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Phase properties of fractional coherent states
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The phase properties of the fractional coherent states are discussed from the point of view of the Pegg—Barnett Hermitian phase
formalism. Exact analytical formulas for the phase variance are obtained and illustrated graphically. The results can serve as a
test for the range of validity of the scaling law for the phase variance.

1. Introduction

Recently, D’Ariano [1] has discussed the possi-
bility of amplitude squeezing through the *“photon
fractioning” procedure. The idea is to reduce photon
number fluctuations at the expense of increased phase
fluctuations, and this aim is achieved by introducing
multiphoton phase and number operators, which
corresponds to the nonunitary scaling of the original
phase and number operators. If the scaling transfor-
mation is applied to the field states, instead of op-
erators, it leads to the “statistical fractional photon”
states [2,3], and, in particular, fractional coherent
states. The most interesting are the 1 /r coherent states
for which the photon number variance scales as »~
and the phase variance as r2, so the uncertainty
product remains unchanged. However, these r-de-
pendences of the number and phase variances are true
for highly exited states only. Moreover, to describe
the phase properties of the field D’Ariano [1] uses
the Susskind-Glogower [4,5] nonunitary shift op-
erators £, introducing the non-Hermitian phase op-
erator ¢, which for highly excited states and small
phase uncertainty can be considered as approxi-
mately Hermitian, and it is used to describe phase
properties of the 1/r coherent states.
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At present there is an alternative way to describe
the phase properties of such states using the Her-
mitian phase formalism introduced by Pegg and Bar-
nett [6-8]. In this paper we are going to reexamine
the phase properties of the 1/r coherent states from
the point of view of the Pegg-Barnett phase
formalism.

2. Phase properties of 1/r coherent states

To describe the phase properties of the 1 /r coher-
ent states we use the new Hermitian phase formal-
ism introduced by Pegg and Barnett [6-8], which is
based on introducing a finite (s+ !)-dimensional
space ¥ spanned by the number states [0), |1, ...
|s>. The Hermitian phase operator operates on this
finite space, and after all necessary expectation val-
ues have been calculated in ¥, the value of s is al-
lowed to tend to infinity. A complete orthonormal
basis of s+ | states is defined on ¥ as

10,0 = \/—— Z exp(ind,,)|n) , (1)

where

2nm

0m500+s+1

(m=0,1,...,5) . 2)

The value of 6, is arbitrary and defines a particular
basis set of s+ 1 mutually orthogonal phase states.
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The Hermitian phase operator is defined as
= Zoemlam><0ml> (3)

where the subscript 6 indicates the dependence on
the choice of 6. The phase states (1) are eigenstates
of the phase operator (3) with the eigenvalues 6,,
restricted to lie within a phase window between 6,
and 6,+2n. The unitary phase operator exp(igy) is
defined as the exponential function of the Hermitian
operator ¢,. This operator acting on the eigenstate
[6,.> gives the eigenvalue exp(if,,), and it can be
written as [6-8]

(i) = ¥ () 1|

+exp[i(s+1)6,]1s><0] . 4)

It is the last term in (4) that ensures the unitarity of
this operator. The first sum reproduces the Suss-
kind-Glogower [4,5] phase operator in the limit
§—00.

If the field is described by the density operator p,
the expectation value of the phase operator (3) is
given by

(o) = Tr{pgy}= nz 0,0, 1010, , (5)
where (0,,1p10,,> gives the probability of being
found in the phase state |6,,>. The density of phase
states is (s+1)/2x, so in the continuum limit as s
tends to infinity, we can introduce the phase distri-
bution function

. s+1
P(0)= llma— O 11O (6)

where 8,, has been replaced by the continuous phase
variable 6. As the phase distribution function P(6)
is known, all the quantum mechanical phase expec-
tation values can be calculated with this function in
a classical-like manner by simply performing inte-
grations over 6. We have, for example,

8o +2n

(Po)= 6P () do . (7)

o

The choice of the value of 6, defines the 2r range
window of the phase values. Taking into account the
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definition (1), we can rewrite the phase distribution
(6) as

P(0)= lim 2~

S— o0

<0 1210 >

L5 fexp{—i(n—k)(eownpnk, 8)
275n=0k=o

where p,,= {(n|p|k) are the matrix elements of the
density operator j in the number state basis.

At this point we are able to study phase properties
of 1/r coherent states the density operator of which
is given by [1]

PG = exp(—|w|?)

XY S Im)

A=0/m=0

mr+A o klr+A

w w

S mr+ ) (Ir+2)!

Ay )
where w is a complex number. On introducing the
notation

[w]|"

b, = exp(—|w|?/2) \/»

=|w]| exp(ip) , (10)

the density operator matrix elements can be written
as

Pt = <mlp"((ul/r) |l>
r—1i

=/120 bmr+lblr+iexp[ir¢(m_l)] s (11)
and the phase distribution for such states is, accord-
ing to (8), given by

PO)=5-3 5 expl—i(m—1)(0+6,—rp)]

T 4=0 mi=0
Xbmr+iblr+i . (12)

Assuming 6,=rp-n, we symmetrize the phase dis-
tribution with respect to the phase rg and define the
0 values window from —x to +m, so the phase dis-
tribution takes the simpler form

2

r—1

P(6) = i S exp(—im0)b,.;

m=0

1
27
2i( £2'F 5 by by cosl (m— 1)01)

A=0 m>1

(13)
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with the normalization
J‘P(H) dé=1. (14)

Knowing the phase distribution function (13) we are
able to derive exact analytical formulas for the ex-
pectation value and the variance of the Hermitian
phase operator in the 1/r coherent state. The results
are

G0y = Telps by =ro+ | 0P(6) d0=rp, (15)

((AGg)?y = Tr{pM (Adg)?} = | 02P(6) dO

|
=‘—~.:

r—1 (_l)m—l
=in2+4 Sy
’ /1;0m>l (m_l)l

bmr+}.blr+/1 . (16)

The mean phase given by (15) is r times the phase
of the ordinary coherent state, so the scaling law con-
sidered by D’Ariano [1] works exactly in this case.
As regards the phase variance given by (16), it is
clear that the scaling law does not work exactly, and
can only be met for highly excited states. However,
our formula (16) obtained within the Pegg~Barnett
phase formalism is exact and valid for any value of
lw]. The value ix? is the phase variance for a state
with uniformly distributed phase, e.g. the vacuum
state. This is the situation when |w] =0, or for given
|w| r—oo. To illustrate the phase properties of the
1/r coherent states we plot in fig. 1 the phase dis-
tribution function P(8) for |w|=2 and various val-
ues of r. It is clear that as r increases the phase dis-

Fig. 1. The phase distribution P(8) for |w|=2 and various r.
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tribution becomes more and more uniform. In fig. 2
the phase variance is plotted against r for different
values of {w|. As r increases the phase variance
asymptotically approaches the value {n® character-
istic for uniformly distributed phase. The scaling law
{(Adg)?> ~r* means the parabolic shape of the
curves, which is really seen in the figure for |w| > 1
and not too large r, so that jw{/r>1.

In the bright limit |w| >> 1, the phase probability
distribution (13) can be approximated by the Gaus-
sian distribution. This can be done replacing the
Poissonian weighting factor by the Gaussian distri-
bution [7]

exp(~ o)) 127
n!
l 2 2
z1/2n|w|zexp<_ (Icg:wlzn)> an

and performing integrations instead of summations.
This gives us

D= mi;() exp( _ima)bmr+l

|w|mr+l

e o] _. _ 2 o™
_mgoexp( 1m0)e?(p( jw| )\/m

1
T 2nlw|?)

X Jexp(—im@— @—%ﬂ%—iy)dm (18)

and in effect we have

15 20 25 30
r

0 5 10

Fig. 2. Plots of the phase variance for various |w]|.
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[ = . 100
P(9)=ﬁ 2, 1DI o
4=0 o 0.75 | 4
1 :1 jwl=1 3
= exp(—6%/20%) , (19) < 1/
J2r 080
with 2 0.25
r? 7 0.00
, ) ‘ . .
g = . 20 P!
IPHE (20) 0 5 10 15 20 25 30

Thus, in the bright limit the phase variance which is
equal to o2 scales as ~r? in agreement with the
D’Ariano results [1].

The photon-number variance for the 1 /r coherent
states can be calculated according to the formula

((AR)?y =A%) —(AY?

=2 nzpm—( > np,m)z

n=0 n=

oo r—1 oo r—1 2
HNGTHUN () ICID
n=04i=0 n=04i=0
In fig. 3 we have plotted the photon-number vari-
ance, evaluated according to (21), against r for dif-
ferent values of |w]|. In fig. 4 the number-phase un-
certainty product < (AA)2){ (Adp)?)> is plotted
against r for various | w|. Of course, in the bright limit
the Gaussian approximation of the Poissonian
weighting factors leads to the D’Ariano scaling re-
sults ¢(A>~r~!, and ( (AA)?> ~r~2, which retain the
number—phase uncertainty product unchanged.

To complete the phase properties of the 1/r co-
herent states, we adduce here the results for the co-

<(An)>

s SO

15 20 25 30
r

0 5 10
Fig. 3. Plots of the photon-number variance for various |w|. The

values of | w/| for the subsequent curves counting from left are: 1,
2,3,4.

r

Fig. 4. Plots of the number-phase uncertainty product for var-
ious |w|.

sine and sine functions of the Hermitian phase op-
erator ¢,. These results can be compared to their
counterparts in the Susskind-Glogower approach.
Taking advantage of the fact that 1/r coherent states
are “physical states” [7-9], we can easily calculate
the exponential of the phase operator,

<exp(imdy,)

=exD(imr¢) Z AZO b(n+m)r+}.bnr+l- (22)

n=0

From (22) one obtains

o r—1

(cos gy = cos(rp) szob(,,H)erWH (23)

and

(cos’Gy >

=%+%COS(2NP) ZO,{ZO b(n+2)r+/lbnr+l- (24)

Corresponding formulas for the sine function are ob-
tained by replacing the cosine with the sine in (23)
and changing the sign of the second term in (24). Of
course, we have <cos2@,>+(sin’g,>=1 in the
Pegg—Barnett approach.

3. Conclusion

In this paper we have discussed phase properties
of the 1/r coherent states from the point of view of
the Hermitian phase formalism of Pegg and Barnett
[6-8]. This formalism allows one to get exact ana-
lytical formulas describing the variance of the Her-
mitian phase operator for any value of the state am-
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plitude |@|. In the bright limit (|w| > 1) the exact
formulas obtained within the Pegg-Barnett formal-
ism reproduce the approximate results obtained by
D’Ariano [1] who started from the Susskind-
Glogower phase formalism. The clear advantage of
the Pegg-Barnett approach is the possibility to ob-
tain the exact analytical formula for the variance of
the Hermitian phase operator, which next can be ap-
proximated for some special limiting cases. We have
applied the exact formulas to illustrate some of the
phase characteristics of the 1/r coherent states. Our
results may be of special value for such values of ||
and r for which the approximate formulas are not
applicable, or they can serve as a test of validity for
the approximate results.
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