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Quantum phase fluctuations in the second-harmonic generation
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Quantum phase fluctuations in the second-harmonic generation are examined from the point of view of the Hermitian phase
formalism introduced by Pegg and Barnett. The joint probability distribution as well as the variances for the phases of the funda-
mental and second-harmonic modes are calculated numericaily. Their evolution is illustrated graphically, and the phase properties

of the generated light are discussed.

1. Introduction

The process of converting laser light of frequency
w into its second harmonic of frequency 2w - the
second-harmonic generation — is the first optical
nonlinear process observed in a laboratory with the
use of lasers [1]. In the quantum picture of the pro-
cess we deal here with a nonlinear process in which
two photons are annihilated and one photon with
doubled frequency is created. The quantum states of
the field generated in the process exhibit a number
of unique quantum features such as photon anti-
bunching [2] and squeezing [3,4] for both funda-
mental and second-harmonic modes (for a review
and references see ref. [5]). Recently, Nikitin and
Masalov [6] have discussed the properties of the
quantum state of the fundamental mode calculating
numerically the quasiprobability distribution func-
tion Q(«a, a*) for this mode. They have suggested
that the quantum state of the fundamental mode
evolves, in the course of the second-harmonic gen-
eration, into a superposition of two macroscopically
distinguishable states. Such superpositions of well
separated coherent states that appear in the evolu-
tion of the anharmonic oscillator [7] are clearly in-
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dicated by the splitting of the function Q into sep-
arate peaks [8]. Recently, Gantsog and Tana$ [9,10]
have shown, using the new Pegg-Barnett [11-13]
Hermitian phase formalism, that such superposi-
tions are clearly visible from the phase distribution
functions. The new phase formalism of Pegg and
Barnett enables one also to pose the question of
quantum phase fluctuations in various nonlinear op-
tical processes [9,10,14,15].

In this paper, we consider the problem of quantum
phase fluctuations of the field generated in the pro-
cess of second-harmonic generation. The joint phase
probability distribution function for the two modes
is calculated and its evolution illustrated graphically.
It is shown that at the initial stage of the evolution
the second-harmonic mode acquires a relatively well
defined phase, which is randomized at later stages of
the evolution. The phase variances for the second-
harmonic as well as the fundamental modes are also
calculated showing clearly the appearance of the
minimum in the variance for the second-harmonic
mode. The splitting of the phase distribution func-
tion into separate peaks, suggesting the appearance
of the superposition of two or more states, is also
demonstrated. In fact, the sequence of more and more
peaks that appear in the phase distribution for later
times leads to the randomization of the phase, i.e.,
to making the phase distribution more and more
uniform.
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2. Quantum evolution of the field state

To describe the second-harmonic generation pro-
cess we use the following model Hamiltonian,

H=H,+H,
=hwata+2hwb*tb+hg(bta*+bat?), (1)

where a (a*) and b (b™) are the annthilation (cre-
ation) operators of the fundamental mode of fre-
quency w and the second-harmonic mode at fre-
quency 2w, respectively. The coupling constant g,
which is real, describes the coupling between the two
modes. Since H, and H; commute, there are two con-
stants of motion: H, and H,. H, determines the total
energy stored in both modes, which is conserved by
the interaction H;. This allows us to factor out
exp(—iHyt/h) from the evolution operator, in fact
to drop it altogether, and to write the resulting state
of the field as

lw(t)y=exp(—iHt/h)|w(0)>, (2)

where |(0)) is the initial state of the field. If the
Fock states are used as basis states, the interaction
Hamiltonian H; is not diagonal in such a basis. To
find the state evolution, we apply the numerical
method of diagonalization of H,. Such a method has
been used several times in the context of second-har-
monic generation [6,16-18].

The typical initial conditions for the second-har-
monic generation are: a coherent state of the fun-
damental mode and the vacuum of the second-har-
monic mode. The initial state of the field can thus
be written as

W(0)>= T byin,0, (3)
where

an
b,,=exp(—lalz/2)ﬂ (4)

is the Poissonian weight factor of the coherent state
|a> represented as a superposition of n-photon
states, and the state |n, 0> =|n)>|0) is the product
of the Fock states with »n photons in the fundamental
mode and no photons in the second harmonic. With
these initial conditions the resulting state (2) can be
written as
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oo (/2]
lw(t)>= };Obn kZO Cmi(t) | n—2k, k>, (5)

where the coefficients ¢, (¢) are given by
ety =< n=2k, klexp(—iH,t/h)|n,0) . (6)

The summation over k runs up to the integer part of
n/2, where n denotes the number of photons of the
fundamental mode, whereas k is the number of pho-
tons created in the second-harmonic mode. The
coefficients ¢,,(¢) given by eq. (6) are calculated
numerically to find the evolution of the field state
(5) and, consequently, its phase properties.

3. Phase properties of the field

To study the phase properties of the field obtained
in the second-harmonic generation process, we use
here the new Pegg-Barnett [11-13] phase formal-
ism which is based on introducing a finite (s+1)-
dimensional space ¥ spanned by the number states
[0, [1), ..., |s>. The Hermitian phase operator op-
erates on this finite space, and after all necessary ex-
pectation values have been calculated in P, the value
of s is allowed to tend to infinity. A complete or-
thonormal basis of s+ 1 states is defined on ¥ as

16,5 =(s+ 1)~ 3 exp(ind)|n) , (7)
n=0

where

6,=60,+2tm/(s+1) (m=0,1,...,s). (8)

The value of 6, is arbitrary and defines a particular
basis set of s+ 1 mutually orthogonal phase states.
The Hermitian phase operator is defined as

Go= 3 010> <On] - 9)

The phase states (7) are eigenstates of the phase op-
erator (9) with the eigenvalues 6, restricted to lie
within a phase window between 8, and 6,4+ 2n. The
unitary phase operator exp(id ) is defined as the ex-
ponential function of the Hermitian operator ¢,. This
operator acting on the eigenstate |6,,> gives the ei-
genvalue exp(if,,), and can be written as [11-13]
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.. 5! ab TSab
exp(igg)= ). |n>{(n+1| 03 =g, — = (15)
n=0 Sa.b +1
+exp[i(s+1)6,]1s><0]. (10) and we introduce the new phase values

It is the last term in (10) that assures the unitarity
of this operator. The first sum reproduces the
Susskin-Glogower phase operator in the limit s—co.

The expectation value of the phase operator (9)
in a state | ) is given by

WIdalvy= 3 Onl<Onlw> 12, (11)

where | {(0,,|w)>|? gives the probability of being
found in the phase state |0,,). The density of phase
states is (s+1)/2=, so in the continuum limit as s
tends to infinity, we can write eq. (11) as

6o +2n

wldely)= 6P(0) do, (12)

o

where the continuum phase distribution P(8) is in-
troduced by

P(0) tim 2 | <Oy 17, (13)
s—oo 2T
where 6, has been replaced by the continuum phase
variable 6. As the phase distribution function P(8)
is known, all the quantum mechanical phase expec-
tation values can be calculated with this function in
a classical-like manner. The choice of the value of 6,
defines the 2n range window of the phase values.

In our case of second-harmonic generation, the
state of the field (5) is in fact a two-mode state, and
the phase formalism must be generalized to the two-
mode case. This is straightforward and, for the state
(5), we obtain

<0’VIa| <6rnb|‘//(t)>=(Sa+1)_l/2(sb+l)_l/2

Sa [n/2

X Y b,
n=0 k

+k9mb]}cnk(t) . (14)

] exp{—i[(n—2k)0,,

=0

We use the indices a and b to distinguish between the
fundamental (a) and second-harmonic (b) modes.
There is still a freedom of choice in (14) of the val-
ues of 3°, which define the phase value window. We
can choose these values at will, so we take them as

Hlla.b = oma,b = @ap > ( 16)

where the new phase labels x4, run in unit steps be-
tween the values —s,5/2 and s,/2. This means that
we have symmetrized the phase windows for the fun-
damental and second-harmonic modes with respect
to the phases ¢, and ¢, respectively. On inserting
(15) and (16) into (14), taking the modulus square
of (14) and performing the continuum limit tran-
sition by making the replacements

Sa,b/2 n

N
tap=—sap/2 Sab +1

n

j do,, (17)

-7

we arrive at the continuous joint probability distri-
bution for the continuous variables 8, and 6,, which
has the form

P(6,, 6b)
L |$5,'5 i[ (n—2k)6, + k8
=G50 & exp{—i[ (n—2k)6, + k6,
2
—k(29.—@o) Ilcuc(1)] - (18)
Distribution (18) is normalized such that
J '[ P(b,,6,) d6,d6,=1. (19)

- —T

To fix the phase windows for 6, and 6,, we have to
assign to ¢, and g, particular values. It is interesting
to notice that formula (18) depends, in fact, on the
difference 2¢,—@,, which reproduces the classical
phase relation for the second-harmonic generation.
Classically, for the initial conditions we have chosen
here, this phase difference takes the value
2¢,—@,=m/2. It turns out that this is also a good
choice to fix the phase windows in the quantum de-
scription, so we make it here. Since we assume the
phase of the initial coherent state of the fundamental
mode to be zero (« real), we additionally assume
@.=0 without loss of generality.

The joint phase probability distribution (18) can
be evaluated numerically if the mean number of

3
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photons N,=|a|? of the fundamental mode is not
too large. The results are illustrated in fig. I, where
the function P(6,, 6,) is plotted in three-dimen-
sional format for various values of the dimensionless
evolution time gt. Initially, the distribution is peaked
at 6,=0 in the 6, direction reproducing the phase
distribution of the coherent state of the fundamental
mode, and it is completely flat in the 6, direction
representing the uniform phase distribution of the
vacuum of the second-harmonic mode. As the evo-
lution goes on the distribution in the 6, direction is
broadened, while for the second-harmonic mode a
peak starts to grow. This means that the second har-
monic at the initial stage of the evolution becomes
“phased”, and the appearance of the peak at 6,=0
confirms the classical relation 2¢,—¢,=m/2, which
we have applied to fix the phase window. The phase
distribution in the 8, direction is narrowing at the
beginning of the evolution, meaning less uncertainty
in the phase of the second harmonic. However, for
later times the distribution P(8,, 8,) splits into two,

Fig. 1. Plot of the joint probability distribution P(8,, 8,), for var-
ious values of gt and N,=4.
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and still later even more, peaks. This splitting sug-
gests that the state of the field evolves during the
evolution into a superposition of two (or more) dis-
tinguishable states with definite mean phase. The
splitting of the function Q(«, a*) of the fundamen-
tal mode into two distinguishable peaks has been
found by Nikitin and Masalov [6]. As the number
of peaks in the distribution P(8,, 6,) increases, the
distribution becomes more and more uniform, which
means the randomization of phase. The route to the
random phase distribution, however, goes through a
sequence of increasing numbers of peaks.

When integration of P(6,, 6,) over one of the
phases is performed, the marginal phase distribution
P(0,) or P(8,) for the phase 6, or 8, is obtained. For
example

P6)= | P(@,,0,) 6,. (20)

-7

The marginal distributions P(6,) and P(6,) allow
one to calculate the mean values and variances of the
phase operators, defined by (9), of the fundamental
and second-harmonic modes. We have for example

Go>=out | 6.P(0) db.=0,, 1)
Gn> =t | 6P(6) a6 =0, (22)

Since the functions P(6,) and P(6,) are even func-
tions of their arguments the integrals in (21) and
(22) are zero. This is true under the assumption we
have made that 2¢,—@,=n/2. The mean values of
the phases, given by (21) and (22), reproduce the
classical phase relations in the second-harmonic
generation.

Quantum mechanically, however, there are defi-
nite uncertainties in the measurements of the phases,
which are given by the variances of the phase
operators,

((ABg)?> = (83> — {Pa >

= j 0:P(6,) do,. (23)

-7
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The formula for the variance of the phase operator
for the second-harmonic mode is the same as (23)
after changing the index a into b.

The integrations in (20) and (23) can be per-
formed explicitly, giving the formulas for P(6,) and
P(6,) as well as for the phase variances in terms of
the coefficients c,.(¢). Numerical evaluation of the
resulting formulas allows us to find the evolution of
the phase variances. The results are presented in fig.
2, where the variances for the phases of the funda-
mental and second-harmonic modes are plotted
against gt. It is seen that the variance for the fun-
damental mode starts from its minimum value for
the coherent state, increases rapidly, and after sev-
eral oscillations becomes close to n2/3 — the value for
the uniformly distributed phase. So the fundamental
mode phase is rapidly randomized. The situation is
different with the variance of the second-harmonic
mode phase, which starts from the value n?/3 of the
vacuum state, goes down, reaches its absolute min-
imum, goes up, and after a few oscillations again be-
comes close to n2/3. This shows that at the beginning
of the evolution the second harmonic generated from
the vacuum acquires a definite phase, which is ran-
domized again at later stages of the evolution. There
is a time at which the second-harmonic phase is de-
fined best.

In our numerical calculations we have assumed for
the mean number of photons of the initial coherent
state of the fundamental mode the value
N,=|a|?=4. Since this number is greater than unity
it leads to solutions that have already some char-
acteristic features of the solutions for N,>>1 (clas-

<(Ade,)>

0k T T T T
0.0 1.0 2.0 3.0 4.0 5.0
gt
Fig. 2. Evolution of the phase variances for the fundamental mode

(dashed line) and the second-harmonic mode (solid line), for
N,=4.
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sical limit), on the other hand, this number is small
enough to make the quantum effects clearly visible
and save computing time.

In order to set properly the time scale on which the
essential changes of phase properties considered in
this paper take place, we have plotted in fig. 3 the
evolution of the mean numbers of photons for the
fundamental ((a*ad) and second-harmonic
(¢<b*b>) modes. Since our calculations are fully
quantum mechanical, the flow of power back and
forth between the fundamental and the second-har-
monic mode is clearly visible, in contrast to the clas-
sical solutions that are monotonic in time. Of course,
the conservation law {(a*a)+2{b*by=N, is
satisfied.

3. Conclusions

We have discussed the quantum phase properties
of the field generated in the process of second-har-
monic generation. The Pegg-Barnett phase formal-
ism has been applied to find the joint probability
distribution for the two modes of the field as well as
the variances of the phase operators for the individ-
ual modes. The method of numerical diagonaliza-
tion of the interaction Hamiltonian has been used to
get the evolution of the field state. The joint phase
probability distribution for the two modes of the field
shows some interesting features. It shows the crea-
tion of a definite phase of the second-harmonic mode
at the beginning of the evolution. The phase of the
fundamental mode is degraded at the same time. This

4.0

. N,=4
3.0 {} B

2.0 11

1.0 1

<ata> < b

0.0 T T T T
0.0 1.0 2.0 3.0 4.0 5.0

gt
Fig. 3. Evolution of the mean number of photons for the funda-
mental (dashed line) and the second-harmonic (solid line) mode,
for N,=4.
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behaviour is confirmed by the evolution of the phase
variances of the two modes. Another interesting fea-
ture is the splitting of the joint phase probability dis-
tribution into separate peaks. This suggests that the
quantum state of the field develops into superposi-
tions of distinguishable states with a definite phase
(or approaching close to such superpositions). At
later stages of the evolution the phases of the two
modes are randomized, but this process goes through
the appearance of more and more peaks in the dis-
tribution, which eventually leads to the uniform
phase distribution. The competition between in-
duced and spontaneous processes in the second-har-
monic generation manifests itself clearly in the phase
properties of the field.
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