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Phase properties of fields generated in a multiphoton down-converter
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The phase properties of fields generated from the vacuum in the m-photon down-conversion process
with quantum pumping are studied from the point of view of the Hermitian phase formalism. The joint
phase distribution P(6,,6,) as well as the marginal phase distribution P(8,) for the signal mode are de-
rived and illustrated graphically for m =2, 3, and 4. The relationship between these phase distributions
and the “classical” distributions obtained by integrating the Q function is established. It is shown that
the classical phase distribution is a result of an averaging procedure that leads to a broadening of the

phase distribution.

PACS number(s): 42.50.Dv

I. INTRODUCTION

A two-photon down-converter is known to produce op-
tical fields with nonclassical properties [1-10]. It is
essential for the quantum properties of fields generated in
the process that the high-frequency pump photons be
split into highly correlated pairs of lower-frequency sig-
nal and idler photons. In the simplest case of a nondep-
leted degenerate parametric process, the pump mode is
assumed classical and nondepleted, and the signal and
idler modes become one mode of the subharmonic field
with half the frequency of the pump mode. In this case
the time evolution of the subharmonic field can be found
analytically and is described by a Bogoliubov transforma-
tion that maps the initial vacuum state into an ideal
squeezed state [1-6]. The parametric down-conversion
process turned out to be very effective in producing
squeezed states in practice [11-16].

The states produced by the two-photon down-
converter have interesting phase properties studied re-
cently by Vaccaro and Pegg [17]; Schleich, Horowicz and
Varro [18]; and Grgnbech-Jensen, Christiansen, and
Ramanujam [19] for the process with classical pumping
and by Gantsog, Tana$,and Zawodny [20] for the process
with quantum pumping. The phase distribution of such
states has two sharp peaks at the initial stages of the evo-
lution that reflect the two-photon character of the pro-
cess. If the quantum fluctuations of the pump mode are
taken into account, the two peaks of the signal mode are
broadened [20].

A generalization of the two-photon down-conversion
to a multiphoton process has been initiated by Fisher,
Nieto, and Sandberg [21] who have found that the
vacuum-to-vacuum matrix elements of the evolution
operators for such processes have divergent Taylor-series
expansions in time, and they concluded that it must be
something wrong with these evolution operators. Braun-
stein and McLachlan [22] have used the Padé summation
technique that improved the convergence of series expan-
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sions, and they performed numerical calculations for the
three- and four-photon processes showing the threefold
and fourfold rotational symmetry of the Q-function con-
tours. Elyutin and Klyshko [23] considered three-photon
squeezing, showing that in the parametric approximation
there are exploding solutions for such a process. The
photon-number divergence in the multiphoton down-
conversion has been discussed by Hillery [24], who has
shown that the divergences are the result of the paramet-
ric approximation—that is, the assumption that the
pump mode is classical and undepleted. If the pump
mode is quantized and treated dynamically, the energy is
conserved and there are no divergences in the multipho-
ton down-conversion. Recently, Braunstein and Caves
[25] have discussed phase and homodyne statistics of
such generalized squeezed states. They have calculated,
in parametric approximation, the photocount distribu-
tion P,, the Q function, and the classical phase distribu-
tion P(0) for the states generated from the vacuum by
the three- and four-photon down-converter. Their classi-
cal phase distribution, which is obtained by integrating
Q(a) over the “radial” coordinate, shows the multipeak
structure that corresponds to the rotational symmetry of
the Q-function contours.

Gantsog, Tanas, and Zawodny [20] have discussed the
evolution of phase properties for the field generated by
the two-photon down-converter with quantum pumping
showing that quantum fluctuations of the pump mode
lead to broadening of the phase distribution of the signal
mode. To describe the phase properties of the field, they
used the Hermitian phase formalism introduced by Pegg
and Barnett [26-28]. This formalism allows calculations
of the joint probability distribution P(6,,6,) for the
phases of the signal (8,) and pump (6,) modes, and once
this function is known, all other phase characteristics can
be found by taking integrals over 8, and 6, with the dis-
tribution P(6,,0,). It has been shown that P(6,,6,)
evolves into a multipeak structure in the long-time limit,
and in effect the phase distribution becomes more and
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more uniform, i.e., both phases randomized.

In this paper we study phase properties of the field gen-
erated in the multiphoton down-conversion process with
quantum pumping. We employ the Hermitian phase for-
malism of Pegg and Barnett [26-28] to describe phase
properties of the field. The joint phase probability distri-
bution P(6,,0,) as well as the marginal phase distribu-
tion P(8,) for the signal mode are obtained and illustrat-
ed graphically for the two-, three-, and four-photon pro-
cesses. The multipeak structure that corresponds to the
multiplicity of the process is revealed in the phase distri-
butions. A comparison is made between the Pegg-
Barnett phase distribution and the classical phase distri-
bution obtained by integrating the Q(a) function over the
amplitude. It is shown that the latter is broader than the
former, and a general relation between the two is estab-
lished. The phase distributions are compared to the cor-
responding Q-function pictures to visualize their symme-
try properties for the multiphoton down-conversion pro-
cesses. The quantum character of the pump mode is ac-
counted for, and the exact quantum-mechanical evolution
of the field state is obtained using the method of numeri-
cal diagonalization of the interaction Hamiltonian. For
the pump mode being initially in a coherent state with a
not-very-big mean number of photons, this method works
very well, and all the field characteristics can be obtained
in a direct and reliable way. This is particularly impor-
tant for the three-and-more-photon processes for which
there are no analytical solutions known, and there are
some numerical problems in the parametric approxima-
tion.

II. QUANTUM EVOLUTION OF THE FIELD STATE

The m-photon down-conversion process with quantum
pumping can be described by the following model Hamil-
tonian:

H=H,+H,=#oa'a+m#wb'b+#g(bla™+ba'™),
(1)

where a(a’) and b(b") are the annihilation (creation)
operators of the signal mode at frequency w and the
pump mode at frequency mw, respectively. The coupling
constant g, which is real, describes the coupling between
the two modes. The Hamiltonian (1) is identical for the
m-photon down-conversion and the mth harmonic gen-
eration, and these are the initial conditions that distin-
guish between the two processes. In the case of harmonic
generation, mode b is initially in the vacuum state and
mode a is populated. For the down-conversion process
considered in this paper, mode b (pump mode) is initially
populated, while mode a (signal mode) is in the vacuum
state. The distinction between the two processes is far
from being trivial, and the states generated in the two
processes have quite different properties.

Since H, and H; commute, there are constants of
motion: H, and H;. H, determines the total energy
stored in both modes, which is conserved by the interac-
tion H;. This enables us to factor out exp(—iHyt /#)
from the evolution operator—in fact, to drop it altogeth-
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er and to write the resulting state of the field as
[¥(2)) =exp(—iHt /#)|(0)) , 2)

where [1(0)) is the initial state of the field. Since the in-
teraction Hamiltonian H; is not diagonal in the number-
state basis, to find the state evolution, we apply a numeri-
cal method to diagonalize H;. Such method was used
earlier for second-harmonic generation [29,30].

In this paper we consider the m-photon down-
conversion process, which may be considered as a gen-
eralization of the parametric down-conversion process by
accounting for the quantum properties of the pump
mode. The Hamiltonian H,, which is a constant of
motion, implies the conservation of the quantity

(a'a)+m(b'b)=const , (3)

and this prevents any exploding solutions. We assume

the initial state of the field to be

|$(0)) = > b,l0,n) , (4)
n=0
where
| l m
b, =exp(— lBo|2 BO e (5

is the Poissonian weight factor of the coherent state |3,)

of the pump mode with B,= IBOIe”p” . The state
|0,n)=10)|n) is the product of the Fock states with n
photons in the pump mode and no photons in the signal
mode. That is, we assume the pump mode as being ini-
tially in a coherent state |B,) and the signal mode as be-
ing initially in the vacuum. With these initial conditions
the resulting state (2) can be written (in the interaction
picture) as

W= 3 b 2 Crmi () mbn —k ) ©)

where the state |mk,n —k ) is the state with n —k pho-
tons in the pump mode and mk photons in the signal
mode. The coefficients c,,, ,(2) are the matrix elements
of the evolution operator

Coun 1 (1)={mk,n —k|exp(—iHt /#)|0,n ) , (7)

m

and they are calculated numerically by diagonalizing the
interaction Hamiltonian. This allows us to find the evo-
lution of the state (6).

III. PHASE PROPERTIES OF THE FIELD

To study the phase properties of the field generated in
the m-photon down-conversion process, we employ the
Pegg-Barnett [26—28] Hermitian phase formalism to find
the joint phase distribution P(6,,0,) as well as the mar-
ginal phase distribution P(6,) for the phase of the signal
mode. The Pegg-Barnett formalism is based on introduc-
ing a finite (s + 1)-dimensional space ¥ spanned by the
number states |0),]/1),...,|s). The Hermitian phase
operator operates on this finite space, and after all neces-
sary expectation values have been calculated in ¥, the



45 PHASE PROPERTIES OF FIELDS GENERATED IN A . ..

value of s is allowed to tend to infinity. A complete
orthonormal basis of (s +1) phase states is defined on W
as

= S 0,)n), (8)
lg,, )= 1/s+1 § exp(in6,,)|n)
where
2Tm
= - = ce,S) . 9)
6, =00+ =70 (m=0,1,...,5)

The value of 6, is arbitrary and defines a particular basis
set of (s +1) mutually orthogonal phase states. The Her-
mitian phase operator is defined as

>y

6,,16,,)(6,,| . (10)

The phase states (8) are eigenstates of the phase operator
(10) with the eigenvalues 0,, restricted to lie within a
phase window between 0, and 6+ 2.

The expectation value of the phase operator (10) in a
state |1 is given by

5033

where |(0,,|¥)|* gives the probability of being in the
phase state |6,,). The density of phase states is
(s+1)/2m, so in the continuum limit, as s tends to
infinity, we can write Eq. (11) as

~ Oy t+2m
(Wlgolv)= [,

where the continuum phase distribution P(6) is intro-
duced by

6P(6)do , (12)

s+l

P(6)= lim l(e )2, (13)

where 6,, has been replaced by the continuous phase
variable 8. Once the phase distribution function P(6) is
known, all the quantum-mechanical phase expectation
values can be calculated with this function in a classical-
like manner by integrating over . The choice of 6,
defines the particular window of phase values.

In our case of a field produced in the m-photon down-
conversion process with quantum pumping, the state of
the field (6) is in fact a two-mode state, and the phase for-
malism must be generalized to the two-mode case. The

(Yloly) = é 6,1€6,, 191, (11)  generalization is straightforward and obvious, and for the
m=0 state (6) we obtain
|
(O, 1€, [9(1)) = (5, + 1) 715, + 1) 7172 z b, 2 exp{ —i[mk®,, +(n—k)8,, 1}€pni(?) - (14)
n=0 n=0

We use the indices a and b to distinguish between the signal (a) and pump (b) modes. There is still a freedom of choice

in (14) of the values of 9

7Tsa’b
T 4
Sa’b +1

and we introduce the new phase values

o,ua‘b =9mﬂ’b “Pa,b >

where the new phase labels p, , run between the values —

, which define the phase window. We can choose these values at will, so we take them as

(15)

(16)

S.,p/2 and s, , /2 with unit step. This means that we sym-

metrized the phase windows for the signal and pump modes with respect to the phases ¢, and @,, respectively.
On inserting (15) and (16) into (14), taking the modulus squared of (14), and taking the continuum limit by making the

replacement

Sab/z 2
4 m

de,, ,
_E /2 Sapt1 _—)f—” @b

Ha b=~

an

we arrive at the continuous joint probability distribution for the continuous variables 6, and 8,, which has the form

P(6,,6,)=

The distribution (18) is normalized so as

I" [ P©,.6,)d6,d60,=1

2

2 2 Coun i (t)exp{ —i[mkO,+(n—k)0, +k(mep,—¢@,)]} | . (18)

(19)

To fix the phase windows for 6, and 6,, we have to assign to ¢, and @, particular values. It is interesting to note that
formula (18) depends on the phase difference mg, —@, only. This reproduces the classical phase relation for the para-
metric amplifier, and classically this quantity should be equal to — /2 to get the amplification of the signal mode (if the
coupling constant g is positive). Such a choice means that a peak should appear in the phase distribution at 6, =0. As
will become clear later, the phase distribution for the m-photon down-conversion exhibits an m-peak structure along
the 6, direction, and the choice of the phase window that minimizes the phase variance is m, — @, = /2 for m even
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and me, —@, = —m/2 for m odd. We choose the phase window following this rule.

The phase distribution P(6,,0,) is shown in Fig. 1 for m =2, 3, and 4. The m-peak structure of the joint phase dis-
tribution is quite evident, and it reflects the mathematical property of the function P(6,,6,) which shows periodicity in
6, with period 27/m. From the point of view of the pump mode, we see only one peak at 6, =0, which represents the
phase of the initially coherent state of the pump mode. For numerical reasons we use the mean number of photons N,
in the pump mode rather small, but for N, > 1 the multipeak structure of the distribution is well resolved. For larger
N, the phase peaks become sharper. The symmetry inherent in this phase distribution is the same as obtained earlier by
Braunstein and Caves [25] for the generalized squeezed states from their study of the Q function and the classical phase
distribution of the signal mode. To make the comparison of both approaches more evident, we calculate the Q function
as well as the classical phase distribution for our case of the down-converter with quantum pumping.

For the two-mode field considered in this paper, we can calculate the two-mode Q function as

n 2

by 3 Cpmi(t)almk){Bln—k)

M

Q(a,B)=|(a,Blp(1))|*=

n=0 k=0
2
=|sb S g2y lel™ —imke, o0 BI"TK ik,
,,éob"kéocm"’k(t)exp( || /2)\/(m_k)!e exp(—|B] /Z)Vme ,
(20)
where we have assumed
a=lale’, B=|Ble"" . 21)

Comparing Egs. (20) and (18), one can easily check that the phase dependence of Q(a,f3) is exactly the same as in
P(6,,0,), when we identify the phases of a and B as in Eq. (21) and introduce the reference phases ¢, and ¢, as in Eq.
(18). Performing the integrations over the amplitudes |a| and |B| in Eq. (20), we arrive at the “classical” two-mode
phase distribution P, (6,,6,). The term “classical” is used here in the sense used by Braunstein and Caves [25], who
refer to such a phase measurement as effectively classical, since the Q function applies to simultaneous measurement of
two noncommuting observables, a process that inevitably introduces additional noise. After integrating, we have

1 ) ©
Pclass(ea’eb)=—7r—2fo fO Q(a)B)|aHBId|ald|B|

1 © n n'
= |b,| b, Conn i (B o (1)
(217.)2 n’"2=0 k§0 kéo nk mn' k
Xexp{—i[m(k —k")0,+(n—k —n'+k")0,+(k—k'Yme,—@;,)]}
X F(mk,mk')F(n —k,n'—k’) , (22)

where the reference phases ¢, and ¢, have been introduced explicitly to be in agreement with Eq. (18), and we have
obtained the extra factors

IT'(n+k)/2+1)
Vinlk! )

It is evident from Eq. (22) that these are the extra factors F(mk,mk’) and F(n —k,n’ —k’) that distinguish the classical
phase distribution (22) from the Pegg-Barnett phase distribution (18). Our derivation of formula (22) is quite general so
we expect it to be applicable to any state of the field with known number-state decomposition.

It is difficult to illustrate the two-mode Q function given by formula (20), since it is a function of four real variables.
It we are interested in the properties of the signal mode, however, we can define the Q function for this mode by

F(n, k)=

(23)

Q(a)=$fQ(a,B)dZB= S 15,12 S lepm (D12 almk ) |2
n=0 k=0

+2Re | 3 b,br 3 3 cpuiOepy o (O{almk ) almk’)*8, _ . 4 4 | » (24)
n>n k=0 k'=0
where
la|™  —imke,

(a|mk ) =exp(—|al?/2) (25)

V(mk)!

This function [Eq. (24)] is illustrated graphically in Fig. 2 for m=2, 3, and 4. The other parameters are taken the same
as those for the phase distributions shown in Fig. 1. The m-fold rotational symmetry of the Q(a) that corresponds to
the m-peak structure of the phase distribution is clearly visible, and it is similar to the results obtained in the parametric
approximation [22,25]. The contour plots of Q(a) shown in Fig. 3 make the similarity of our results to those of Braun-
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stein and Caves [25] even more convincing, although we take different values of the evolution time. To illustrate the
symmetry of the distributions, we have chosen the times at the early stages of the evolution when the joint phase distri-
bution has a clear m-peak structure. It has been shown that for later times, in the case of both the two-photon down-
conversion with quantum pumping [20] and the second-harmonic generation [31,32], the phase distribution goes
through a sequence of bifurcations towards a multipeak structure with more and more uniform phase distribution.

Integrating the joint phase distribution P(6,,0,), or P ,(6,,6,), over 8;, we get the marginal phase distribution
P(6,), or P4,(0,), of the signal mode phase 6,. We concentrate on the marginal phase distribution for the signal
mode to show explicitly the difference between the Pegg-Barnett phase distribution P(6,) and the “classical” phase dis-
tribution P, (6,). For P, (6,) we have

Poas(0.)= [ 7 Pi11s(6,,6,)d06,
1o
fo Q(a)laldlal

T

n n'
=‘21;l1+2Re S bl 1byl S S ComkComniexpl—ilk —k')Nm8, +me, —@p)18, k- Flmk,mk’) |,
n>n' k=0 k'=0

(26)
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FIG. 1 Plots of the joint phase distribution P(6,,6,) for the
states generated in the m-photon down-conversion: (a) m =2,
N,=4, gt =0.3; (b) m =3, N, =2, gt =0.025; (c) m =4, N, =2, FIG. 2 Three-dimensional plots of the Q function Q(a) for
gt =0.005. the signal mode. The parameters are the same as in Fig. 1.
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where we have introduced the reference phases ¢, and ¢,
to have the same phase window as we used for the Pegg-
Barnett phase distribution; b, are given by Eq. (5). It is
easy to check that the Pegg-Barnett phase distribution
P(6,), which is defined as

P6,)=[" P(6,,0,)d0, , 7)

with P(6,,0,) given by Eq. (18), can be equivalently ob-
tained from formula (26) by putting F(mk,mk’)=1.
Thus, as in the joint phase probability, the difference be-
tween the Pegg-Barnett and the classical results consists
in the presence of additional factors F(mk,mk’) defined
by Eq. (23) in P, (8,). The polar coordinate plots of

4

(a)

Imo
o

2t 24

4 2 0 2 4

-4 . . .
-4 2 0 2 4
Rea

FIG. 3. Contour plots of the Q function Q(«a) for the signal
mode. The parameters are the same as in Fig. 1.
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the two functions are shown in Fig. 4, for m = 2, 3, and
4. The difference between the two is quite evident. The
classical phase distribution is broader than the Pegg-
Barnett distribution, although the rotational symmetry,
i.e., the peak structure, is the same. The broadening of
the classical phase distribution with respect to the quan-
tum Pegg-Barnett distribution makes the use of the word
“classical” more understandable. This broadening is a
result of diminishing of the nondiagonal elements that
define the phase structure by the factor F(mk,mk’). The
elements F(n,k) defined by Eq. (23) are symmetrical,
F(n,k)=F(k,n); their diagonal elements are unity,

0.9
0.6 T
03+

0.0

o9l
03 00 03 06 09

0.0

-0.5
-0.5

0.5

0.0

-0.5 0.0 0.5

FIG. 4. The polar-coordinate plots of the marginal phase dis-
tribution for the signal mode: the Pegg-Barnett distribution
P(0,, (solid line) and the “classical” phase distribution P, (8,)
(dashed line). The parameters are the same as in Fig. 1.
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F(n,n)=1; and they can be easily calculated with the fol-
lowing recurrence formula:

4 ;Lk +1 ]\/77 I [1—(1/29)]
s=1

for n +k even

F(n +1,k)=M s -1
Vin+1 —
\/17['[ [1—(1/25)]
s=1
for n +k odd ,
(28)
where
s, =n-+k-+1— "—+’2‘—+—1 , (29)

and [ - - - ] in Eq. (29) means the integer part of the brack-
eted number. The behavior of the coefficients F(n,k) is
illustrated in Fig. 5. The farther away we go from the di-
agonal F(n,n)=1, the smaller are F(n,k), although the
rate of decay decreases as the numbers n,k increase.
Knowing the coefficients F(n,k), we can directly get the
classical phase distribution from the Pegg-Barnett distri-
bution by weighting the nondiagonal phase elements with
their “probabilities” F(n,k). This procedure can be con-
sidered as an averaging of the Pegg-Barnett phase distri-
bution. Looking at Figs. 4 and 5, we may conclude that
the averaged phase distributions plotted in polar coordi-
nates are quite similar to the contour plots of the Q func-
tion. The Pegg-Barnett phase distribution gives the pic-
tures with much better formed lobes, i.e., with much
sharper phase peaks.

IV. CONCLUSION

We have discussed phase properties of the fields pro-
duced by the m-photon down-converter with quantum
pumping. We have derived the joint phase distribution
P(6,,0,) as well as the marginal phase distribution P(6,)
for the signal mode using the Pegg-Barnett phase formal-
ism. These two phase distributions are compared to the
classical phase distributions P, (0,,0,) and P, (6,)
obtained by integrating the Q functions. It is shown that
there is a universal relationship between the classical
phase distributions and the Pegg-Barnett phase distribu-
tions. The former are obtained from the latter by an
averaging procedure. This procedure is defined in the pa-
per.

To find the state evolution, we have used the method of
numerical diagonalization of the interaction Hamiltoni-
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FIG. 5. Distribution of the coefficients F(n, k).

an, which allows us to find the matrix elements of the
evolution operator and, consequently, the state evolution.
All the formulas can be expressed in terms of the
coefficients c,,, ,(¢) being the matrix elements of the evo-
lution operator. Our calculations are performed for an
initially coherent state of the pump mode, so we can com-
pare our results to the results obtained, in the parametric
approximation (classical and nondepleted pumping), by
Braunstein and Caves [25]. For numerical reasons the
mean numbers of photons of the pump mode we take in
our calculations are rather small. However, for N, > 1,
we obtain the results very similar to those of Braunstein
and Caves [25]. In contrast to the parametric approxima-
tion, the fully quantum approach allows the avoidance of
some divergences that appear in the parametric approxi-
mation [23,24].

The phase distributions for the field produced in the
m-photon down-conversion process exhibit the m-fold
symmetry, which is best visualized when the marginal
phase distribution P(6,) is plotted in polar coordinates.
We have shown that the “classical” phase distribution
obtained by integrating the Q function is broader than
the Pegg-Barnett phase distribution, although in the case
of the m-photon down-conversion, its symmetry, or the
peak structure, is the same.

The m-fold symmetry of the phase distributions ap-
pears in its most striking form at the initial stages of the
evolution. The quantum fluctuations of the pump mode
lead to spreading out the phase distribution at later
stages. It has been shown for the two-photon down-
conversion [20] and the second-harmonic generation
[31,32] that the phase distribution changes its character
when the first maximum of the generated mode has been
reached. This is associated with the transition from the
down-conversion to the second-harmonic generation re-
gime (or vice versa). So there is a limit, imposed by the
quantum pumping, on the applicability of the parametric
approximation.
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