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The phase properties of the two-mode squeezed vacuum states are re-examined from the point of view of the Hermitian phase
formalism introduced by Pegg and Barnett. The Joint probability distribution for the phases of the two models is obtained, and
the phase properties associated with this distribution are discussed thoroughly.

1. Introduction

Squeezed states of light have become a subject of
intensive studies in recent years (see, for example,
special issues of two optical journals [1] devoted to
this subject). A number of successful experiments
[2-8] in which squeezed states have been produced
still strengthened motivation for such studies.

Squeezed states have phase-sensitive noise proper-’

ties, and it is interesting to study their phase prop-
erties. The phase properties of squeezed states have
been investigated by Sanders et al. [9], Yao [10]
and Fan and Zaidi [11], who used the Susskind and
Glogower [12] phase formalism which involves non-
unitary phase operators. Recently Pegg and Barnett
[13-15] have introduced a new Hermitian phase
formalism which successfully overcomes the trou-
bles inherent in the Susskind—-Glogower phase for-
malism and enables one to study finer details of the
phase properties of quantum fields. Such quantities
as expectation values and variances of Hermitian
phase operators or phase distribution functions are
now available for investigation. Vaccaro and Pegg
[16] have investigated phase properties of the sin-
gle-mode squeezed states from the point of view of
the new Pegg-Barnett phase formalism. Recently
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Gronbech-Jensen et al. [17] have made compari-
sons of the phase properties of single-mode squeezed
states obtained according to different phase formal-
isms, including the Pegg-Barnett formalism. How-
ever, the single-mode squeezed states differ essen-
tially from the two-mode squeezed states discussed
extensively by Caves and Schumaker [18]. The first
observation of squeezing [2] was, in fact, observa-
tion of the two-mode squeezed vacuum. The phase
properties of the two-mode squeezed vacuum have
been shortly discussed by Fan and Zaidi [11] within
the framework of the Susskind-Glogower phase
formalism.

In this paper we re-examine the phase properties
of the two-mode squeezed vacuum states applying
the Pegg-Barnett Hermitian phase formalism. The
Jjoint probability distribution for phases of the two
modes is obtained and its properties discussed. It is
shown that this joint probability distribution is a
function of the sum of the phases only. This implies
some specific phase properties of the two-mode
squeezed vacuum which are discussed in the paper.

2. Phase properties of the two-mode squeezed
vacuum state

The two-mode squeezed vacuum state is defined
by applying the two-mode squeeze operator S(r, @)
to the two-mode vacuum state [18],
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IO1O>(r,w)ES(r:¢)lOsO>, (l)

where the two-mode squeeze operator is defined by
[18]

S(r,p)=exp[r(e=*a,a_—e**atat)], (2)
with
0<r<oo, —m/2<p<n/2, (3)

which define the strength and the phase of squeez-
ing. The operators a,. and aI are the annihilation
and creation operators of the two modes of the elec-
tromagnetic field. The squeeze operator unitarily
transforms a. into a linear combination of 2. and
af (Bogoliubov transformation ):

S(r, (0)dzs+(", ¢)
=a. coshr+afeXsinhr, (4)

which is essential in obtaining squeezing. Since we
are interested only in the two-mode squeezed vac-
uum states, the action of the squeeze operator (2)
on the two-mode vacuum is given by [18]

10,0 (rpy =S(r, 9)10, 0>

=(coshr)~'exp(—e¥ tanhratat)|0,0>
=(coshr)~! f (—e*tanhr)*|n, nd . (5)
n=0

The phase ¢, which describes the orientation of the
quadrature phase uncertainty ellipse, is chosen in (5)
Just for convenience in discussing the quadrature
phase squeezing. This choice, however, is not con-
venient when phase fluctuations are considered. So,
we prefer here a choice of the phase ¢ that compen-
sates the minus sign. This means a shift by n/2 of the
phase ¢. With this new choice of the phase, the two-
mode vacuum state can be rewritten as

10,05 ()= (coshr)=! ¥ (e¥*tanh r)|n, n ,
n=0
(6)

where we have retained the notation ¢ for the new
notion of the phase. The reason for such a choice of
the phase ¢ will become clear in the discussion of the
phase properties of the state (6).

Before starting our discussion of the phase prop-
erties of the two-mode squeezed vacuum states, let
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us recall the main points of the Pegg-Barnett [13-
15] phase formalism, which we will use in this pa-
per. Their approach is based on introducing a finite
(s+1)-dimensional subspace ¥ spanned by the
number states |0, |1),..., |s>. The Hermitian phase
operator operates on this finite s)@space, and after
all necessary expectation values have been calculated
in ¥, the value of s is allowed to tend to infinity. A
complete orthonormal basis of s+ 1 states is defined
on ¥ as

16> =(s+1)~"2 ¥ exp(inb,,)|n) , (7)
n=0

where -

Om=0o+2rm/(s+1), m=0,1,..5. (8)

The value of 6, is arbitrary and defines a particular
basis set of s+ 1 mutually orthogonal phase states.
The Hermitian phase operator is defined as

Go= 3 0nl0m><Onl 9)

The phase states (7) are eigenstates of the phase op-
erator (9) with the eigenvalues 6,, restricted to lie
within a phase window between 6, and 8, 2. The
unitary phase operator exp(if,) can be defined as
the exponential function of the Hermitian operator
$e. This operator acting on the eigenstate |8,,) gives
the eigenvalue exp(i6,,), and can be written as [13-
15]

“ s—1
exp(igy) = 20 |n)y{n+1|

+exp[i(s+1)6,]11s>¢0]. (10)

It is the last term in (10) that assures the unitarity
of this operator. The first sum reproduces the
Susskind-Glogower phase operator in the limit s—co.

The expectation value of the phase operator (9)
in a state |y) is given by

WGal¥>= T Ol <Onlw> 17, (1)

where |{6.|w)>|* gives the probability of being
found in the phase state |6,,>. The density of phase
states is (s+1)/2x, so in the continuum limit as s
tends to infinity, we can write eq. (11) as
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80+2n s2/2 o I ;
Widolwy= | 6P(6) a8, 12y & i ) 9o a7
o -n

where the continuum phase distribution P(8) is in-
troduced by

. s+1 2
P(9)= lim =— | <6lw>?, (13)

where 6,, has been replaced by the continuous phase
variable 6. As the phase distribution function P(0)
is known, all the quantum mechanical phase expec-
tation values can be calculated with this function in
a classical-like manner. The choice of the value of 6
defines the 2n range window of the phase values.

Generalization of the phase formalism to the two-
mode case is straightforward, and for the two-mode
vacuum state (6) we have

<0m+ , <9m_ ’O’ 0>(r.¢)
=(s4++1)""2(s_+1)~"2(cosh r)~!

S+ S

X

ny . =0

exp[—i(n46,,, +1_6,,_)]

X Y (e*®tanhr)*(n., n_|n,nd>
n=0

=(s++1)""2(s_+1)~"%(cosh r)~!

min(s+,5-)

xzo

n==

{exp[i(2¢~6,,_—6,,,)] tanh r}" .
(14)

Because of the presence of the phase ¢ the two-mode
squeezed vacuum can be treated as a partial phase
state, and it is convenient to choose the phase value
windows symmetrized with respect to the phase ¢.
This means choosing 8 as

ns
b5 =o— el

(15)

and introduction of the new phase values
9#z= ms — @, (16)

where the new phase labels 4, run in unit steps be-
tween the values —s./2 and 5. /2. Taking into ac-
count (15) and (16), after taking the modulus square
of (14) and performing the continuum limit tran-
sition by making the replacements

we arrive at the continuous joint probability distri-
bution for the continuous variables 6, and 6_, which
has the form

P6,,6_)= 1 (1 +X(coshr)=2 ¥ (tanh r)"+*

(2m)? =k
X cos[(n—k) (0, +0_)]). (18)
The distribution (18) is normalized such that
f IP(0+,0_)d0+d6_=1. (19)

From the form (18) of the joint probability distri-
bution of the phases 6, and 6_ it is obvious that this
distribution depends on the sum of the two phases
only. This is an important phase property of the two-
mode squeezed vacuum, which reflects the fact of
strong correlations between the two modes.
Integrating P(.., 6_) over one of the phases gives
the marginal phase distribution P(6.,. ) or P(4_) for
the phase 8, or 4_,
P(6,)= j P(6,,6_) dd_ = 511; (20)

P(G_):P(9+)=§1;c-. (21)

Thus the phases 8, and @_ of the individual modes
are uniformly distributed. The expectation values of
the phase operators, defined by (9), can be calcu-
lated according to (12) with the phase distributions
given by (21). We have

(Bo>=0+ [ 0.P(6,)d0, =, (22)

-7

and similarly

(Po_>=(Bo,>=0p. (23)
As a consequence, we have
(P, +do_> =20, (Po. —Bs_>=0. (24)
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This means that the expectation value of the phase-
sum-operator is related to the phase 2¢ defining the
two-mode squeezed vacuum state (6). Our choice of
the phase ¢ is now more transparent. Of course, for
the variances of the individual phases we obtain

((Ade, )2y =< (Adp_)?y = m2/3. (25)

Thus, the two-mode squeezed vacuum has very spe-
cific phase properties: individual phases as well as
the phase difference are random and the only non-
random phase is the phase sum.

An example of the joint phase probability distri-
bution P(6.,, 6_) is shown in fig. 1. The ridge which
is parallel to the diagonal of the phase window square
reflects the dependence of P(6.,8_) on =6, +6_
only. There is another ridge that is split into two
pieces which appear in the corners of the phase win-
dow square. If the values of 65, given by (15), were
chosen differently, the second ridge would appear in
the distribution in its full form. Because of the sym-
metry of the distribution P(6,, 6_), we can plot a
function P(6=6, +6_) in the one-dimensional for-
mat. This means looking at the section of the dis-
tribution P(6,, 8_) in a plane perpendicular to the
symmetry plane of this distribution. In fig. 2 plots of
the function P(8) are shown for various values of
the squeeze parameter r. It is clearly seen that the
distribution becomes narrower as r increases. This
means that the sum of the phases becomes less
uncertain.

It should be kept in mind, however, that the func-
tion P() itself is not a probability distribution, it is
only a convenient, one-dimensional picture of the
joint probability distribution P(6.,, 6_). So, all av-
erages are obtained by performing integrations over

Fig. 1. Plot of the joint probability distribution P(6,, g_) for
r=0.5. -
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Fig. 2. Plot of the section P(§=6,+6_) against ¢ for various
values of the squeeze parameter r.

0. and 6_ with the distribution P(8,, 6_). This
means that the side-peaks seen in fig, 2, which are
located in the corners of the integration area, do not
contribute to the averages in the limit r— oo, because
they are pushed out of the integration area by the
limiting process.

The Pegg-Barnett formalism allows us to calculate
the variance of the phase-sum-operator, which can
be done according to the formula

C[A(Bo, +65_) 12> = (Ao, )?) + ((Ady_)?>
+2({Bo, Bo_ ) =< Po. ><{Pa_D) (26)

where the individual phase variances are given by
(25), and the correlation term has appeared in (26).
The phase correlation function can be calculated ac-
cording to

Com=(B6.06_ >~ <P ><{Bo_>

= f I 0,6_P(6.,0_ )0, db_

- -7

tanh r)"+«
= —2(cosh r)‘2 Zk((n——k))z_

This correlation coefficient is plotted against the
squeeze parameter r in fig. 3. It is negative and
asymptotically approaches —n?/3. The strong neg-
ative correlation between the phases of the two modes
lowers the variance (26) of the phase-sum-operator;
asymptotically, for r— oo, this variance tends to zero,
which means that for very large squeezing the sum
of the two phases becomes well defined. This would
correspond to the classical behaviour of the fields
with well defined phase-sum, of course, insofar as one

(27)
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Fig. 3. Plot of the correlation coefficient C, _ against the squeeze
parameter r.

can speak about classical behaviour of highly
squeezed vacuum.

Generalizing of formula (10) and taking into ac-
count the fact that the two-mode squeezed vacuum
is a “physical state” [14,15] enables us to calculate
the expectation values of the phase exponential op-
erators in the following way,

(9 <0, 0] exp(im. @5, ) exp(im_s_)10,0) (1p)

= (ro) <0, Olexp(im, ¢.sG)
X exp(im_¢_s5)|0,0) ()

=(coshr)=2 Y 3 (e*tanhr)"*™
nk=0Im=0

X n kyin+mo , k+m_|m, md
= (e¥tanh r)"*3,, m_ , (28)

where the operators

[=~]

eXp(imsPisg) = Z fny{n+my, | (29)

n=0

are the Susskind-Glogower phase operators for the
two modes. Formula (28) is strikingly simple, and
it shows that only exponentials of the phase-sum have
expectation values different from zero. Qur formula
(28) should be compared to the corresponding for-
mula of Fan and Zaidi [11] (notice an error in their
formula).

Using our formula (28) we have obtained the fol-
lowing results for the cosine and sine of the phase-
sum operator,
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<0, 0] 005(6«94. +¢;¢9_)|Oa 0>(r.¢)
=tanh r cos 2¢,

(i <0, 0] sin(@g, +85_) 10,05 (1)
=tanh r sin 2¢p, (30)

(r <0, 0] €05 (B, +5_)10,0 ()
=141 cos4ep (tanhr)?,
0 <0, 0] Sinz(éa», +¢;o_)|0, 0> ¢re)
=4—1cos4¢ (tanh r)?, (31)
r) <0, 0| [A cos(@g. +85_)1210,0) ()
=2(coshr)~2,
<0, 0 [Asin(dg, +64_)1310, 0> o)
=2(coshr)-2. (32)

Asymptotically, for very large squeezing (r—co,
tanhr—1, cosh r—co) the expectation values (30)
and (31) of the phase-sum-operator become the cor-
responding functions of the phase 2¢, confirming the
relation between the phase-sum and 2¢ that is al-
ready seen from (24). It is interesting to note that
the expectation value of the phase-sum-operator is
equal to 2¢ irrespective of the value of r, whereas for
the sine and cosine functions the correspondence is
obtained only asymptotically. The variances (32)
then become zero and the sine and cosine of the
phase-sum are well defined.

It should, however, be emphasized that the ex-
pectation values calculated according to the Pegg-
Barnett formalism depend on the choice of the par-
ticular window of the phase eigenvalues. If a differ-
ent choice from that made in this paper were made,
the clear picture of phase properties of the two-mode
squeezed vacuum would be disturbed. For example,
the value of the correlation coefficient (27) would
be different, and the phase-sum variance (26) would
not tend to zero asymptotically. However, formulas
(28)-(32) because of the way they have been cal-
culated do not, in fact, depend on the choice of the
phase window. This gives us an opportunity of choice
that introduces consistency in the behaviour of the
phase itself and its sine and cosine functions. An-
other way of making the choice is to minimize the
variance (26) of the phase-sum-operator.
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3. Conclusions

We have discussed the phase properties of the two-
mode squeezed vacuum state from the point of view
of the Pegg-Barnett Hermitian phase formalism. The
joint probability distribution for the phases of the
two modes has been obtained and has been shown to
depend only on the sum of the two phases. This im-
plies some specific phase properties of the two-mode
squeezed vacuum. The only non-uniformly distrib-
uted phase quantity is the phase-sum. Individual
phases as well as the phase-difference are uniformly
distributed. Strong negative correlation exists be-
tween the phases of two modes, which forces the
phase-sum-operator variance to tend asymptotically
to zero as the squeezing parameter r tends to infinity.
This means, asymptotically, the state with the well
defined sum of the phases. The sine and cosine func-
tions of the phase-sum-operator have also been ob-
tained and compared to earlier results of Fan and
Zaidi [11] obtained within the Susskind-Glogower
phase formalism.

Acknowledgement

This work was supported in part by the Polish Re-
search Programme CPBP 01.07.

256

PHYSICS LETTERS A

21 January 1993

References

[1]J. Mod. Opt., Vol. 34, No. 6/7 (1987);
J. Opt. Soc. Am., Vol. B 4, No. 10 (1987).

[2] R.E. Slusher, L.W. Hollberg, B. Yurke, J.C. Mertz and JLE
Valley, Phys. Rev. Lett. 55 (1985) 2409. -

[31R.M. Shelby, M.D. Levenson, S.H. Perimutter, R.G. Devoe
and D.F. Walls, Phys. Rev. Lett. 57 (1986) 691. :

[4]1L.A. Wy, HJ. Kimble, J.L. Hall and H. Wu, Phys. Rev. Lety,
57 (1986) 2520. :

[51M.G. Raizen, L.A. Orozco, M. Xiao, T.L. Boyd and H.J,
Kimble, Phys. Rev. Lett. 59 (1987) 198.

[6]1 M.W. Maeda, P. Kumar and J. H. Shapiro, Opt. Lett. 12
(1987) 161.

[7]S. Machida, Y. Yamamoto and Y. Jtaya, Phys. Rev. Lett,
58 (1987) 1000.

[8] A. Heidmann, R.J. Horowicz, S. Reynand, E. Giacobino and
C. Fabre, Phys. Rev. Lett. 59 (1987) 2555.

[9]B.C. Sanders, S.M. Barnett and P.L. Knight, Opt. Commun,
58 (1986) 290.

[10] D. Yao, Phys. Lett. A 122 (1987) 77.

[11] Fan Hong-Yi and H.R. Zaidi, Opt. Commun. 68 (1988)

143.
[12] L. Susskind and J. Glogower, Physics 1 (1964) 49.
[13] D.T. Pegg and S.M. Barnett, Europhys. Lett. 6 (1988) 483,
{14] D.T. Pegg and S.M. Barnett, Phys. Rev. A 39 (1989) 1665,
[15]S.M. Barnett and D.T. Pegg, J. Mod. Opt. 36 (1989) 7.
[16}J.A. Vaccaro and D.T. Pegg, Opt. Commun. 70 (1989) 529.
[17]N. Gronbech-Jensen, P.L. Christiansen and P.S:
JRamanujam, J. Opt. Soc. Am. B 6 (1989) 2423,
[18] C.M. Caves and B.L. Schumaker, Phys. Rev. A 31 (1985)
3068, 3093.



