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Phase properties of a damped anharmonic oscillator are studied within the Hermitian phase for-
malism of Pegg and Barnett. Exact analytical formulas for the phase distribution function, the ex-
pectation value and variance of the phase operator, and the expectation value and variance of the
cosine of the phase operator are obtained assuming the zero-temperature reservoir and a coherent
initial state of the system. It is shown that quantum periodicity in the evolution of phase quantities
is destroyed by damping. The effect of damping on the formation of discrete superpositions of
coherent states is discussed. A comparison is made between different phase approaches.

1. INTRODUCTION

A simple exactly solvable model of an anharmonic os-
cillator is a very instructive example in which many as-
pects of the nonlinear dynamics have been studied.!”2°
Tanaé' has shown that a high degree of squeezing can be
obtained in the system. Milburn® has discussed the evo-
lution of the quasiprobability distribution function
Q(a,a*,t) for the anharmonic oscillator showing period-
ic recurrences of its initial form due to quantum dynam-
ics. Milburn and Holmes® have shown that dissipation in
the model rapidly destroys the quantum recurrence
effects. Kitagawa and Yamamoto,* who also considered
the quasiprobability distribution Q(a,a*,t), have shown
that contours of this distribution have ‘“crescent” shape,
and squeezing obtained in the model differs from the or-
dinary “elliptic”” squeezing. Squeezing and its graphical
representation in the anharmonic oscillator model have
recezrétly been discussed by Tanas, Miranowicz, and Kiel-
ich.

Yurke and Stoler® have shown that the states produced
in the anharmonic-oscillator model become a superposi-
tion of a finite number of coherent states under a proper
choice of the evolution time. Tombesi and Mecozzi® have
obtained the superposition states for the two-mode case
and arbitrary initial state of the field. Miranowicz, Ta-
nas, and Kielich!® have recently shown that superposi-
tions with not only even but also odd numbers of com-
ponents can be obtained, and that the maximum number
of well-distinguishable states is proportional to the field
amplitude.

The anharmonic-oscillator model admits exact analyti-
cal solution even in the presence of dissipation that was
first shown by Milburn and Holmes® for the Q function
with initially coherent-state distribution. This approach
has been generalized by Pefinova and Luks,!%!” Daniel
and Milburn, ! and Milburn, Mecozzi, and Tombesi. !¢

Recently, Gerry,?! and Gantsog and Tana§’??* have
discussed phase properties of the states produced in the
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anharmonic-oscillator model from the point of view of a
new Hermitian phase formalism introduced by Pegg and
Barnett.?* 26 A comparison between the Q function and
the phase distribution function P(6) in the description of
the superpositions of coherent states obtained in the sys-
tem has been recently given by Tana$ et al.?’ The phase
properties discussed so far were obtained for the model
without losses.

In this paper we study phase properties of the
anharmonic-oscillator states for the system with dissipa-
tion. ‘The Pegg-Barnett>*~ 26 phase formalism is em-
ployed to calculate the phase probability distribution, the
mean value and variance of the phase operator, and the
mean values and variances of the sine and cosine func-
tions of the phase operators. The exact analytical formu-
las describing phase properties of the system with damp-
ing are obtained, and the evolution of the phase expecta-
tion values for different values of the damping constant is
illustrated graphically. It is shown that, like in the Q-
function case,»!® the quantum periodicity of the phase
quantities is destroyed by the damping. The process of
formation of discrete superpositions of coherent states in
the system with damping is illustrated by considering the
shape of the phase distribution function in polar coordi-
nates. The evolution of the cosine function of the phase
operator and its variance is calculated, and a comparison
is made between the results obtained within different
phase formalisms.

II. QUANTUM DYNAMICS

The system can be described by the Hamiltonian

H=H¢+H,+Hy , (1
where
Hy=twa'a +ﬁ§a“a2 )

is the anharmonic-oscillator Hamiltonian,
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HI=2(giabiT+gi*aTbi) 3)

represents the coupling to a reservoir of oscillators, and
Hpy is the free Hamiltonian for the reservoir. In Egs. (2)
and (3) a is the annihilation operator for a cavity mode at
frequency o, « is the nonlinear coupling (anharmonicity),
proportional to the third-order nonlinear susceptibility, if
the model is used to describe the interaction of the field
with a nonlinear Kerr medium. Damping of the system
is modeled by its coupling to a reservoir of oscillators.
By use of standard techniques of the quantum theory of
damping,?® the following master equation is obtained in
the Markov approximation and in the interaction picture

|

PHASE PROPERTIES OF A DAMPED ANHARMONIC OSCILLATOR

2087
_@2:_-5_ t2 2 Y t T
37 12[a a’,pl+ 2([ap,a J+[a,pa’])
+vy#llapla'l, @)

where y is the damping constant, 77 is the mean number
of thermal photons, 77 =[exp(#fiw/kT)—1]"!, for the
temperature T of the reservoir.

The exact solution to the master equation (4) is possible
for both the “quiet”>!° (7=0) and “noisy”!>!” (70)
reservoirs, and was applied for studying the evolution of
the Q function and squeezing. We shall apply it to study
phase properties of the field. In the general case the solu-
tion to the master equation (4) can be written in terms of
the matrix elements of the density operator p as!>17

Pum (t)=€xp %+ik(n—m) t E,:’f,’;’“(t)l;oF —n,—m,l—i—l;mj—l)sinh2 %
1 [+ Tat+nm+in |7
7 n (m !
XF gnﬁm(t) nim! Pn+Lm +l(0) ’ (5)

where F(—n,—m,l+1;x) is the hypergeometric func-
tion, and
2n )
Q+Acoth(yAt/2) ’
= A .
Qsinh(yAt /2)+ A cosh(yAt /2) ’

8n—m()= (6)

E,_,(t)

@)

Q=Q,_ , =1+2a+i~(n—m),
4 (8)
A=A, _,=[0%—ar(a+1)]'%.

For the reservoir at zero temperature (7'=0), we have
71=0, and the solution (5) simplifies considerably. In this
case one obtains!®

P (T)=€Xp i%(n —m) '(ln_-tnm)/z(,r)
I

21 | M= faom()]

><l§0“ A+i(n —m)
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(n+Dm+1) Prtimir(0), ©)

x nlm!

where we have introduced the notation

T=kt, A=y /K,
(10)
Snom(T)=exp{—[A+i(n —m)]r} .
For A=0 the solution (9) becomes
Pnm (T)=e€Xp —i%[n(n—-l)*m(m—l)] Pnm(0),
(11)

and describes the dynamics of the lossless anharmonic os-
cillator. From Eq. (11) it is clear that the diagonal matrix
elements of the field density matrix do not change if there
is no damping. This means that also the photon statistics
remains the same as it was at the beginning.! The nondi-
agonal elements are related to the nonlinear change of the
field phase, and this change is responsible for squeezing in
the system.!™*

If the initial state of the field is a coherent state |a)
then we have

pn+l,m+l(0):bn+1bm+lexp[i(n_m)‘po] ’ (12)
where
. Nn/Z
b,=exp(—N/2) Val (13)

and we have assumed
ao=laglexpligy)=N"'"%explig,) . (14)

With such assumptions formula (9) can be further
simplified, and we get

an(T)-_—b,,bmexp i(n—m) ¢0+% f(fl_+mm)/2(7_)
xexp [Na5_2nm') (15)
Nl R rap—

where f, _,,(7) is given by Eq. (10). Having the solutions
for p,,.(7) in hand, we are able to calculate any field
characteristics at time 7=«t. In this paper we are in-
terested in quantum phase properties of the field.
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II1. PHASE PROPERTIES

To study phase properties of the damped anharmonic
oscillator we use the new Hermitian phase formalism in-
troduced by Pegg and Barnett.>*"?° Their formalism is
based on introducing a finite (s + 1)-dimensional space ¥
spanned by the number states [0),[1),...,|s). The
Hermitian phase operator operates on this finite space,
and after all necessary expectation values have been cal-
culated in W, the value of s is allowed to tend to infinity.
A complete orthonormal basis of s + 1 states is defined on
Y as

6, )= \/s1+l Egexpunemnm , (16)
where
_ 2mTm _
f)m—90+—~—s+l, m=0,1,...,s . (17)

The value of 6, is arbitrary and defines a particular basis
set of s +1 mutually orthogonal phase states. The Her-
mitian phase operator is defined as

$o=3 0,,16,)¢6, , (18)
m=0

where the subscript 6 indicates the dependence on the
choice of 6,. The phase states (16) are eigenstates of the
phase operator (18) with the eigenvalues 0,, restricted to
lie within a phase window between 6, and 6,+27. The
unitary phase operator exp(id,) is defined as the ex-
ponential function of the Hermitian operator $0. This
operator acting on the eigenstate |6, ) gives the eigenval-
ue exp(if,, ), and can be written ag?*—26
s—1
expliy)= S In ) n+1|+expli(s +1)6y]ls »{(0[ . (19)
n=0
This is the last term in (19) that ensures the unitarity of
this operator. The first sum reproduces the Susskind-
Glogowerzg'30 phase operator in the limit s — o0.
The expectation value of the phase operator (18) in a
pure state |1 ) is given by

WlBelv) =3 6,,1¢0,, 1917, 20)
m=0

where [(6,, |1)|? gives a probability of being found in the
phase state |6, ). The density of phase states is
(s +1)/2m, so in the continuum limit as s tends to
infinity, we can write Eq. (20) as

~ 6y t2m
(Wldly)=[," oP(6)I0, @1

where the continuum phase distribution P(6) is intro-
duced by

. +1

P(0)=lim =|(0,, [¥)1?, (22)
s—>o 21

where 6,, has been replaced by the continuous phase

variable 6. As the phase distribution function P(8) is
known, all the quantum-mechanical phase expectation
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values can be calculated with this function in a classical-
like manner. The choice of the value of 8, defines the 27
range window of the phase values.

If the field is described by the density operator p, Eq.
(20) reads

(B)=Trlpdp)="S. 0,46, 1016, ) , (23)
m=0

and the phase distribution function P(0) is given, instead
of Eq. (22), by

P(6)= lim 21

§—> © s

{6,,1p16,,) . (24)

After taking into account Eq. (16), we can write Eq. (24)
as

P(0)= lim 511
§—> 27T

(6,,1p16,,)

s K —iln—k

—lm-L Se T, (). 25)
s—o0 2T n=0k=0

If we symmetrize the phase distribution with respect to

the phase ¢, by taking

ms

Oo=@o— s +1 (26)
and introducing a new phase label
s
=m—=, 27
p=m—- (27

which runs in integer steps from —s /2 to s/2, the phase
distribution becomes symmetric in u, and we get

s s T
PO)=lim-L3 3¢ "M, (1)
§— o 27Tn=0m=0
1 & & —iln—m)gy+6)
=-—3 Se T 0. (28)
277-n=0m——0

Now, all integrals over 6 are taken in the symmetric
range between — and 7. The phase distribution P(6) is
normalized such that

[ Pordo=1. (29)

—mT

To find the phase distribution for the damped anhar-
monic oscillator considered in this paper it suffices to in-
sert into Eq. (28) the corresponding solution for p,,,(¢),
which is given by Eq. (5) in the most general case of noisy
reservoir, by Eq. (9) in the case of quiet reservoir, and by
Eq. (15) in the case of quiet reservoir and initially
coherent state of the field. Here, we shall discuss the sim-
plest and probably most important case of zero tempera-
ture reservoir and coherent state of the initial field. On
inserting Eq. (15) into Eq. (28), we obtain for the phase
distribution P(0) the following formula:



4
P(6)=L§ E‘,b bexp | —iln—m) |6—=
277'n=0 m=0 nPmEXP 2
xf(nv+m)/2(,r)
xexp |NA——Ln=mT) (30)
PN i —m) |’
|
P(9)=$ 142 S b,b,,exp —%(n-f—m)+7&An_m(7')+(n—m)Bn,m(T)
nom

Xcos [(n—m)0+—[n(n—1)—m(m —1)]+(n —mA, _, (1)—AB, _,, (1)

2

where we have introduced the notation

An_m('r)=m(ﬁn—}i_m—)2{l—e*“cos[(n —m)t]},
(32)
Bn—m(T)=ﬁe“Msin[(n—m)r] . (33

If there is no damping in the system (A=0), 4, _, (7)
and B, _,,(7) are zero, and formula (31) goes over into
our earlier result.??> It is clear that damping will cause
the decay of the modulation terms and will lead to the
uniform phase distribution. The quantum periodicity
present in the lossless system will be, like in the Q-
function case,>!? destroyed. To illustrate the effect of
damping on the phase distribution, we have plotted in
Fig. 1 the distribution P(60) for various values of 7 and A,
and N=4. It is seen that as the evolution proceeds, i.e., 7
increases, the peak of the phase distribution is shifted,
and even for A=0 it is broadened. So, even without
damping, the nonlinear evolution of the system leads at
its initial stage to the randomization of the phase. How-
ever, if there is no damping, the evolution is periodic, and
after 7=2m the phase distribution acquires its initial
form. The effect of damping is to speed up the randomi-
zation of the phase, i.e., to broaden the phase distribu-
tion, and in effect to destroy the quantum periodicity of
the evolution. It is clear from formula (31) that
P(6)=1/(2w) when all the interference terms have been
gradually eliminated.

It is known>® that under appropriate choice of 7 the
anharmonic-oscillator states evolve into a superposition
of coherent states. Miranowicz, Tana$, and Kielich!®
have shown that superpositions with k components ap-
pear when 7=2w/k (k=2,3,...). They have also
shown that the number of well distinguishable coherent
states in the superposition is proportional to |a,|. Re-
cently, Gantsog and Tana§?*2* have shown that such su-
perpositions are clearly indicated by the phase distribu-
tion P(6), which for the superposition of k states has the
k-fold rotational symmetry if plotted in the polar coordi-
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where f,_,,(7) is given by Eq. (10) and b, by Eq. (13).
The phase ¢, disappeared from Eq. (30) owing to our
choice of the phase window.

After a minor rearrangement formula (30) for the
phase distribution can be written as

’ (31)

nates. The splitting of P(0) is already seen in Fig. 1(d),
where for small A a number of small peaks appears. The
effect of damping on the formation of the superpositions
of coherent states is shown in Fig. 2. The k-fold rotation-
al symmetry of the phase distribution P(6) is well
resolved for A=0 and is gradually destroyed as A in-
creases. According to estimates made by Miranowicz,
Tana$, and Kielich,'® and Tana$ et al.?” the maximum
number of well-resolved states in the superposition is
equal to k., ~2|ay,/=2V'N, which for N =4 taken in
the figure gives k_,, =4, and this is the number of peaks
in Fig. 2(d). For the superpositions with a higher number
of components the k-fold symmetry of the P function (as
well as the Q function) is broken and eventually de-
stroyed. This has been shown convincingly by Tana$
et al.?’ for the system without damping. Since the super-
positions of coherent states with k components appear
for 7=2/k, the superpositions with a large number of
components appear for shorter times 7, and they are
therefore less affected by damping. This is clearly seen
from Fig. 2. The effect is most dramatic for 7=2 [Fig.
2(a)], where for A=0 there is a periodic recurrence of the
initial phase distribution, while for A0 the distribution
is rapidly symmetrized. To make this statement a bit
more quantitative, we introduce a parameter (‘“visibility
of fringes”)

P, (0)—P,_. ()

max

Pmax(9)+Pmin(9) ’

v= (34)

which allows for quantitative assessment of the resolution
of the superposition components: unity means perfect
resolution, and zero, no resolution at all. For all the su-
perpositions shown in Fig. 2, this parameter is very close
to unity when A=0. For A=0.2, the parameter v takes
the values (a) v=0.15, (b) v=0.25, (¢) v=0.32, and (d)
v=0.41. So, the resolution is best for the four-peak struc-
ture. This suggests that, in the presence of damping,
there are better chances to detect the superpositions with
larger numbers of components. The best situation is,
probably, for the maximum number of well-
distinguishable states.
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FIG. 1. Plots of the phase distribution function P(6;A) for
different values of the evolution time 7: (a) 7=0.1, (b) 7=0.3, (c)
7=0.5, (d) 7=0.7. The initial mean number of photons N=4.
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FIG. 2. Plots of P(6) in polar coordinates for 7=27/k and
the damping parameter: A=0 (dashed line), A=0.1 (solid line),
and A=0.2 (bold line). The times are (a) 7=2, (b) 7=2m/2, (c)

7=27/3,(d) =27 /4; N=4.
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Knowing the phase distribution (31) allows us to calcu-
late the expectation value and the variance of the phase
operator (18) according to the formula

($Y=@o+ [ 6P(0)1d0=0,+(0) , (35)
where

(0)=[" 6P(6)d0

l)n—m

— (— :
= %n b,b,, P—— exp[T,,, (7)]sin[A,,,,(7)] (36)
n>m

with

an(T)=—%(n +m)+ArA4,_,,(r)+(n—m)B,_, (1),

(37
Apm(T)=Z[n(n =1)=m(m—1)]
+(n—m)A, _,,(1)—AB,_, (1), (38)
((Agg)*)=(6%)—(6)?
_ (=1
=3 +4'§nbnbm ) exp[T,n (7)]
n>m
Xcos[A,,(T)]—(6)?, (39)

where (0) is given by Eq. (36). For A=0, Egs. (36) and
(39) go over into our earlier results,?? and for 7=0 the re-
sults for a coherent state given by Pegg and Barnett?® are
recovered. The evolution of the mean phase and its vari-
ance is shown in Fig. 3. The nonlinear shift in phase is
clearly seen for short times. In this interval of time there
is also rapid increase of the phase fluctuation, which is
caused by nonlinear but unitary evolution and is observed
even for A=0. Of course, damping accelerates this pro-
cess. In the long-time limit the initial values are periodi-
J

(explimpgg)) =Tr[p eXplim pgg)]

had im(py+7/2)
= Epn+m,n(7-)=e ’ rrnn/z('r)
n=0

o b —_
8 .00 6.28 12.56
FIG. 3. Evolution of the mean phase and the phase variance,

for N=4, and A=0 (dashed line), A=0.05 (solid line), and
A=0.1 (bold line).

cally restored if the evolution is unitary. Damping de-
stroys this periodicity, as it is seen in the figure.

The phase characteristics of the field that can be com-
pared to the results obtained on the grounds of the
Susskind-Glogower? phase formalism are the sine and
cosine functions of the phase operator. To calculate the
expectation values and variances of such operators it is
convenient to use the following relation, which is true for
the “physical states:”263!

(exp(im$9>p=<eﬁp(im¢sg Yp s (40)
where
eXp(im¢sg)= 3 [n){n+m| (41)

n=0

is the Susskind-Glogower®>*® phase operator. Since the

states of the anharmonic oscillator are physical states, we
have

Xexp{Ad,, (1) +mB,, (1) —ilm A, () —AB, (1)1} S, byby oy f () 42)
n=0

where f,, (7) is defined by Eq. (10), 4,,(7) and B,,(7) are given byAEqs. (32) and (33). Knowing the relation (42) allows
calculations of the cosine and sine functions of the phase operator ¢,, according to the rules!

(cosd, =1 exp(idg)+exp(—idg))

=¢"M/2Re(e Pexp{A A, (1)+ B, (1) —i[ A{(T)—ABy(1)]}) S, by by 1 1 f1(7)
n=0

=exp —-};—T+KA1(T)+B,(T) S by by 1 1e "M cos[go—nT— A, (1) +AB, (1], 43)
n=0

(sin$9>=exp —i‘zj——}—kAl(T)-i-Bl('r) Ebnbn+1e_”}‘rsin[<po—n‘r——AI(T)+KBI(T)], (44)
n=0
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FIG. 4. Plot of the (cosd,) against 7. The parameters are
the same as in Fig. 3.

6.28 12.56
T

and
(cos2$9> R R
b=+ (expli 2+
(sin®B,) +1{exp(i2¢y)+exp(—i2¢y)E2)
(cos’pgs)

(n’ee,) +1{(Jo)<o)))

n=0

To get the Susskind-Glogower result from (45), one has to
subtract

L{(]0)€0))) =1pgo(7)=Lexp(—Ne ~*7) , (46)

which for Ar<<1 has essentially different from zero
values only for N <<1, and for A7— c tends to +.

To illustrate the effect of damping on the evolution of
the cosine function of the phase operator $9 and its vari-
ance, we have plotted in Fig. 4 the evolution of the expec-

06 | ]
o 0.4 ¢ ]
n
O
O
= 0.2 ]
0800 628 12.56

+

FIG. 6. Plot of the {(A cosdy)?) against , for N=4, A=0.1,
obtained within the Pegg-Barnett (solid line), the measured
phase (bold line), and the Susskind-Glogower (dashed line) ap-
proaches.
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FIG. 5. Plot of the {(A cos$,)?) against 7. The parameters
are the same as in Fig. 3.

Jexp[ —AT+AA,(7)+2B,(7)] é bpb, 126 " cos[2@y— (2n +1)7—2 A, (7)+AB,(7)] . (45)

f

tation value of the phase cosine, and in Fig. 5, the evolu-
tion of its variance. Again, as in the case of the phase it-
self (Fig. 3), we see that the quantum periodicity is rapid-
ly removed even for very small A. Eventually, the mean
value approaches zero, and the variance approaches one-
half, as it should be for the vacuum state to which the
system evolves.

A comparison of the results obtained on the grounds of
the Pegg-Barnett,”* ¢ Susskind-Glogower,?>3" and so-
called measured phase®?™33 formalisms is made in Figs. 6
and 7. In Fig. 6 the cosine variance is plotted for the
three cases, and for N=4, A=0.1. There is no big

{ (Acosde)?)

12.56

FIG. 7. Same as in Fig. 6, but for N=0.25.
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difference between them at early stages of the evolution,
but the Susskind-Glogower result declines down to reach
asymptotically the value 1, instead of the value 1 for the
Pegg-Barnett and measured phase results. The difference
between the three approaches is more pronounced for
N=0.25, which is shown in Fig. 7, for A=0.1. In this
case, the measured phase result is located between the
Pegg-Barnett (upper-bound) and the Susskind-Glogower
(lower-bound) result. Without damping the results are, of
course, periodic and corresponding figures can be found
in our earlier paper.” In a sense, damping is helpful in
distinguishing between the Pegg-Barnett and the
Susskind-Glogower results in the long-time limit. This is
so, because damping suppresses the mean number of pho-
tons in the mode, and the field state becomes close to the
vacuum, for which the difference between the two is the
largest one.

IV. CONCLUSION

In this paper we have studied the phase properties of
the damped anharmonic oscillator using the new Hermi-
tian phase formalism of Pegg and Barnett. The exact
analytical formula for the phase probability distribution
of the system with damping has been obtained and illus-
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trated graphically. It has been shown that quantum in-
terference effects are destroyed rapidly by damping,
which is in agreement with the result obtained for the Q
function.>!3

The effect of damping on the formation of discrete su-
perpositions of coherent states in the system is also illus-
trated by plotting the phase distribution function for such
superpositions with well-separated components, for
different values of the damping parameter. It has been
shown that the resolution of the individual states of the
superposition in the presence of damping is easier for the
superpositions with a larger number of components.

The evolution of the expectation value and variance of
the Hermitian phase operator is calculated and illustrated
graphically for different values of the damping parame-
ter. It has been shown that damping accelerates the ran-
domization of phase at early stages of evolution and re-
moves quantum periodicity of the evolution. Similar con-
clusions can be drawn from the evolution of the fluctua-
tions in the cosine function of the phase operator.

Finally, we have compared results for the cosine vari-
ance obtained from different phase formalisms in the
presence of damping. The long-time divergence between
the Pegg-Barnett and the Susskind-Glogower results is
shown explicitly.
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