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Quantum fluctuations in the Stokes parameters of light
propagating in a Kerr medium with dissipation
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Abstract. Exact analytical expressions describing the evolution of the expect-
ation values and the variances of the Stokes operators are derived for the
elliptically polarized light propagating in a Kerr medium with dissipation. It is
shown that quantum fluctuations of the field essentially affect the polarization of
the field. The explicit quantum formulas describing the azimuth and the
ellipticity of the polarization ellipse as well as the degree of polarization are
derived and illustrated graphically. Quantum fluctuations in the Stokes para-
meters are discussed, and the evolution of the signal-to-noise ratio is shown to be
reduced by the quantum field fluctuations. Role of the dissipation is shown
explicitly in a fully quantitative way from the exact analytical solutions.

1. Introduction

Optically induced birefringence of an isotropic medium subjected to a strong
optical field is a well known fact [1, 2]. Such phenomena like the optical Kerr effect
and self-induced ellipse rotation can be explained with recourse to field quantization.
On the other hand, if a strong optical field propagating through a nonlinear Kerr
medium is treated as a quantum field some new phenomena, like photon antibunch-
ing [3-5] and squeezing [6], can appear. Since Kerr media are also considered as
suitable candidates for performing quantum non-demolition measurements [7, 8],
there is growing interest in revealing those aspects of nonlinear propagation that are
directly related to the quantum properties of the field.

The polarization state of light propagating through a nonlinear Kerr medium can
be effectively described in terms of the Stokes parameters. The Stokes parameters,
which are real numbers in the classical description of the field, become Hermitian
operators in the quantum description. On having defined the Stokes operators,
which are quantum mechanical observables, one is naturally led to address the
problem of quantum fluctuations in these quantities as well as quantum field effects
on the polarization state of the field propagating in a Kerr medium. Quantum
fluctuations in the Stokes parameters of strong light propagating in an isotropic
nonlinear medium have recently been discussed by Tana$ and Kielich [9], who
treated the medium as ideally transparent, i.e., without losses. Quantum evolution of
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the field propagating in Kerr medium has been also considered by Agarwal and Puri
[10]. Quite recently, Chaturvedi and Srinivasan [11] using the thermofield dynamics
notation have found the exact solution of the master equation for coupled nonlinear
oscillators. This solution can be adopted to describe propagation of elliptically
polarized light in a Kerr medium with dissipation. An approximate approach based
on the Heisenberg—Langevin equations of motion for the operators of the two
coupled nonlinear oscillators was given earlier by Horak and Pefina [12].

In this paper we apply the solution of Chaturvedi and Srinivasan [11] to study
quantum fluctuations of the Stokes parameters and the polarization state of strong
light propagating in a nonlinear Kerr medium with dissipation. Even including
(linear) losses, the exact analytical formulas describing the expectation values and
variances of the Stokes operators are derived. The results obtained in this paper are
generalizations of earlier results by Tanas and Kielich [9] into the case of a medium
with dissipation.

2. The master equation and its solution

Quantum properties of elliptically polarized light propagating in an isotropic
nonlinear Kerr medium can be described by the following effective interaction
Hamiltonian [4, 9, 10]

H, =1hk(a'?a? +at?a® +4datala_a,), 1)

where a, are the annihilation operators of the circularly right (+) and left (=)
polarized modes both of frequency w, the nonlinear coupling constant x is real and is

given by [4,9]
V{ 2nho \?
=;<m> 2Y xpxy(@), (2

with V denoting the quantization volume, n(w) the linear refractive index of the
medium, x,,..(w) the third-order nonlinear susceptibility tensor of the medium. The
parameter d in equation (1) is defined by [4]

o
2d=1 +Xxxyy( ) (3)
Xxyxy(w)
and describes the asymmetry of the nonlinear properties of the medium. Ritze [5] has
calculated this asymmetry parameter for atoms with a degenerate one-photon
transition obtaining the results

B {(21— 1)(2J +3)/[2(2J*+2J+1)], for JeoJ transitions,

= 4
272 +3)/[2(6J*>—1)], for JeJ —1 transitions. ®

The coupling between the two modes depends crucially on this asymmetry
parameter.

If there is no damping in the system, the interaction Hamiltonian (1) can be
directly applied to derive the Heisenberg equations of motion for the field operators
which, after replacing the time ¢ by —n(w)z/c to deal with the field propagation
instead of the field in a cavity, have the simple exponential solutions of the form [5]

a4 ()= exp {it[a} (0)a (0) + 2da% (0)az(0)]}a.(0), &)
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where

= n(co)icz‘ ©6)

c

"T'o describe the field state evolution the evolution operator U(t) can be used, which is
given by

U(z)=exp {i%[a*ﬁai +a'%a® +4da' ala_a,]}
=exp {i%[r‘z+(r‘z+—1)+ﬁ_(ﬁ_—1)+4dﬁ+ﬁ_]}, )

where we have introduced the number operators 7, =a% a, for the two circularly
polarized modes. If the initial state of the field is a coherent state of elliptically
polarized light one obtains [10]

n+,n

W) =U@as,0_>= Y, b5 )exp {i(n+¢+ +n_¢_
+i£—[n+(n+—1)+n_(n_.—1)+4dn+n_]}|n+,n_), ®)

where

|°‘j;|”:t

P = exp (—|oy |2/2)W,

ay =|oy|exp(igy), 9

a4 are the amplitudes of the initial coherent states of the two modes, |o4|? are the
mean numbers of photons, and ¢, are the phases of .. Properties of such states
have been discussed by Agarwal and Puri [10].

When dissipation is introduced into the system, the state of the field can no longer
be described by a pure state, like equation (8), and the density operator description is
necessary. A standard way of introducing the dissipation into the system is to couple
it to a reservoir of oscillators and after well known steps, to write down-a master
equation describing the evolution of the system with dissipation. For the system of
two coupled nonlinear oscillators obtained by the Hamiltonian (1), the correspond-
ing master equation in the interaction picture has the following form [11]

1 .
Opdt=rplHy pl+ ¥ {%([a.-p, afl+[a, paf)) +yiillay p1, a!]}, (10)

where y; are the damping constants and #; are the mean numbers of thermal photons.

The exact solution to the master equation (10) has been found by Chaturvedi and
Srinivasan [11]. In this paper we adopt their solution to describe propagation of light
in a Kerr medium with dissipation. We assume that the reservoir is at zero
temperature (7;=0) and that the field is initially in a coherent state. Moreover, we
replace the time evolution of the density matrix by the coordinate dependence
(assuming that the field propagates along the z coordinate). This means that the
. damping constants 74 can be interpreted as the absorption coefficients (per unit
length) related to the linear absorption of the medium. With these assumptions the
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solution to the master equation (10), in the number state basis, has the following
form

pm+,m_;n+,n_(1)=<m+) m—|P(T)|”+, n—>
~HOHB x| ~ 40 4Ty, 0|
X exp {i[5+¢+ +6_¢_ +%[5+(a+ +2do_—1)
+5-(0'—+2d0'+—1)]+Aa+,a_(T):|}, amn

where the b{* are given by (9), and we have introduced the following notation

gy =m4 +ni,
12
Or=my—ny, } (12

Do ()= HAL0+ AU+ 10, BN+ 1, B, a3
Ar0) =1 A0+ 10 A0~ HBEE) + B0 a4
N, n=m+2dn, (15)
2
AU = o1~ exp (= 15) 05 (1m0, (16)
2
B = exp (— ) in 1), a7

In equations (11-17) 7 is given by (6), and
A=y fk=y_|x (18)

describes the relative (with respect to the nonlinear coupling k) damping constant
assumed to be the same for both modes of the field.

The solution (11) is exact and, despite the complexity of I'y, ; (t)and A;, ;_(7),
its structure is quite transparent. If there is no absorption in the medium, A=0, both
I'5,.s_(t)and A;, ;_(7)are zero, and the density matrix factorizes into components of
the field state (8). The solution (11) will be used to calculate the expectation values
and variances of the Stokes operators.

3. Quantum fluctuations in the Stokes parameters

The changes of the polarization of initially elliptically polarized light when it
propagates through a nonlinear Kerr medium can be easily accounted for with the
use of the Stokes parameters. In quantum treatment of the two-mode field
considered in this paper, the following Hermitian Stokes operators can be defined

[13]
So=ala,+ala_,

S;=a%a_+ala,, (19)
S,=—i(a%a_—ala,),

S;=a%a,—ala_,
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where a . (a%) are the annihilation (creation) operators of the two circularly polarized
modes. If the boson commutation relations are applied for a, and al,, it is easy to
check that the Stokes operators themselves satisfy the commutation relations

[Sy, S;]1=2iS;, and cyclic interchange of indices, (20)
[S, Sel=0, i=1,2,3.
Moreover, we have
824+ .82+4.82=54(So+2). (21)

The quantum mechanical expectation values of the Stokes operators (19) are the
Stokes parameters describing the polarization of the light beam, For elliptically
polarized light the parameters of the polarization ellipse are given by [9]

tan 20={S,>/{S}>, }
tan 21 ={S;3)/({S; D2+ (S, )%),

where 8 is the azimuth of the polarization ellipse denoting the angle between the
major axis of the polarization ellipse and the x axis, and # is the ellipticity parameter,
—n/4<n< n/4; tan n describes the ratio of the semi-minor axis and the semi-major
axis of the polarization ellipse and the sign defines its handedness (plus indicates
right-handed polarization on the helicity convention).

The degree of polarization of the field can be defined as

_ S +(SH +<SP)?
So» '

For the initial coherent state of elliptically polarized light the Stokes parameters have
the values

(22)

P (23)

oy o |Solors, 0=y =loty |+l | =laf?,

{oty,a_|Sqloy, > =2Re (o', o) =|a|? cos 27 cos 26, 24
oy, 0 |Syloy,a_>=2Im (% a_)=|a|? cos 21 sin 26,

oy, o |Salory, 0y =lory|> —lor_|* =|a}? sin 27,

where |a|? is the total mean number of photons in the field while 8 =(¢_ — ¢, )/2 and
n define the polarization ellipse. The degree of polarization P is in this case equal to
unity. This means that the coherent state of the field corresponds to a classical, fully
polarized field. However, the non-commutability of the Stokes operators puts well
known limits on measurements of the physical quantities represented by these
operators. For example, according to the commutation relations (20), we have the
following Heisenberg uncertainty relation

[{(AS1)*){(AS))]2 2K S5). (25)

Quantum fluctuations in the Stokes parameters of light propagating in a Kerr
medium without losses have been discussed by Tana$ and Kielich [9]. In this paper
we wish to generalize those results including dissipation into the system. The exact
solution (11) to the master equation enables us to derive exact analytical formulas for
the expectation values and variances of the Stokes operators as well as the
characteristics of the field polarization for the medium with dissipation.
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The expectation values of the Stokes operators are given by

<S0>= io(n,'}'m)pn,m;n,m(t)
= i (n+m)b 262 exp [— At(n+m))
n,m=0
x exp {(la+ >+ la_[))[1 —exp ()]}
=of* exp (— 11), (26)

(S1>=2Re 3. [+ D0+ D1 pyurss, s 1.n(D)

=2y flo_|exp{—Ar+T_y ()
+ (ot |2+l _12){ exp (— A7) cos [(1 — 2d)r] — 1}}
x cos {¢, —p_ +(las|>—la_|*) exp (— A7) sin [(1 —2d)] = A_y (1)}
=|o|? cos2nexp {—At+T_; ; (1) +|of*{ exp (— A7) cos [(1 —2d)7] - 1}}
x cos {20 — |«|? sin 25 exp (— A7) sin [(1 — 2d)t] + A _, 1 (7)}, 27

(Sp=2Im 3\ [+ 1)+ DIy sins (D)

n 1]
=|a|?cos 2nexp { —Ar+T_; (1) +|a|* {exp (—At) cos [(1 —2d)7] —1}}
x sin {20—|a|? sin 21 exp (— A7) sin [(1—2d)t] + A_, (D)}, (28)

(S15= 3 (1= m)pp min (@)= sin 2n exp (), 29)

n 0

where 2|2, 26 =¢ _ — ¢, and n are the parameters defining initial state of the field; 4
describes the dissipation of the medium, and I'_, ;(tr)and A_, ,(7) are given by (13)
and (14) or (A 3) and (A 4). It is to be kept in mind that the latter two quantities
depend on 1, and that they vanish for A=0. For 4 =0 the results (26-29) go over into
the earlier results of T'ana$ and Kielich [9].

According to (22) and (23), from (26-29) we obtain
tan 20(t) = tan {260 — |a|? sin 29y exp (— A7) sin [(1 —2d)7] + A_, 1 (1)}, 30)
tan 25(t) =exp { —|a}? exp (— A1) cos [(1 —2d)t] — 1}} tan 27, 31

P*(t)=sin? 27+ cos® 25 exp {2]af?{ exp (— At) cos [(1 —2d)t] —1} +2T 1 (D)}
(32)
Formulas (30-32) are exact quantum expressions describing the evolution of the
polarization state of elliptically polarized field propagating in a Kerr medium with
dissipation. It is evident from (30-32) (see also the Appendix) that all polarization
parameters depend on 1-—2d, that is, they crucially depend on the asymmetry

parameter d of the nonlinear medium. For d=1/2, i.e. for 1/21/2 transitions, the
polarization state of the field does not change. For the fully symmetric susceptibility
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tensor y(w), d=1, and there are changes in the polarization of the field. From (30)
and (A 2) we obtain the following expression describing the rotation of the
polarization ellipse

O(r)=0—1sin 2y —2d)||? exp (— A1) sin [(1 — 2d 7]

1-2d
Zra—zay !
+ AfJa|* — | exp (— A7) cos [(1 —2d)7]]}

=0—4%sin2y ﬁ {(1—2d)Sy(7)sin [(1 —2d)7]
+ A{Se(0)— So(x) cos [(1 — 2d)z]}}, (33)
where
So(r)={So> =al* exp (— A7), (34)

according to (26).

Formula (33) is the exact quantum formula, which evolves in two different ‘time-
scales’ (in fact length-scales): one associated with the nonlinearity of the medium (1),
and another one related to the dissipation (A7). For A=0, formula (33) reproduces the
earlier obtained result [9], which is still the quantum result and is periodic in
(1—2d)1. Only for 1«1, when sin[(1—2d)t]~ (1 —2d)z, the classical result is
obtained. Another limit is A>> 1, in which only the term proportional to 4 in the large
braces contributes if the terms of order ™! are retained. Again, the transition to the
classical field is obtained by taking 1« 1, i.e., by replacing cos [(1 — 2d)t] with unity.
This gives us the quantity [S4(0)— S,(7)]/A that appears in the solution of the
problem for the classical field and the medium with dissipation. It is interesting to
note that, despite the fact that this classical result has been obtained from the
quantum formula under assumption 4> 1, putting A=0 in the resulting formula
leads to the same classical result which is obtained from the first term in the large
braces of equation (33) for A=0 and t«1. Thus, the classical result without
dissipation can be obtained from equation (33) in two different ways. For Aa1, the
effects of nonlinearity and dissipation are equally important, and in this case formula
(33) must be used in its full form. In figure 1 the evolution of 8(z) is shown for
different values of 4,7 =n/8,d=1, and |a|2=0-25,1, 4, 16.

The ellipticity 5n(t) given by equation (31) exhibits the T dependence that is a
purely quantum effect (we have assumed the same absorption for both circular
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Figure 1. Evolution of the azimuth 6(t) for # =n/8. The other parameters are taken the same
for all the figures, and they are: d=1, |&|?> =0-25 (dotted line), 1 (dashed line), 4 (dashed-
dotted line), 16 (solid line). Figure (a) is for A=0, and () for A=0-1.



756 R. Tanas and Ts. Gantsog

components of the field). The exponential does not appear for classical fields. For
A =0, equation (31) goes over into the earlier result [9]. The evolution of () is drawn
in figure 2 for different values of 4,n=n/8,d=1, and || =0-25,1,4,16. As is
seen from figure 2, the ellipticity #(t) approaches m/4 when la|?>1. This
means the circular polarization of the field. Thus the quantum fluctuations of the
field cause that the field which remains polarized during the propagation can only be
circularly polarized. For 4=0 there is a quantum periodicity of the evolution which
is removed by the dissipation. For =0, according to (31), there is no change in the
ellipticity of the field which suggests that initially linear polarization remains linear
during the evolution. This is true when speaking about the polarized part of the field.
However, one can easily check using equation (32), that in this case the degree of
polarization rapidly drops to zero, and there is practically no polarized part of the
field. The degree of polarization P(r) is plotted in figure 3 for #=0,d=1, and
different values of |¢|> and A. The reduction of the degree of polarization is quite
evident, and the dissipation prevents the recurrence of the initial degree of
polarization. From equation (32) it is seen that there is a lower bound for the degree
of polarization equal to |sin 27|. This means, for example, that for n=m/8 taken in
figures 1 and 2 the degree of polarization P(t) cannot fall below the value 1/\/ 2,ie.,
the field retains quite a bit of its polarization. For the circular polarization the degree
of polarization does not change at all. So, the effect of quantum field fluctuations is
most dramatic when linearly polarized light propagates through an isotropic
nonlinear medium. The changes in the degree of polarization for media without
dissipation were discussed earlier [9, 10, 14]. We have also discussed the relation of
the Stokes parameters with the phase properties of the field [15].

To study the quantum fluctuations in the Stokes parameters, we calculate the
variances of the Stokes operators and look at their behaviour during the evolution.
For the expectation values of the squares of the Stokes operator we get the relations

(8%,2)=12Re Y [(n+1)(n+2)(m+1)(m+2)1"2 s ms2:n4 2,m(7)

+nz (n+m+2nm)p, mnm
= i%’l:xn|4 cos? 2n exp {|o|*[exp (— A1) cos [2(1 — 2d)7] —1]
—24t+T _; ,(1)} cos {40 —|a|? sin 25 exp (— A7)
x sin [2(1 —2dYt] + A _ 5 5(1)}
+1jaf* cos? 257 exp (— 247) + |o)? exp (— A7), (35)

1.0

08¢-

061/,
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Figure 2. Evolution of the ellipticity 7(z), for n=n/8.
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Figure 3.

<S§> = Z (n + m)zpn,m;n, m(T)

=|at|* sin? 25 exp (— 247) + || exp (— A1). (36)

Formulas (35) and (36) together with (26-29) and (A 1-A 6) allow calculations of the
variances of the Stokes parameters. The variances are intensity dependent, i.e., the
quantum noise related with the measurement of the Stokes parameters is also
intensity dependent. However, it is rather the relative noise, or the signal-to-noise
ratio, that are interesting from the experimental point of view. One can ask the
question: How will the quantum fluctuations of the field affect the signal-to-noise
ratio? Our exact analytical formulas will immediately give the answer to this
question. Let us define the signal-to-noise ratio for the measurements of the Stokes
parameters as
IKSD|

(P =<8y
The evolution of the signal-to-noise ratio (37) is plotted in figures 4-7 for various
sets of the parameters. In figure 4 there are plots of R; (1) for
1=0,d=1,|¢|>*=025,1,4,16, and (a) =0, (b) 1=0-1. For A=0, i.e. the absence of
damping in the system, the evolution of the signal-to-noise ratio is periodic. The
initial value of the ratio is |a, as it should be for the coherent state |a). However,
owing to the quantum fluctuations of the field the ratio rapidly falls down if the field
is strong. That is, even without damping in the system, the signal-to-noise ratio
deteriorates drastically making the measurement of {.S; > less certain. The presence
of damping deteriorates the signal to-noise ratio still further, as is seen from figure
4 (b), and it removes the periodicity of the evolution. For the linear polarization of
the initial field, =0 and sin =0, and both {S,) and {S,) are zero all the time. That
is, the only signal we can measure in the case of linear polarization is {S;).

For elliptical polarization with 1 =7n/8, we have the situation illustrated in figures
5-7, where R,(1), R,(1), and R;(7) are plotted for 1=m/8, all other parameters being
the same as in figure 4. The signal-to-noise ratio R,(7) is lower initially than for linear
polarization, it is now |a| cos 27| instead of ||, there are some oscillations at the initial
stages of the evolution if the field is strong, but deterioration of the ratio owing to
quantum fluctuations and dissipation is evident. The ratio R,(t), shown in figure 6,
grows up initially indicating the conjugate character of S, with respect to S, as one
could expect from the commutation relation (20) and the uncertainty relation (25).
However, at later times quantum fluctuations of the field deteriorate this ratio as
well. Of course, the dissipation still worsens the situation.

R(1)= (i=1,2,3). (37
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The behaviour of R4(7) is different: if there is no damping R;(t) is constant and
equal to |a |sin 2|, and it is damped when A #0. This is shown in figure 7. So, the
quantum fluctuations of the field do not deteriorate the precision of measurement of
the Stokes parameter {S,;). This can be explained by the fact that this Stokes
parameter describes the circularly polarized part of the field which is not affected
during the propagation in the isotropic nonlinear medium. The only evolution is the
result of the linear damping of the field. The quantum character of the field
propagating in an isotropic Kerr medium manifests itself most strongly when the
field is linearly polarized.

4. Conclusions

We have considered the quantum field of elliptical polarization propagating in an
isotropic, nonlinear Kerr medium with dissipation finding the exact analytical
formulas describing the evolution of the Stokes parameters, which define the
polarization of the field, and the evolution of their variances, which describe
quantum fluctuations in the Stokes parameters. We applied the exact solution of the
master equation obtained recently by Chaturvedi and Srinivasan [11] to find the
evolution of the Stokes parameters and their variances. The quantum character of
the field essentially affects the polarization of light propagating in the medium. In the
case of linear polarization there is a rapid decrease of the degree of polarization. For
the elliptical polarization there is a lower bound for the degree of polarization equal
to |sin 277], which means that the circular polarization remains unchanged during the
evolution. The results for the azimuth of the polarization ellipse, its ellipticity, and
the degree of polarization are illustrated graphically for various sets of parameters.
There are quantum effects that can be found in the evolution of these quantitites
despite the fact that they are defined by the expectation values of the Stokes operators
that are linear in intensity.

The quantum noise of the Stokes parameters of light propagating in a Kerr
medium is discussed in detail. The evolution of the signal-to-noise ratio for the
measurements of the Stokes parameters is studied. It is shown that quantum
fluctuations of the strong field drastically deteriorate the signal-to-noise ratio for the
measurements of the Stokes parameters {(S;) and {S,) related with the linear
polarization of the field. The parameter {S5), related to the circular polarization of
the field, is not affected by the quantum fluctuations. As one could expect, the
dissipation in the system lowers the signal-to-noise ratio in any case. Our exact
formulas that include linear damping allow for the quantitative assessment of its
destructive role in the quantum evolution of the field.

Although the damping is linear, the final results are intensity dependent, and the
influence of dissipation on pure quantum effects is more evident when the coherent
excitation is large. This is a result of mixing of two physical mechanisms that lead to
the final results: (i) the nonlinear interaction leading (through ) to the intensity
dependent pure quantum effects and (ii) the linear damping associated with A that
damps these quantum effects. If the coherent excitation is small, the quantum effects
are small, and there is ‘nothing’ to be damped. In this case the effect of damping is
less evident. Thus, our results give an interesting example how the nonlinear and
linear processes can be mixed into a nonlinear final result.

We should also emphasize that the results obtained in this paper are based on the
assumption that the measured quantities are the expectation values of the Stokes
operators (which are Hermitian operators, i.e. observables) and their variances. The
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expectation values of the Stokes operators, i.e. the Stokes parameters can be actually
measured by measuring the intensity of light that passed through a combination of
the optical elements such as polarizers and quarter-wavelength plates. In this
context, we have to keep in mind that our results for the azimuth 6(z) and the
ellipticity #7(t) are in fact calculated as the inverse trigonometric functions of the
expectation values of the Stekes operators, and not as the expectation values of the
Hermitian operators representing these observables. Since, generally, the expect-
ation value of a function of operators is different from the function of the expectation
values of the operators, the results obtained from the measurements of the Stokes
parameters can differ from the results obtained, for example, from the measurements
of the expectation values of the Hermitian phase operators, as we have shown
elsewhere [15]. So, the results of this paper must be associated with the measure-
ments of the Stokes parameters which, in fact, can be measured in practice.

Appendix

For convenience, in this Appendix we write down the explicit expressions for
Ia(1) and A, ,(7) needed for our calculations in this paper. Let us define the
quantities

2)
Ak(‘r)=lm]—z{l “CXP("‘/{T)COS [k(l——Zd)]}, (Al)
|o?4 .
By(t)= 5 exp (1 —At) sin [k(1 —2d)]. (A2)

22+ [k(1-2d)]

Using (A1) and (A2), from the general expressions (13-17), we can derivé the
following relations:

[_y,1(0)=44,(1)+(1—2d)B,(1), (A3)
A_y 1(1)=sin2n[—(1 —2d)4,(1)+ B, (7)], (A4)
T_, ,(t)=Ad,(t)+2(1—2d)B,(1), (A5)
A _ 5 o(t)=sin 2 [—2(1 — 2d) A,(t) + AB,(z)]. (A6)
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