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Abstract. Photon number and phase fluctuations and correlations in- the second harmonic
generation are discussed. The new Pegg-Barnett Hermitian phase formalism is used to
deal with the phase properties of the field. The method of numerical diagonalization
of the interaction Hamiltonian is applied to find the state evolution and, consequently,
the number and phase quantum fluctuations. It is shown that the joint phase probability
distribution evolves into a multi-peak structure indicating clearly the transition from
the second harmonic to the down-conversion regime, and back. The evolution of all
relevant quantities is illustrated graphically, and their dependence on the mean number
of photons of the initial field is shown explicitly. The number~phase uncertainty product
for the fundamental mode is plotted making evident the abrupt transition from the low
to the high level of quantum fluctuations:

1. Introduction

Second harmonic generation which was observed in the early days of lasers [1] is
perhaps the simplest non-linear optical process. Due to its simplicity and variety of
practical applications the second harmonic generation is a starting point for present-
ing non-linear optical processes in the textbooks on non-linear optics (see for example
[2,3]). Classically, the second harmonic generation means the appearance of the field
at frequency 2w (second harmonic) when the optical field of frequency w (funda-
mental mode) propagates through a non-linear crystal. In the quantum picture of the
process we deal here with a non-linear process in which two photons of the funda-
mental mode are annihilated and one photon of the second harmonic is created. The
classical treatment of the problem allows closed form solutions with the possibility of
energy being transferred completely into the second harmonic mode. For quantum
fields, the closed form analytical solution of the problem has not been found unless
some approximations are made. The early numerical solutions [4] showed that quan-
tum fluctuations of the field prevent the complete transfer of energy into the second
harmonic and the solutions become oscillatory. Later studies showed that the quan-
tum states of the field generated in the process have a number of unique quantum
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features such as photon antibunching [5] and squeezing [6, 7] for both fundamental
and second harmonic modes (for a review and literature on quantum effects see [8]).

Recently, Nikitin and Masalov [9] have discussed properties of the quantum state
of the fundamental mode calculating numerically the quasiprobability distribution
function Q(c, o*) for this mode. They have suggested that the quantum state of the
fundamental mode evolves, in the course of the second harmonic generation, into a
superposition of two macroscopically dlstmgunshable states. Such superpositions of
well separated coherent states that appear in the evolution of an anharmonic oscillator
[10] are clearly indicated by the splitting of the @ function into separate peaks [11].
As Gantsog and Tana$ [12,13] have recently shown using the new Pegg—Barnett [14—
16] Hermitian phase formahsm, such superpositions are also clearly visible in the
phase distribution functions.

In this paper we consider the problem of photon number and phase quantum
fluctuations and correlations in the field produced by the second harmonic generation
process. The fully quantum approach using the method of numerical diagonalization
of the interaction Hamiltonian [17,18] is employed for getting the evolution of the
system. The evolution of the photon number fluctuation in both fundamental and
-second harmonic modes, the correlation between the numbers of photons of the
two modes, the joint phase probability distribution, the phase variances for the two
modes, the intermode phase correlation, and the number—phase uncertainty product
are obtained and illustrated graphically. Some of the results for photon number
fluctuations in particular modes of the field are known [4,18], but are reproduced
here to contrast them with the new results for the phase fluctuations and correlations.
To describe the phase properties of the field the new Pegg-Barnett [14-16] Hermitian
phase formalism is used. A qualitative change in the phase distribution, a transition
from a one-peak into a two-peak structure (a sort of ‘phase transition’) is found to
appear during the evolution. A sequence of such ‘bifurcations’ leads eventually (in
the long time limit) to the randomization of the phase.

2. Quantum evolution of the field state

The second harmonic generation process is described by the following model Hamil-
tonian

H = H, + H, = hwa'a + 2hwblb + hg(bla? + ba'?) OB

where a (a') and b (b') are the annihilation (creation) operators of the fundamental
mode of frequency w and the second harmonic mode of frequency 2w, respectively.
The coupling constant g, which is real, describes the coupling between the two modes.
The same Hamiltonian describes the reverse process of sub-harmonic generation (or
the parametric down-conversion with quantum pump). The difference between the
two processes is in the initial conditions. The second harmonic generation takes place
when the mode of frequency w is initially populated and the mode at frequency 2w
is in the vacuum. In the case of sub-harmonic generation the initial population of
the two modes is interchanged.

Since H, and H; commute, there are two constants of motion: H, and H;.
H, determines the total energy stored in both modes, which is conserved by the
interaction H;. This allows us to factor out exp(—iH,t/h) from the evolution
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operator and, in fact, to drop it altogether. In effect, the resulting state of the field
can be written as

[9(2)) = exp(~i Hyt/R)|¥(0) - @

where |W(0)) is the initial state of the field. If the Fock states are used as basis
states, the interaction Hamiltonian H; is not diagonal in such a basis. To find the
state evolution, we apply the numerical method of diagonalization of H; [17,18].

Let us assume that initially there are n photons in the fundamental mode and no
photons in the second harmonic mode, i.e., the initial state of the field is [n,0) =
|n}|0). Since H, is a constant of motion, we have the relation

(ata) + 2(b'b) = constant = n ©)]

which implies that the creation of k photons of the second harmonic mode requires
annihilation of 2k photons of the fundamental mode. Thus, for given n, we can
introduce the states :

™) = |n — 2k, k) k=0,1,...,[n/2] @

where [n/2] means the integer part of n/2, which form a complete basis of states
of the field for given n. We have

(wgc? )Iwin)) = 6nn’6kk’ (,5)

which ‘means that the constant of motion H, splits the field space into orthogonal
subspaces, which for given n have the number of components equal to [n/2] +1. In
such a basis the interaction Hamiltonian has the following non-zero matrix elements

(W | Hy ™) = (™ Hy ) = (HDS, = (HDE,
= lig\/(k + 1)(n - 2k)(n - 2k - 1) (6)

which form a symmetric matrix of dimension ([n/2] + 1) x ([n/2] + 1) with real
non-zero elements (we have assumed g real) that are located on the two diagonals
immediately above and below the principal diagonal. Such a matrix can be easily
diagonalized numerically [17].

To find the state evolution, we need the matrix elements of the evolution operator

e k() = (W™ exp(~i Hit/B)|y™). )

If the matrix U is the unitary matrix that diagonalizes the interaction Hamiltonian
matrix given by equations (6), ie.,

U= H(VU = hg x diag (M, Aps- - Ay ®)

then the coefficients c,, , () can be written as
(n/2] ,
ea(t) = 3 e MU UG, ©)

i=0
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where ), are the eigenvalues of the interaction Hamiltonian in units of Ag. Of course,
the matrix U as well as the eigenvalues ); are defined for given n and should have
the additional index n, which we have omitted to shorten the notation. Moreover,
for real g the interaction Hamiltonian matrix is real, and the transformation matrix
U is a real orthogonal matrix, so the star can also be dropped.

The numerical diagonalization procedure gives the eigenvalues A; as well as the
elements of the matrix U, and the coefficients c,, ,(¢) can thus be calculated ac-
cording to (9). It is worthwhile to notice, however, that due to the symmetry of the
Hamiltonian the eigenvalues ); are distributed symmetrically with respect to zero,
with one eigenvalue equal to zero if there is an odd number of them. When the
eigenvalues are numbered from the lowest to the highest value, there is an additional
symmetry relation

UpiUps = (=1)* Uy 1o y21-i Vo fn 21— (10)

which makes the coefficients c,, ,(¢) either real (k even) or imaginary (k odd). This
property of the coeflicients c,, ,(t) is very important and allows in some cases to get
exact analytical results.

Knowing the coefficients c,, ,(t) the resulting state of the field (2) can be written,
for the initial state |n,0), as

[n/2] ' ‘
() = Y e x (D). 1)

k=0

The typical initial conditions for the second harmonic generation are a coherent state
of the fundamental mode and the vacuum of the second harmonic mode. The initial
state-of the field can thus be written as

[$(0)) = > _ b,In,0) (12)
n=0
-where
N2 o ‘ k
b, = exp(N,/2) T e "’ (13)

is the Poissonian weighting factor of the coherent state |o) represented as a super-
position of the number states, N, = |a|? is the mean number of photons, and ¢, is
the phase of the coherent state — o = /N, exp(ip, ). With these initial conditions
the resulting state (2) is given by

S n/2] :

lp(t)) = b, lp™M (1) = D b, D e (D — 2k, k). (14)
n=0 n=0 k=0

Equation (14) describing the evolution of the system is our starting point for further
discussion of the second harmonic generation. If the initial state of the fundamental
mode is not a coherent state, but it has a decomposition into the number states of the
form (12) with different amplitudes b,,, equation-(14) is still valid when corresponding
b, are taken. It is true, for example, for the initially squeezed state of the fundamental
mode.
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Figure 1. Plots of 2(n;)/ N, against the scaled time r = +/2N,gt, for N, = 4 (bold
curve), N, = 16 (broken curve), and N, = 36 (full curve). The same description of
the curves is used in other figures.

3. Photon numbers evolution: expectation values, fluctuations and correlations

The classical solution for the second harmonic intensity (see for example [13]), for
perfect phase-matching and absence of the second harmonic for ¢ = 0, can be, in our
notation, written as

N
(nb)dass = _2_a tanh2 (V 2Na,gt) . (15)

This solution means the monotonic growth of the second harmonic intensity and
asymptotically a complete power transfer to the second harmonic mode.

It is well known [4, 18], however, that the quantum solution has oscillatory char-
acter and does not allow for the complete power transfer. Since the closed-form
analytical solution is not available in the quantum case, one has to use some approx-
imations or numerical methods to find the solution. Using the state (14), the mean
number of photons of the second harmonic evolves according to the formula

o0 [n/2]
(ny) = <¢(t)|b'b|¢(t)> = Z 16,12 Z klc, (D (16)

Because of the Poissonian factors, which are peaked at N,, the summation (16) can
be performed numerically if N, is not too great. On the other hand, some features of
the classical solution can be expected for N, > 1. We evaluate numerically formula
(16) to find the evolution of the mean number of photons of the second harmonic
mode for N, = 4, 16 and 36. The results are shown in figure 1, where 2(n;)/N, is
plotted against the scaled time = = /2 N_gt. Such scaling of time is prompted by the
classical solution (15) and sets a proper time-scale when various N, are considered.
The oscillatory behaviour discussed earlier [4,18] is clearly visible. The oscillations
decay faster for higher N,. The fraction of energy that is transferred to the second
harmonic increases as N, increases, and for N, = 36 the maximum transfer is about
90 per cent. Of course, due to energy conservation we have (n,) + 2(n,) = N
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Figure 2. Evolution of the relative number fluctu-  Figure 3. Same as figure 2 but for the second
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Figure 4. Evolution of the intermode number cor-  Figure 5. Plots of the ¢(2) function for the funda-
relations. mental mode. ’ i S

Since H, is a constant of motion, H? is also a constant of motion, which gives
for the fluctuations of H,, the following relation »

((AHy)?) = (H) - (’Ho)z = 1\’av(ifi¢~’)2 17
and this can be rewritten-as
((An,)) +4((An)?) + 4(An,Any) = N,. (18)

Formula (18) establishes the relation between the fluctuations of the individual-mode
photon numbers and the intermode photon-number correlation. All the quantities
on the left hand side of (18) can be calculated numerically using the state (14),
and formula (18) can serve as a test of numerical precision. N, sets the level of
fluctuations for an- initially coherent state. The evolution of relative fluctuations and
correlations is shown in figures 24, for N, = 4, 16 and 36. It is seen that after the
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maximum of the second harmonic has been passed (7 & 2) there is a rapid growth of
photon fluctuations in both modes, which is compensated by the negative correlation
Cr.ny = (An,An,). In the long time limit the relative fluctuations become close
to certain values, which are larger for larger N,. Since the photon statistics in the
second harmonic have already been discussed [4] and the non-classical character of
the field states proved [5-9, 18], we are not going to give here any extensive discussion

of those problems. Just for easier comparisons we show in figure 5 plots of the g(®

function for the fundamental mode (g,(,z) = (n,(n, — 1))/(n,)?). Initially photon
statistics are sub-Poissonian, but the effect is smaller for large N,. Next, there is a
sharp increase of ¢?, and the super-Poissonian peak occurs. This peak is associated
with squeezing in the fundamental mode. In the long time limit g? approaches its
asymptotical values that depends on N,. Beside the photon statistics in-the individual
modes, we would like to emphasize the fact of strong negative correlation between
the photon-number fluctuations of the two modes, which is associated with the rapid
growth of the photon-number fluctuations in each mode. This transition from the
state with low fluctuations (and correlations) to the state with high fluctuations (and
correlations) means the qualitative change of the field state, and can be associated
with the transition of the process from the second harmonic to the down-conversion
regime when the maximum of the second harmonic intensity has been passed. In fact,
there is a competition between the two processes all the time, and only initially can
one safely speak about ‘pure’ second harmonic generation. The qualitative change of
the field state is much more spectacular when the phase properties of the field are
considered.

4. Phase properties of the field

To study phase properties of the field obtained in the second harmonic generation
process, we use the new Pegg and Barnett [14-16] phase formalism which is based on
introducing a finite (s + 1)-dimensional space ¥ spanned by the number states |0),
[1), ..., |s). The Hermitian phase operator operates on this finite space, and after
all necessary expectation values have been calculated in W, the value of s is allowed
to tend to infinity. A complete orthonormal basis of (s + 1) states is defined on ¥
as

0m) = 7 2 explin®,in) | (19)
where
f)
emzao+;:_"; (m=0,1,...,s). (20)

The value of 6, is arbitrary and defines a particular basis set of (s~ + 1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

$o= S 6,.10,)(0,, | 1)
m=0
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where the subscript 6 indicates the dependence on the choice of 8,. The phase states
(19) are eigenstates of the phase operator (21) with the eigenvalues 6,, restricted
to lie within a phase window between 6, and 6, 4+ 2«. The unitary phase operator
exp(id,) is defined as the exponential function of the Hermitian operator é,. This
operator acting on the eigenstate |8,,) gives the eigenvalue exp(if,,), and can be
written as [14-16]

8—1

exp(idy) = ) In)(n + 1| + exp [i(s + 1)8,] |s)(0]. (22)

n=0

It is the last term in (22) that assures the unitarity of this operator. The first sum
reproduces the Susskind-Glogower phase operator in the limit s — oo.
The expectation value of the phase operator (21) in a state |y) is given by

(Vldoltr) = 3 6, 1(0,, 1) (23)
m=0

where [(6,,|4)|? gives a probability of being found in the phase state |6,,). The
density of phase states is (s + 1) /2, so in the continuum limit as s tends to infinity,
we can write equation (23) as

Go+27

(| Bol) = / 6.P(6) d6 24)

fo
where the continuum phase distribution P(0) is introduced by

=2 o1 @5)

where 6,, has been replaced by the continuous phase variable 8. As the phase
distribution function P(6) is known, all the quantum mechanical phase expectation
values can be calculated with this function in a classical-like manner. The choice of
the value of 6, defines the 27 range window of the phase values.

In our case of second harmonic generation, the state of the field (14) is in fact
a two-mode state, and the generalization of the phase formalism into the two-mode
case gives, for the state (14), the result

1
(01R¢I(0mb|¢(t)) - \/(sa +1)(s,+1)
84 [n/2]

x Y b, Z exp {—i[(n —2k)6,, +k6,,,]} c,i(t) (26)

n=0

P(6) = lim —

where we have used the indices a and b to distinguish between the fundamental (a)
and second harmonic (b) mode. There is still a freedom of choice in (26) of the

values of 62'®, which define the phase values window. We have chosen these values
as

Wsa,b
Sa.,b +1

egvb —- ‘Pa‘b —_ (27)
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and we have introduced the new phase values

0#-,5 = amn,b = Pab (28)
where the new phase labels 4, , run in unit steps between the values —s, , /2 and
8,,5/2. This means that we have symmetrized the phase windows for the fundamen-
tal and second harmonic modes with respect to the phases ¢, and ¢,, respectively.
On inserting (27) and (28) into (26), taking the modulus square of (26), and per-
forming the continuum limit transition, we arrive at the continuous joint probability
distribution for the continuous phase variables 6, and 6, which has the form

[n/2]
P(8,,0,) = (2 )2 Z b, e in¢e Z exp{—i[(n — 2k)8, + kb,
k=0
2
~ k(2¢, — @p)]}en 1 (1) (29)
The distribution (29) is normalized such that
T ks
//P(oa,o,,)daa dg, =1. (30)

-T -7

To choose the phase windows for 6, and 8,, we have to assign to ¢, and ¢, particular
values. It is interesting to notice that formula (29) depends, in fact, on the difference
2¢, — vy, which reproduces the classical phase relation for the second harmonic
generation (we assume here perfect phase matching conditions for the wave vectors,
Ak = 0, [3]). Classically, if there is no second harmonic initially, this quantity must
be 2, — ¢, = £m /2. This means that the phase of the second harmonic is locked
to the phase of the fundamental mode by this relation. It turns out that this is also a
good choice to fix the phase windows in the quantum description. If the initial phase
, of the fundamental mode is zero then ¢, = += /2 (depending on the sign of g),
i.e., the second harmonic is shifted in phase by 7/2 or —m/2 with respect to the
fundamental mode.

The joint probability distribution given by equation (29) can be evaluated numer-
ically if the mean number of photons N, = |a|? of the fundamental mode is not
too big. An example of such distribution is shown in figure 6, where the function
P(6,,0,) is plotted in the three-dimensional format for various values of the scaled
time r = /2N, gt and N, = 16. Initially the distribution is peaked at 8, = 0 in
the 8, direction reproducing the phase distribution of the coherent state of the fun-
damental mode, and it is completely flat in the 8, direction representing the uniform
phase distribution of the vacuum of the second harmonic mode. For 7 = 1, the well
resolved peak of the distribution is visible, which means the relatively well defined
phase of the second harmonic. The fact that this peak appears for 8, = 6, = 0
corroborates the classical phase relation 2¢, — ¢, = /2, which has been assumed
here to fix the phase window. For r = 2, when the intensity of the second har-
monic is close to its maximum (see figure 1) the phase distribution P(8,,86,) splits
into two peaks. This splitting means a qualitative change in phase properties of the
field, and it can be related with the transition in the evolution from the harmonic
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generation regime into the down-conversion regime. The two-peak phase structure
of the ideal squeezed states has been indicated by Vaccaro and Pegg [19], and for
the down-conversion process with quantum pump by Gantsog et al [20]. The splitting
of the phase distribution into two peaks resembles the splitting of the Q function for
the fundamental mode discussed recently by Nikitin and Masalov [9]. The multi-peak
structure of the Q function or/and the P function may be an indication that the field
becomes a superposition of macroscopically distinguishable quantum states [10-13].
When the evolution proceeds (r = 3) the two peaks of the distribution become
well separated and sharp. For still longer time (r = 4) the intensity of the second
harmonic (see figure 1) approaches its maximum and either of the two peaks in the
phase distribution splits into two new peaks. The process comes back into the second
harmonic regime, but this time with a different ‘initial’ state. Such ‘bifurcations’ of
the phase distribution lead to a multi-peak structure of the phase distribution, which
means more and more uniform phase distribution. For different N, > 1 the same
features of the phase distributions can be found. However, the larger N, is the
sharper the peaks are. The fact that one peak splits into just two peaks is related to
the fact that the process we discuss is the two-photon process. Generally, the joint
phase probability distribution carries quite a bit of information about the quantum
state of the field. '

Figure 6. Evolution of the joint probability distribution P(8a,6s), for Ng = 16, and:
@r=0,b)r=1,)r=2d)r=3,() r=4,(r=6.

When integration of P(6,, ‘0,,) over one of. the phases is performed, the marginal
phase distributions P(8,) and P(6,) for the phases 6, and 6, of individual modes
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are obtained. For example, we have

P(6;) = / P(6,,0,)d6,

[m/2]
{+zzzww

=2m#n I=

xexp [-i (257) 16, - (20 - )] c,.,n-,m+,(t)c:,.,,(t)} G1)

where (n — m)/2 must be integer. Again, we assume 2¢, — @, = 7/2. With this
condition and the property of the coefficients Cy, (1), which are real for k even and
imaginary for k odd, the marginal distribution P(Gb) becomes an even function of
0,, and it can be written as

[m /2]
mm-buzzww
n>m k=0
n-—m .\ Bom
x cos( o,,) Re [(1) 3 cn,»;m_,_k(t)c;'n,k(t)]]. (32)

Similarly, for the marginal distribution P(6,) we get the formula

[m/2]
P8, )——(1+2 > > Ibllby, |cos [(n - m)d,]c, #(D)Ch k(t>) (33)

n>m k=0

which is an even function of Oa, and the product of the ¢, ,(¢) coefficients is always
real. »

The marginal phase distribution (32) and (33) can be used for calculations of
any phase properties of the individual mode (fundamental or second harmonic). We
have, for example, the following expressions for the mean values and variances of the
individual modes

s
((270,,,1,) = ‘Pa,b + /Oa,bP(Ga,b)dOa,b =@ (34)

(Do, )" = (3,,) - (do,.)? / 024 P(6,,)40,, &)

where the subscripts a and b are used to distinguish between the fundamental and the
second harmonic modes. Since the functions P(6,) and P(6,) are even functions
of their arguments the integrals in (34) are zero. This is true under the assumption
that 2¢, — ¢, = w /2, which we have made. The mean values of the phases, given
by (34), remain unchanged and reproduce the classical phase relations for the second
harmonic generation. Quantum mechanically, however, there are definite uncertanties
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in the phase measurements, which are given by the variances (35). The integrals are
elementary, and give the results '

SN2\ ﬁ [m/2] (-1)*3" o\ B=m *
((8d0,)) = 5 +4 20 3 Iballbml> =7 Re ()5 ¢y, a5m 42 (D) 1(D)]
n>m k=0 ( 2 )
(36)
S )y = T e ED T e
((A¢0.,) )" 3 +4 Z Z Ibn”bml(n_ m)zcn,k(t)cm,k(t)' (37)
n>m k=0

The evolution of the phase variances (36) and (37) is shown in figures 7 and 8. In the
case of fundamental mode the phase variance starts from low (but non-zero) values
characteristic of the coherent states, initially increases slowly, and around 7 = 2
rapidly increases. The broken line marks the value 7% /3 of the randomly distributed
phase. Appearance of the phase variance values above 72 /3 can be explained by the
choice of the phase window, which is not proper in this interval of ~ (compare the
phase distribution in figure 6). In the long time limit the phase variance oscillates
approaching the value 7%/3, ie., the value for randomly distributed phase. This is
consistent with the joint phase distribution, which becomes more uniform because
of the multi-peak structure arising during the evolution. More interesting is the
behaviour of the phase variance of the second harmonic mode shown in figure 8. The
variance falls rapidly from the vacuum value to some small (but non-zero) values,
remains in the region of small fluctuations for some time, and next rapidly increases.
This rapid increase of phase fluctuations is associated with the transition from the
one-peak to the two-peak structure of the phase distribution (figure 6), and physically
with the transition from the second harmonic to the down-conversion regime. It is
seen that the reduction of the phase fluctuations in the second harmonic mode is'
more pronounced for larger N, values. In the long time limit the randomization of
the phase takes place, as for the fundamental mode. ‘

af ~ / ) c\1/\ s
= 4.0 - 1 40 j
I Y 4 F A VU Y N ; <) i O e
< ; X ] = :

2.0 - v 2.0

0.0 =< ; , ; 0.0 +oeex : . ;

0 3 6 9 12 15 0 3 6 9 12 15
T T

Figure 7. Evolution of the phase variance of the  Figure 8. Same as figure 7 but for the second
fundamental mode. harmonic mode.
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It is interesting to ask to what extent can the phase fluctuations be reduced in
the second harmonic generation. To answer this question we compare in figure 9 the
marginal distribution P(8,) for the minimum of the variance with the distribution
P(8,) for the coherent state with the mean number of photons (n;) at this minimum.
It is seen that P(6,) is broader than the corresponding coherent state distribution. It
becomes closer to the coherent state distribution when N, becomes larger. Recently,
Summy and Pegg [21] have discussed the problem of minimizing phase variance,
showing the possibility of getting states with the phase defined much more sharply
than that of a coherent state with the same mean energy. In the second harmonic
generation with an initially coherent state, the best phase distribution one can get is
that of the coherent state.

2.0 - ;

~ !
@
& 1.0 { .
0.0
-3.14 3.14

Figure 9. Comparison of P(8,) (full curve) at the minimum of phase fluctuations with
P(6y) for the coherent state (broken curve) with the same mean number of photons,
for N =16 and 7 = 1.3.

Since the state (14) of the field is a ‘physical state’ according to the definition
introduced by Pegg and Barnett [16], there are some useful relations between the
Pegg-Barnett sine and cosine functions of the phase operators and their counterparts
in the Susskind-Glogower [22,23] phase formalism. For example, for ‘physical states’,
we have [19] = '

(exp(imd,)), = <[Z In)(n + m|]> = (&xp(imosg)), (38)
n=0 . 3 .

where the subscript p refers to a physical state expectation value. Applying the state
(14), we get '

($(t)] exp(imay,)|w(1)) = D (w(D)[In)(n + ml], [4(1))

n=0
n/2
=D b b D Capmr(Den 1 (D) (39)
n k=0
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and similarly

: [n/2]
(¥(t)| exp(imey, )|W(1)) = D by 42, b5 Z Cntam,krm (1) (2). (40)
This gives
(cos ¢3 ) co’s P, (/2] .
{ (Sll’l ¢a ) } { sin ©, } ;lbn‘l-l”bnl ; cn+1,k(t)cn,k(t) (41)
(o du)) _, /2
25 * :I: COS 2¢aZ|bn+2“b I Z c'n,+2 k(t)cn k(t) (42)
(sin® @)

Corresponding relations for the second harmonic mode can be obtained from (40),
bearing in mind that 2¢, — ¢, = 7 /2.
A more general expression than (39) and (40) can be obtained in the same way

[n/2]
(exp[i(may, — 1¢g,)]) = Z bnsym—21bn Z Crpm—a1,k—-1(t)Ch 1 (1)
(n+m=2130) +*390)

(43)

This expression becomes particularly simple for m = 2!, and once more the char-
acteristic, for the second harmonic generatnon, phase relation is privileged. From
equation (43) the expectatlon values and variances of the sine and cosine functions

of the difference 2459 ¢(, can be obtained. For m = 2 and | = 1 expression (43)
is imaginary, which means that

(cos(2¢g, — dg,)) =0
(sin(2¢y, — b5,)) = —ifexp [i(2<?30, — &9,)])-

For m = 4 and [ = 2 expression (43) is real and we get

2(2¢, —¢ (n/2]
{(ffﬁzﬁzii-iﬁif} =33 Il Z ¢n k-2 (D)5 1 (D)- (45)

Formulae (39)-(47) allow for calculations of the sine and cosine functions and their
variances for any combination of the two phases ¢, and ¢, . Examples are shown

in figures 10 and 11, where the evolution of the mean value of sm(2¢6 ¢,,b) and
its variance are plotted. These two quantities can be compared to the variance of

2¢9 ¢9 itself, which can be calculated according to the formula

([A(2d4, — 86,012 = 4((Ad4,)2) + ((Adg,)>) — 4[(Do, ba,) — (B0 )(Ds,)]-  (46)

The phase correlation function can be calculated according to

“449

Co.,a. = (J’o.qz'o,) - (‘f’o,)(a’ab) = //9a9bP(0a’9b)d9a a6, (47)

-7 -7
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Figure 10. Evolution of (sin(2$g¢ - &gb)).k Figure 11. Evolution of the variance (sin2(2$g¢

— $s,)) — (sin(2¢p, — $0,))%.

and is essentially two-mode phase characteristic of the field. In figure 12 the variance
of 2q3o¢ - $0. is plotted against 7. Comparison of figures 10-12 shows that for the
values of = when the phase difference is well defined the sine is also well defined,
and the mean value of the sine is close to unity, which agrees with (2¢, — ¢,,) =
2"Pa — ¥ = ‘K/ 2.

In figure 13 the evolution of the intermode phase correlation given by equation
(47) is plotted. There is a region of small negative correlations initially, a region
of no correlations, and next a region of positive correlations. Essential positive
phase correlations go in step with strong negative correlations of the photon numbers
(figure 4) and appear after transition into the down-conversion regime.
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Figure 12. Evolution of the variance of 2¢9, —¢g,.  Figure 13. Evolution of the intermode phase cor-
relation function.

Finally, in figure 14 the product of the number and phase uncertainties for the
fundamental mode is plotted against 7. We have divided the number fluctuations
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by N, in order to keep all numbers on a reasonable scale. There is a region of
small uncertainties initially, as it should be for a coherent state for which the product
plotted in figure 14 should be of the order of (4 N,)~!. The transition into the high
level of uncertainties, which is associated with the change in the character of the
process, is clearly visible.

<(Ang)® < (M%) /N,

Figure 14. Evolution of the number-phase uncertainties product-divided by N, for the
fundamental mode.

5. Conclusions

We have studied the number and phase quantum fluctuations in the second har-
monic generation process. The method of numerical diagonalization of the interaction
Hamiltonian has been used to find the evolution of the system. The new Pegg-Barnett
Hermitian phase formalism has been applied for studying phase fluctuations and cor-
relations. It has been shown that the joint phase probability distribution undergoes a
sequence of ‘bifurcations’ that lead into a multi-peak structure of the phase distribu-
tion. The splitting of the phase distribution function clearly indicates the transition
of the process from the second harmonic into the down-conversion regime. So, the
phase distribution is a new representation of the quantum state of the field, which
carries a lot of essential information about this state and is now available due to the
Pegg-Barnett formalism. The phase information has been compared with the number
fluctuations and correlations in the two modes. The transition from a low to a high
level of fluctuations is observed for both the number and phase fluctuations, although
it is much more spectacular when the evolution of the phase distribution is watched.
The evolution of the phase variances for both modes has been obtained and illus-
trated graphically. The narrowing of the phase distribution for the second harmonic
mode is clearly visible, but the marginal distribution P(6,) remains broader than the
distribution for a coherent state with the same mean number of photons.
- 'The cosine and sine functions of the individual phases as well as their combina-
tions have also been calculated. It has been shown that the difference 2y -— g,
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which is specific for the second harmonic generation, has a specific form, and con-
firms the classical phase relation for this process. There are, however, quantum phase
fluctuations that spoil this relation.

Most of our results are presented for three different values of the mean number
of photons of the initially coherent fundamental mode (N, = 4, 16, and 36). These
numbers are taken so to satisfy the condition N, > 1, and as they increase, they
clearly show the tendency for changes in the strong field limit.

In the long time limit the phases of both modes are randomized, ie. their dis-
tribution becomes more and more uniform owing to the multi-peak structure that
appears during the evolution. The second harmonic generation in its pure form takes
place only at the initial stage of the process, and at later stages there is a competition
between the second harmonic generation and the down-conversion processes, and the
phase distribution clearly detects the transition between the two.
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