to zero. In this case, formula (55) goes over
into our earlier result [42]. Another limit is the case
of no coupling between the two modes, i.e., the case

d = 0, when the expressions for I'(5,,5_) and
A(3,,8_) split into sums of separate terms for the
"plus” and "minus” modes and the phase
distribution P(6,,6_) can be factorized into the
individual mode distributions. However, either of
them still includes the dissipation. The one-mode
case with dissipation has been studied by us
elsewhere [43].

On intergrating the distribution function
P(8,,8_) over one of the phases P(6_) or P(6, ) one
obtains the marginal distributions for the
individual phases. The result is -

P(6,)= --{1 +23 o

nm

X exp {-N - [1 - Re[fo;n-m (")]]
;; (n+ m)+1‘(*2,,(':)} |
X cos{(n -m)o, - —[n(l\ -1)-m(m “1)]~

+N_ Im[fo;..-m (")] AM'" (t)}}

'

(61)

where

™ (x)=r(n- m,O),} .
A (2)=A(n-m,0). €2
The distribution P(6_) can be obtained from (61) by

interchanging the indices plus and minus and
taking into account that

r.‘..’,..(r)=r(o,n-m),}

A (1) = A(0,n = m). (63)

Knowing the phase distribution (61) allows
calculatiorrs of the expectation wvalues and
variances of the Hermitian phase operators by
performing appropriate integrations. We have, for
example,

b 4
@ =Trfpd, =, + [ 0,P(6, )0,
-

= ¢+ + (9§ » (64)
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whore

0,)= I 0+ Pie+ )de,

=23 s &

n>m n-m

X exp {—N_ [1 - Re[ fo:n-m (;)]]
. ,-&;‘(mm) r‘*m(‘)}
x sin{—-;—[n(n ~1)-m(m-1)]

N Ifn(®]- A0} )

-

and the variance is given by

22, o _ 2
(an))r=@h-@. (66)
with

©3)= [ 03P(e, )do

x exp {‘N -[1 ~Re[fo;n-m (T)]]
K emerih@)

x cos{—-t[n(n -1)-m(m-1)]

+N_ Im[fo inem( ] A(+)"'(T)} (65)

* —

Formulas (65) and (67) are generalizations of our
earlier results [42].

- Equation (65) is the quantum formula describing
the intensity-dependent phase shift, and for the
~medium without losses it can be compared with the
classical expression (26). This shift depends, in
general, on the intensities of both modes and on the
asymmetry parameter d. For d = 0 there is no
coupling between the two modes and then the
phase shift for the "plus” mode does not depend on
the other mode intensity (N_). Classically, as it is
evident from (26), the intensity-dependent phase
shift is linear in z (or in 7). Quantum mechanical
formula (65), even for A = 0, involves nonlinear 1

dependence. In fact, for 2d being an integer the
mean phase is periodic in 1 in case A = 0. However,
for T << 1 the phase shift is practically linear in 1.
The range of small t values is most easily
accessible from the experimental point of view. In
Figure 1 we illustrate the evolution of the mean
phase for different values of the mean nuniber of
photons (intensity) and for A = 0 (a), A = 10 (b). For t
<< 1 the linear dependence on 1 is clearly visible,
and the rate of increase is proportional to the
intensity. For larger t some oscillations appear in
the mean phase evolution which are washed out by
damping.

Evolution of the phase variance given by (67) is
plotted in Figure 2. For 1 << 1 without damping the
variance is growing as 12, and the higher is the
mean number of photons the faster is the growth.
This means that for strong fields the phase is
rapidly randomized, i.e. the phase variance
approaches the value n2/3, which is the value for

. uniformly distributed phase. The presence of
~dissipation in the system causes the randomization

to proceed smoothly.

When the two modes are coupled (d # 1), some
degree of correlation between them can arise during
the evolution. The phase correlations can, for
example, manifest themselves in the variance of
the phase-difference (or phase-sum) operator of
the two modes. In the Pegg-Barnett formalism the
phase-difference (phase-sum) operator is simply
the difference (sum) of the phase operators for the
two modes. Thus, to calculate the variance of the
phase-difference (phase sum) operator we can use
the following relation

Qaf. 28] =(aa, )+ (oa )
£2{@.40-0.0}

The variances <(A$,)2> and ((A?p_)2>' can be:

calculated according to (66) and (67) and their
counterparts for the "minus”" mode obtained by
interchanging "+" and "-". The last term describing
the correlation between the phases of the two

modes can be written as

+~(1) = (6,6_) - (®, Xb_)
= (9+9-> -(0,X6.), (69)
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Figure 1. Evolution of the mean phase (64, for @) A = 0, and (b) A = 10. Other parameters are N_=4, d = 1, and the curves are plotted
for N4 =025 (short-dash), N, = 4 (long-dash), and N, = 16 (solid). These values and curve descriptions are used in all the figures.
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Figure 2. Evolution of the phase variance <(Ao+) ), for () A=0,and (b) A = 10.

where (6, ) and (6_) are given by (65), and . where the notation is the same as in formula (55).;
The prime over the summation symbol means that

xx ' the terms with 8, =0 and 8_ =0 do not enter into
(0.)= [ [6,6_P(6,,0_)do,do_ the sum.

-%-x The strength of the correlation depends

- Z SN0 (_1)8. (_1)5- crucially on the value of the asymmetry parameter

= L d.1fd = 0, the phasc distribution P(8,,0_)

T Twh factorizes and C, (1) = 0. The highest values of the

. xexp {_E(% +6_)+ r(s 4_,5_)} correlation are gbtained ford =1/2, whigh means

2 that the minimum of the phase-difference

s 2d 1 variance, in view of Equation (68), is obtained for d

xcos "’2'[ +(0, +2do_- )] = 1/2. The evolution of the correlation coefficient

C._(1) is shown in Figure 3, and the corresponding

+8(c. +2da, - 1)+ A(8+,5_)}, (70)  curves for the phase-difference variance are
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Figure 4. Evolution of the phase-difference variance ([A(&, -3_)]z for(a)d=0,and () A = 10.

-~

plotted in Figure 4. It is seen that the phase
correlation can take both positive and negative
values depending on the intensity of the field. For
high intensities the evolution has oscillatory
character. Damping, as expected, makes the
evolution smoother. From Figure 4 it is evident that
also the phase difference is rapidly randomized
when-the field intensity is high. The higher the
intensity, the faster is the randomization process
despite the fact that the correlation can have
opposite signs. Generally, a competition between
* the purely quantum effect of phase randomization
" -and the linear losses of the medium is observed

during the propagation of strong light through the
medium. :

5. CONCLUSION
In this paper we have studied the quantum

‘phase fluctuations and correlations of the
elliptically polarized light propagating in a

nonlinear Kerr medium with dissipation. The new
Hermitian phase formalism of Pegg and Barnett
[33]-135] has been used to describe the phase
properties of the field. The exact solution of the
master equation for.-two coupled nonlinear
oscillators obtained recently by Chaturvedi and
Srinivasan [31,32] has been adopted to describe the

~ propagation of light in a Kerr medium with

dissipation. The exact analytical formulas
describing the quantum phase fluctuations and
correlations of the propagating field have been
obtained. The evolution of the mean phase, the
phase variance, the inter-mode phase correlation,
and the phase-difference variance has been
illustrated graphically for various intensities of
the initial field, and for the medium without and
with losses, The purely quantum effect of the phase
randomization is shown to appear owing to the
nonlinear coupling. This process becomes very fast
for high intensities of light. The dissipation is
shown to slow down this process and make the
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evolution smoother. There is a sort of competition
between the quantum effects due to the nonlinear
coupling of the field in the medium and the linear
losses of the medium. Our exact solution to the
problem allows us to find the precise answer
regarding the role of dissipation in masking the
quantum effects. '
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