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Abstract. In this paper we consider phase properties of the field in the two-mode
three-level problem. Phase properties of each individual mode as well as their joint
probability distribution and correlation function are studied. We find that phase properties
of the field reflect the collapses and revivals of the level occupation probabilities in most
situations. However, there exist exceptions, for example, in the case of Raman scattering,
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completely decorrelated from the phase of the field. This takes place when the field mode
is fed by the photons emitted spontaneously from a real atomic level, which affects the
field occupation numbers but not its phase.

1. Introduction

In the previous paper of this series [1] (hereafter referred to as 1) we have studied
phase properties of a one-mode coherent field interacting with a three-level atom
under two-photon resonance. The three levels have been denoted by 1, 2 and 3 with
level 1 coupled to level 2 and level 2 coupled to level 3 through corresponding
electronic dipole transitions, while the transition 1«3 is forbidden. We have found
that when the electron is initially in level 2, level 2 and the combination of fevels 1 and
3 behave like two levels concerning phase properties of the field. Interesting features
such as the partial trapping of the field phase have been observed when level 3 is
initially occupied. In both cases the collapse and revival phenomenon has been
connected to the time behaviour of the phase probability distribution and the phase
_variance.

In this paper we treat, instead of one mode, two modes. Mode 1 interacts with the
atomic dipole moment between levels 1 and 2, and mode 2 with the one between
levels 2 and 3 (see I, figure 1). As in I, we assume two-photon resonance and use the
formalism worked out by Yoo and Eberly [2] to obtain general expressions for the
evolution of the system, and consequently for phase probability distribution, the
expectation value and the variance of the phase in terms of matrix elements of the
evolution operator. We show that one-mode results hold for the two-mode case with
minor modifications if the photon number distributions of the fieid in the modes are
well localized around the mean photon numbers 7, and 7, respectively, For coherent
fields this assumption means #,, f,> 1.

More attention is drawn to specific problems of the two-mode system such as
different effects of the initial atomic state on the evolution of the field phase in the two
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modes, or phase properties of scattered light in Raman scattering. Finally, we use the
Hermitian phase formalism of Pegg and Barnett [3-5] to investigate the joint
probability distribution and the correlation function of the phase operators for the two
modes and discuss phase properties associated with these quantities.

2. Basic equations

In a similar fashion as for one mode, we write the Hamiltonian for two-mode coupling
as follows

H=H,+H:+H' (1)
where (h=1)

3
HA:E gfb:-bj Hp=w1af'a1+a)zaz+az (2)

i1

and the interaction Hamiltonian H' given for each atom type in the dipole and
rotating wave approximations by

Hi==Ea,bib+nabib,+HC
H,'\=§a1b;'b1 +7]a;b;b2+l{c (3)
=Ea; by by +naby by +He.

In the tWo-mode case, there exist two excitation numbers N, and N,. For a given
pair of (N,, N;) the basis vectors in the (N, N;) subspace are

|]’)(Nl'N2)= bf'+|0v 0’ 0’ Nl — M, NZ_ V,-)
=|f; Ny—p, Na— v ji=1,2,3 (4)

where the values of (u;, v,), (s, v2), (3, v3) are (0,0}, (1, 0), (1, 1) for = type, (0, 1),
(1, 1), (1, 0) for A type and (1, 0), (0, 0}, (0, 1) for V type. In this subspace the matrix
representation of the time evolution operator in the interaction picture is [2]

U(N,,Nz)(t) = @idif2
P+ B Ey() Ef[-e+x()]
x| BO PO O ®
En[—e“+x(O] Ay(®) E e +ix()
where A is the detuning parameter and we have used the nqtation

Ev,=EVN, M =nVN;

gEgNth = (§2N1 + q}\’z)uz fEfN1.N2 = (gsz1.Nz + %AZ)IIZ
- - §N1 ”Nz

P = . L./ B (6)
§ =, BNy M TN

A
x(y=xy, p()=cos(fy, w ) +ig7— 2. sm(fNl nf)

Ny .
2= sin( fu,. m)-
Ny N3

y(O)=ym p(0)=—
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For an electron initially in level i and the field initially in a coherent state, the state
vector of the atom—field system at =0 will be

@)= b, by expli(nB; +napy)]lis ny, ) @
ny, n2
where
fATT 172 ’ﬁ-’z!z‘ 12
b, =exp(—A,/2){ — b,, = exp(—,/2) (8)
Hy ! : nz!

and 8, B, are the phases of the field in the two modes. At a later time ¢, the state
vector equation (7) in the interaction picture becomes

3

|w ()= E b., b, expli(n, B, + )1 z U§?1+ﬂr'n2+vi)(t)ifi ny+ g, ne+ o) 9)

nLm j=1
where u;=p;—p; and v;=v;~v,. For convenience, we introduce the following sums

U=U(n,, ky, 02, ky, 5 1)
3

=, UM (Ul (10)
j=1
‘where
No=n +u, K =k +v
No=m+y; K=k, +v, (11)
and

U= 0, U(n, k, my=ky, is )

ny
Uzzz b2 UGy, k, ny=ksy, i 1) (12)
"

which are relevant to phase variables. By means of equations (5), (6) and (10) we have
ifi=2

U= (EnmExi T TnmlTkk) Yimy ki, T X WnaXx (13)
(i) if i=1
) U=fxmfk e+ éNlNzéKleﬁleNzﬁilxz + EnmEx ik Yy Tk,
+ (EnpmmmEx T fm T X mm X ok,
+ (FmEarn — Evm Exoa T mm T xik,) €Xp(HANDX K
+ Eng T kke— Ev kot T K1) exp(FiA ) x T, - (14)

The last two terms in (14) will give insignificant contributions when we average U
over the photon number distributions in the strong coherent excitation limit.
Therefore, we neglect them from now on whenever this limit is obeyed.
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Using the standard procedures [1, 6, 7], the phase probability distribution, the

expectation value and the variance of the Hermitian phase operator may be obtained
for the field in each mode. For example, for mode 1, one gets

1
P(el y t) = (1 +2 2 bmbh COS[(m k )91] RCU1

n>ky
+2 ? bn_b’r‘.. Sin{(ng—k‘}ﬂ-] IIIIUA . (15\
o 1 i EAN 17714 L by F
n >k /
which is normalized so that
f P(6,,nd#; =1. (16)
and
Cae
(@a)=p-2 bubi, =~ ImU, (17)
n >ky
2 ny—k ni—k
fAm1\=H_¢A Ny ( 1)1 : 7 {‘"‘ (_l)l_lrmn\lz P27
\BEH T AT Ly CmCh (n _ Rel, - ps &n by n—k “"Vl} Lio)
ny>kq ! 1>k !

Similar results hold for the field phase in mode 2. The joint probability distribution
and the correlation function between the two phases will be examined in section 4.

3. Phase propérties of the field in individual modes

For definiteness, we consider phase properties of the field in mode 1. Phase properties
of the field in mode 2 may be treated in a similar fashion.
Case 1. The electron is initially in level 2

: By putting =2 and using equations (6), (12) and (13) we get

Rel,= ,,22 bﬁz (COS(leNJ) cos( fx,m,t) +fN1N2fK|N2 (S
+ 175, + 1A7) sin(fy, x,0) sin(leNzt)) (19)
A 1
ImU,= ) ,,22 bi, ( o £) cos(fu,m?)
1 _
- sinfund) 05 ) 20)

These expressions have the same time-dependence form as in equation (1.27), (1.28).
This implies that, concerning the field phase, the three-level system in this case also
behaves like a two-level one consisting of level 2 and the combination of level 1 and
level 3, but the ratio of the contiribution from level 3 to that from level 1 is now
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&%i,/n%i, and the frequency relation is (62N, + n*N,)"2=x VN, where x is the coupling
" coefficient and N is the photon number in the two-level system.
On resonance, we now cannot separate P(8, t) exactly into two parts P, (0, () and .
P_(#8, 1) to show the two-peak structure as clearly as in (1.31) and (1.32), though it may
be done approximately. However, in the large detuning limit

4g2 . &+ A
B=—rst=4 IA;’ 2l (21)

the phase probability distributions are again simplified considerably, and are given by

1 [ E\ T

P(6,, :)=5;{1+2 Ek by b, o8| (ny = ky) (9'+K) } (22)
n1>k) L N
1 [ 7\

P(Bz, !) 142 2 bnzbkz COS (nz - kz) 92+ K’) } (23)
Ry>ky = -

where we have discarded all terms of order £3 and smaller. These results can also be
compared with those obtained by Yoo and Eberly in [2], where they have shown that
in this case the two-mode three-level system can be described by the effective field
Hamiltonian

2 2

F
Hcff——-al*aﬁ-—z

A as a. (24)

The phase probability distributions (22) and (23), clearly, may be derived directly
from the Hamiltonian (24).
Case 2, The electron is initially in level 1 (i=1).

In the strong coherent excitation limit we get the following approximate expres-
sions for Rel/; and Im U/,

n’A,
ReU1=§z’.h+nzn2 52"14"7 7, Z b (COS(leNZt) COS(fKINzt)
fN N; fK N (gNlngK’Nz + %Az) Sin(leNzt) Sin(leNzt)) (25)
\N2 Ky Na
£,

1
ImU, =~ 5 z b2, (—N —sin(fusaf) €08(fiomf)
iz 1

52" +n’h,

- 3‘1—— sin( K N,f) cos(fx, ,vzt)) (26)

1 N2
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Figure 1. Phase probability distribution P(6,, 1) (full curves) and P(8;, r) (broken curves)

plotted against 6 for A type and fori=1, A=0, A, =f,=A=3, =y =y. The scaled time |

T=yt/(27V2A).

The phase probability distribution can be written as a sum of time-independent and
time-dependent terms where

PO, ) = 7, P &,
(61, 1) =%, v o, o(61) +m P8, ) (27)
where
1
P()(el) ES5 ﬁ 1+ 2 2 bnlbkl COS[(n1 - kl)f)]]) (28)
ny > ky

represents an unmoved phase state, and P,(6, {) represents two counterrotating phase
states in the polar diagram. We thus observe the partial trapping of the field phase in
the initial state as in the one-mode case. _

From the similarities between (25), (26) and (1.38), (I1.39) it is not difficult to -
predict that the phase probability distributions, the expectation values and the
variances of the phase will show identical behaviour, and the discussion for the two
modes considered here can be done in a similar way to that for the one-mode case [1].
Clearly, the connection of the collapse-revival phenomenon with the dynamical
behaviour of the field phases is also seen in the two-mode case.

Up to now, we have treated only the phase properties which resemble those for the
one-mode case. As a first example of discrepancies between the two cases, one can
notice that when the electron is initially in levels 1 or 3, it must affect the evolution of
the field phases in mode 1 and 2 in different ways, which is not the case when the
electron is initially in level 2. Indeed, in figure 1 we have plotted P(8,, ¢) (full curves)
and P(#,, 1) (broken curves) against 8 in the Cartesian coordinate system for various
times. The mean photon numbers and the coupling coefficients have especially been
chosen equal to isolate the effects of the initial atomic state. Figure 1 shows that as the
interaction is switched on, the field phase in mode 2 evolves somewhat differently with
respect to the field phase in mode 1. This can be interpreted as a result of the fact that
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the atom must first interact with the field in mode 1 to transfer the electron to level 2
before the transition 2<»3 may come into operation.

Another situation, which occurs for two modes only, is when the field in mode 1 is
initially excited and mode 2 is initially empty. Clearly, for E and V types the field in
mode 2 will not show any dynamics in the course of time. For A type, however, the
field evolves and the occupation probability of level 3 are not only non-vanishing due
to spontaneous emission from level 2, but also exhibit collapses and revivals [2]. It is
interesting to know then: whether the field phase will show corresponding changes.
From the equation similar to (15) for the field phase in mode 2, one gets

P(6,,)=1/2n (29)

for all times. Since only spontaneously emitted photons feed mode 2, they do change
its occupation numbers but do not affect the phase of the field, which at all times
remains uniformly distributed. The time behaviour of the phase probability distribu-
tton can not be connected with the collapse—revival phenomenon any more. Below we
will also show that in this case the correlation function between the two phases
vanishes.

4. The joint probability distribution and the correlation function

In the two-mode, three-level system, we have two phases evolving simultaneously.
These two are connected through interaction with the common atomic level 2 and it is
desirable to investigate such quantities as the joint probability distribution and the
correlation function between them.

Generalization of the Hermitian phase formalism into the two-mode case is
straightforward and has been used by Gantsog and Tana$ for the propagation of light
in a Kerr medium [8] as well as in pair coherent states [9]. In our case, for the state
vector (9) we obtain

1
KBfnll(Bmzlw(t))lz = (s + 1)2 2 bﬂl bklbnzbkz

nykiong, kg
x {cos[(r, — k1)(6, ~ B,) + (n,— k2 )(6,— B,)] Re U
+sin[(r, — ki )(01 = B1) + (ny = k3)(0,— B,)] Im U} (30)
where |0, )and |8,,) are phase states of mode 1 and mode 2, respectively, and U is

given by equation (10). Since the coherent field at t=0 belongs to a class of partial
phase states [5], we choose the reference phases 8, and 6,, as

8o, = Bi— — i=1,2 (31)

and introduce the new phase labels

ﬂl-=m,-"é‘31 mf=0a1:2}""si (32)
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which go in integer steps from — s, to 4s,. In the limit when s, tend to infinity, the
continuous phase variables can be introduced replacing u27/(s;+1) by 6; and
2a/(s;+ 1) by d6; and one obtains the continuous joint probability distribution in the
form

P(6,,0,,1)= > bubibubi, fcos[(n— k)8, + (n— k;) 5] Re U

1
(zn)znl.kl,nz,kz
+Sin[(n1_kl)61+(n2_k2)62] Im{ (33)

which is normalized according to

f f P(8,,6,, 1) d6, d6,. (34)

It is easy to verify that integrating P(&,, 8,,¢) over one of the phases gives the
marginal phase distributions P(#,, r) or P(0,, t) for phases 0, or 6,

P, )= f " P6y, 0,, 1) d6, (35)

P(6,, 1) = f " P(6,,0,, 1) d6, (36)

as expected. _

Some examples of the time behaviour of P(6,, 8,, {) are presented in figures 2 and
3 for the resonance case, and for various moments of the scaled times. The advantage
of figures 2 and 3 is that they allow observation of the evolution of the field phases in
mode 1 and mode 2 simultaneously. In figure 2, where the level 2 is assumed to be
initially occupied, we clearly see the splitting of the phase states of both modes into
two as the time goes on. When the level 1 is initially occupied (figure 3) the phase state
of each mode splits into three satellite phase states. The central unmoved peak in
figure 3 is associated with the first two time-dependent terms in (14) and indicates the
partial trapping of the field phases in the modes. Figures 2 and 3 also reveal that at
T=1, i.e. when the level occupation probabilities show their first revivals, the
sideband peaks of P(6,,7) and P(6,, f) approach the borders of the phase windows
which means the overlapping of these peaks in the polar diagram. Note that in figures
2 and 3, P(0,, 6,, t) exhibits some additional symmetry

P(6,,0,,t)=P(—0,,—0,,1) 37N
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“which is due to the exact resonance condition.
The correlation function between the two phases can be calculated according to

Ca,az = (“i’eﬁb@ - (d)el)(‘i’o)
- f f " 0,0,P(6,, 6, ) 46, d,
[ (6. nd \

_\J 6,P(6,, 5 dt’j‘l}U s B( 2,:)062). (38)
-

For P(6,,0,, 1), P(6,,1) and P(6,, ) given by equations (33), (15) we have
( 1)n1—k1+n2-k2

Copor=— by by BBy, —r—— RelU
fif n ﬂlz_‘;z o MEmTR () — k) (o — ko)
I —1y2—Fk2
(E bﬂlbkl( 1k ImU )(Z bﬂzbkz( 1k Im Uz)- (39)
m#Eky meky

This correlation coefficient in the case of exact resonance is plotted against the scaled
time 7 in figures 4 and 5. As the evolution proceeds, the correlation coefficient, which
is equal to zero at t=0, goes up initially. After a while, it begins to oscillate near the
value depending on the initial atomic state and intensities of the field in the modes. In

—3. 14 —0.00 =.1

Figure2. Plot of the joint probability distribution
P(8,, 8,,1) for A type and for i=2, A=0, #,=#;=n=3,
E=n=y. The scaled time T=yt/(2aV2a).
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Figure 3. The same as in figure 2, but fori=1.

T-)

Figure 4. Phase correlation coefficient C, 6, plotted as a function of the scaled time T for
various initial atomic states and for A type, A=0, A=/, =A=3, E=g=y.
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Figure 5. Phase correlation coefficient Cy,p, plotted as a function of the scaled time Tfo;'
A type and for i=1, A=0, A;=3, E=p=v. The curves A, B, C are for i;=3,0.1 and
0.001, respectively. The scaled time T'=y¢/[2a(fi; + #,)"?].

figure 4, where the correlation coefficients Cy, 4, for i=1 and i=2 are compared, we
see that when the electron is initially in the common level 2, the two phases are more
strongly correlated than when the electron is initially in level 1,

In figure 5 we have fixed the mean photon number #; of the field in mode 1 and
have varied the mean photon number #, of the field in mode 2. It can be seen that the
value of Cy,q, decreases when #, decreases (the same holds true when both 7, and 7,
decrease). For i, =0, Cy, 4, vanishes. The vanishing correlation coefficient for the case
when one of the two modes is initially vacuum can be found directly from (39). This
decorrelation between the two phases additionally explains the fact mentioned above
that the phase of the scattered light always remains randomly distributed although the
average photon number exhibits collapses and revivals.

5. Conclusion

We have used the Hermitian phase formalism of Pegg and Barnett to study the phase
properties of a two mode coherent field interacting with a three-level atom in an ideal
cavity. Similarly to the case of a one-mode three-level system, the collapses and
revivals of the level occupation probabilities have been shown to be accompanied by
subsequent splittings and overlappings of the phase states, except for the case of the
scattered light in Raman scattering, which may be explained in part by the decorrela-
tion between the phases of the two modes. We have investigated the joint probability
distribution and the correlation coefficient between the two phases. We have shown
that this correlation coefficient decreases with decreasing in the mean photon numbers
of the field modes.

References

[1] Aliskenderov E I, Ho Trung Dung and Shumovsky A S 1991 Quantum Opt. 3
[2] Yoo H I and Eberly J H 1985 Phys. Rep. 118 239



266 Ho Trung Dung, R Tanas and A S Shumouvsky

[3] Pegg D T and Barnett S M 1988 Europhys. Lest. 6 483

[4] Barnett S M and Pegg D T 1989 J. Mod. Opt. 367

[5] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665

[6] Ho Trung Dung, Tanas R and Shumovsky A S 1990 Opt. Commun. 79 462

[7) Ho Trung Dung, Tana$ R and Shumovsky A § 1991 J. Mod. Opt. to be published
[8] Gantsog Ts and Tana$ R 1991 J. Mod. Opt. to be published

[9] Gantsog Ts and Tana$ R 1991 Opt. Commun. 82 145



