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The effect of quantum fluctuations of the pump on the quantum phase properties of the signal mode in the parametric down-
conversion process is considered. The Pegg—Barnett hermitian phase formalism is used to calculate the joint phase probability
distribution and the phase variances of the two modes. The time evolution of the field state is obtained by means of numerical
diagonalization of the interaction hamiltonian. The results are illustrated graphically and compared to those for the ideal squeezed

state.

1. Introduction

The nonclassical nature of the fields produced by
parametric down-conversion from an intense pump
beam into signal and idler modes that are in the vac-
uum state is well known [1-10]. It is essential for
the quantum properties of fields generated in the
process that the high-frequency pump photons are
split into highly correlated pairs of lower-frequency
signal and idler photons. In the simplest case of a
nondepleted degenerate parametric process, the
pump mode is assumed as classical and nondepleted,
and the signal and idler modes become one mode of
the subharmonic field with half the frequency of the
pump mode. The time evolution of the subharmonic
field is described by a Bogoliubov transformation that
maps the initial vacuum state into an ideal squeezed
state [1-6]. Properties of such ideal squeezed states
have been widely discussed [1-6] (for a review see,
e.g., ref. [11]). The parametric down-conversion
process turned out to be very effective in producing
squeezed states in practice [12-17].

Recently, Vaccaro and Pegg [ 18] discussed quan-
tum phase properties of the ideal squeezed states from
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the point of view of the hermitian phase formalism
introduced by Pegg and Barnett [19-21]. It has been
shown that for very large squeezing the ideal squeezed
vacuum comes close to the superposition of two phase
states. The phase probability density for the weakly
squeezed vacuum has also been obtained and its
properties discussed.

In this paper we discuss the phase properties of the
subharmonic field taking into account quantum
properties of the pump mode. This mode is treated
as dynamical variable and its quantum mechanical
time evolution is accounted for. The Pegg-Barnett
[19-21] hermitian phase formalism is applied to find
the joint phase probability distribution as well as the
phase variances for both modes. We use the method
of numerical diagonalization of the interaction
Hamiltonian to obtain the time evolution of the sys-
tem. The results for the joint phase probability dis-
tribution, the phase distribution for the signal (sub-
harmonic) mode, the mean number of photons in
both modes, and the phase variances are obtained
numerically and illustrated graphically. The results
are compared to the results for the ideal squeezed
state. The randomization of the phases owing to
quantum fluctuations of the pump is shown to take
place in the long-time limit. A limit is imposed by
such fluctuations on the values of the squeeze pa-
rameter that can be obtained in the ideal down-con-
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verter model; or, in other words, there are limits for
such a model to work well.

2. State evolution

To describe the subharmonic generation process,
the following model hamiltonian is used:

H=HO ‘+'H[
=hwala+2hwbtb+hg(bta’+ba'?) , (1)

where a (a') and b (b") are the annihilation (cre-
ation) operators of the subharmonic mode of fre-
quency @ and the pump mode of frequency 2w, re-
spectively. The coupling constant g, which is real,
describes the coupling between the two modes. The
hamiltonian (1) is, in fact, the same as for second
harmonic generation. It is the initial conditions that
distinguish the two processes. In the case of second
harmonic generation, mode b is initially in the vac-
uum state and mode a is populated. For the sub-
harmonic generation process considered in this pa-
per, mode b is initially populated, while mode a is
in the vacuum state. The distinction between the two
processes is far from being trivial, and the states gen-
erated in the two processes have quite different
properties. The nonclassical character of the states
obtained in the subharmonic generation process has
been discussed by Hillery [22].

Since H, and H; commute, there are two constants
of motion: Hy and H,. H, determines the total energy
stored in both modes, which is conserved by the in-
teraction H;. This enables us to factor out
exp(—iHyt/#) from the evolution operator, in fact
to drop it altogether, and to write the resulting state
of the field as

ly(1) > =exp(~iHut/h) |y (0)) , (2)

where |w(0)) is the initial state of the field. If the
Fock states are used as basis states, the interaction
hamiltonian H; is not diagonal in such a basis. To
find the state evolution, we apply a numerical method
to diagonalize H,. Such method has been used earlier
for second harmonic generation [23,24].

In this paper, we consider the subharmonic gen-
eration process, which may be considered as a gen-
eralization of the parametric down-conversion pro-
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cess by accounting for the quantum properties of the
pump mode. Thus, the initial state of the field is here
taken as

W(0)>= 3 bil0.n), (3)
where
bo=exp(—|B12/2) B/ /n! (4)

is the Poissonian weight factor of the coherent state
| 8> of the pump mode represented as a superposi-
tion of n-photon states. The state |0, n>=|0)|n)
is the product of the Fock states with n photons in
the pump mode and no photons in the subharmonic
mode. That is, we assume the pump mode as being
initially in a coherent state |f3)>, and the subhar-
monic mode as being initially in the vacuum. With
these initial conditions the resulting state (2) can be
written as

() = i b, z Coni(1) | 26, n—K | (5)

where the coefficients ¢,, () are given by
Coni(t) = (2k, n—k| exp(—iHt/h) |0, n) . (6)

The coefficients ¢,,,(¢) given by eq. (6) are cal-
culated numerically by diagonalizing the interaction
hamiltonian H,. This allows us to find the evolution
of the state (5) and, in effect, its phase properties.

3. Phase properties of the field

In this section we will study the phase properties
of the field produced in the course of subharmonic
generation. To this end we use here the new Pegg-
Barnett [19-21] phase formalism, which is based on
introducing a finite (s+ 1)-dimensional subspace ¥
spanned by the number states |0>, |1, ..., |s>. The
hermitian phase operator operates on this finite sub-
space, and after all necessary expectation values have
been calculated in ¥, the value of s is allowed to tend
to infinity. A complete orthonormal basis of (s+1)
states is defined on ¥ as

16,5 = (s+1)=2 3 exp(inf,,)|n) , 7)
n=0
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where

0, =60,+2mm/(s+1) (m=0,1,..5). (8)

The value of 6, is arbitrary and defines a particular
basis set of (s+ 1) mutually orthogonal phase states.
The hermitian phase operator is defined as

Gr= 3 0nl0n> COnl. (9)

The phase states (7) are eigenstates of the phase op-
erator (9) with the eigenvalues 6, restricted to lie
within the phase window between 6, and 6,+ 27. The
unitary phase operator exp(i@,) is defined as the ex-
ponential function of the hermitian operator @,. This
operator acting on the eigenstate |6,,> gives the ei-
genvalue exp(i6,,), and can be written as [19-21]

. s—1
exp(idy)= 3 |n) (1]

+exp[i(s+1)8,]1s><0] . (10)

It is the last term in (10) that assures the unitarity
of this operator. The first sum reporduces the
Susskind—Glogower phase operator in the limit s—co.

The expectation value of the phase operator (9)
in a state |y) is given by

Widol¥> = % Oml<Only>1?, (11)

where | (8,,|w> |?* gives the probability of finding the
phase state |6,,>. The density of phase states is
(s+1)/2m, so in the continuum limit, as s tends to
infinity, we can write eq. (11) as

Go+2n

Wldolw) = 6P(0) d6, (12)

6o

where the continuum phase distribution P(#) is in-
troduced by

— lim L 2
P(6)= lim = <Bly>|*, (13)

where 6, has been replaced by the continuous phase
variable 6. As the phase distribution function P(8)
is known, all the quantum mechanical phase expec-
tation values can be calculated with this function in
a classical-like manner. The choice of the value of 6,
defines the 2n wide window of phase values.
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In the case of subharmonic generation considered
here, the state of the field (5) is in fact a two-mode
state, and the phase formalism must be generalized
to the two-mode case. This is straightforward and,
for the state (5) we obtain

<9Wm|<0mb[l//(t)>=(sa+l)ﬂl/z(sb-l'l)_l/z

X i b’! zn: exp{_i[zkema-'-(n_k)emb]}cbl.k(t) .
n=0 k=0
(14)

We use the indices a and b to distinguish between the
subharmonic (a) and pump (b) modes. There is still
a freedom of choice in (14) of the values of 63°,
which define the phase window. We can choose these
values at will, so we take them as

S’b =@ap— nsa,b/ (sa,b +1 ) s ( 15 )
and we introduce the new phase values
Q/Aa,b = 6ma,b —@ab ( 16 )

where the new phase labels g, ;, run between the val-
ues —s,p/2 and s, /2 with unit step. This means that
we symmetrized the phase windows for the subhar-
monic and pump modes with respect to the phases
¢, and ¢, respectively.

On inserting (15) and (16) into (14), taking the
modulus squared of (14) and taking the continuum
limit by making the replacement

Sab/2
5 jdea.,, (17)

Hab=—sab/2 Sab+1

we arrive at the continuous joint probability distri-
bution for the continuous variables §, and 6,, which
has the form

P(Haa eb) Z b Z Can(t)

(2 n)?l,
2

Xexp{—i[2k0, + (n—k)6, +k(2¢0, —0,) 1}
(18)

The distribution (18) is normalized such that
J J P(4,,6,)do,do,=1. (19)

To fix the phase windows for 6, and 6,, we have to
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assign to ¢, and ¢, particular values. Formula (18)
depends on the phase difference 2¢,— @, only. This
is the classical phase relation for the parametric am-
plifier, and we take this value equal to 2¢,—¢,=
7/2. Since we assume the phase of the initial coher-
ent state of the pump mode as zero (S real), we ad-
ditionally assume ¢, =0.

The joint phase probability distribution (18) can
be evaluated numerically if the mean number of
photons N, = | #|? of the pump mode is not too great.
The results are presented in fig. 1, where the function
P(#6,, 6,) 1s plotted in three-dimensional format for
various values of the dimensionless evolution time
gt. Initially, the distribution is peaked at 6, =0 in the
6, direction, reproducing the phase distribution of
the coherent state of the pump mode, and it is com-
pletely flat in the 6, direction, representing the uni-
form phase distribution of the vacuum for the sub-
harmonic mode. As time elapses two phase peaks

Fig. 1. Plots of the joint probability distribution P(8,, 6,), for
various values of gf and N,=4.
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start to grow in the 6, direction, suggesting the ap-
pearance of a superposition of two states in the re-
sulting field. For later times the number of peaks in
the distribution increases, and for very long times
the number of peaks becomes large, making the phase
distribution practically uniform.

The two peaks that appear at the beginning of the
evolution correspond, in fact, to the two-peak phase
distribution of the ideal squeezed states, which was
indicated by Vaccaro and Pegg [18]. Here, however,
we deal with the joint probability distribution for the
phases 6, and 6, of the signal and pump mode, rather
than with the phase distribution of the signal mode
alone. A broadening of the phase distribution in the
pump mode is clearly visible from the pictures. Our
approach explicitly takes into account the quantum
phase properties of the pump mode. It is interesting
that in the course of the evolution the number of
peaks increases in the direction 6, (the pump mode
phase), but the two-peak symmetry is preserved in
the 6, direction (the signal mode phase).

When integration of P(6,, 6,) over one of the
phases i1s performed, the marginal phase distribu-
tions P(6,) or P(6,) for the phase @, or 8, is ob-
tained. For example,

P(6)= | P(0. ) a6, (20)

—-7

The marginal distribution P(6,) for the signal mode
can be compared to the corresponding phase distri-
bution for the ideal squeezed state. At the initial
stages of the evolution the two distributions are
hardly distinguishable, but at later times, when the
quantum character of the pump mode becomes es-
sential, they differ considerably. An example is shown
in fig. 2, where both distributions are compared for
the time gr=1 (this corresponds to the squeeze pa-
rameter r=2\/]7b gt=1). For numerical reasons we
have taken here for the mean number of photons of
the pump mode the value of N,=0.25. It is clear,
however, that as r increases the two peaks of the phase
distribution for the ideal squeezed state become nar-
rower, while the quantum fluctuations of the pump
mode cause a broadening of the phase distribution
for the signal mode. So, the quantum fluctuations of
the pump mode impose a limit on the values of the
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Fig. 2. The phase probability distribution P(6,) for the signal
mode: the ideal squeezed state (r=1): solid line: the present case
(gt=1) dashed line. ¥, =0.25 in both cases.
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Fig. 3. The time evolution of the mean number of photons: the
signal mode: solid line; the pump mode: dashed line; and the ideal
down-converter: star line.

squeezing parameter r that can be obtained in real
physical situations.

It is well known that for the squeezed vacuum the
mean number of photons of the signal mode is equal
to {(a'a) =sinh?r, which is a monotonic function of
the squeeze parameter r (or the evolution time gt).
In fig. 3 we show the solutions for the mean numbers
of photons for the signal and the pump modes for
our case of quantized pump. The quastum solution
is oscillatory, in contrast to the solution for the ideal
down-converter with classical, nondepleted pump,
which is shown, for comparison, by the star line. As
far as the mean number of photons (a’a) increases,
the two solutions are practically indistinguishable,
but when the oscillations start, they become quite
different. Thus, we can say that the first maximum
in (a'a) sets a limit for the values of gz, or the
squeeze parameter r, for which the model of ideal
down-converter works well.
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From the point of view of the quantum phase fluc-
tuations considered here, we can calculate the evo-
lution of the phase variance according to the formula

C(Ag)2> ={ B3> — (Do, 2
=f 62P(0,) db, (21)

where P(6,) is the marginal phase distribution for
the signal mode given by eq. (20). After changing
the index a into b in eq. (21), the formula for the
phase variance of the pump mode is obtained. Ac-
cording to (18) and (20), the variance (21) can be
expressed in terms of the coefficients ¢, (#) that are
calculated numerically to obtain the evolution of the
phase variances. The results are illustrated in fig. 4.
It is seen that the phase variance of the signal mode
starts from the value 72/3 (the vacuum state value),
goes to a minimum, and after a few oscillations comes
again close to 7%/3. For comparison, the phase var-
iance for the ideal squeezed state is shown (the line
with stars). The two variances are initially indistin-
guishable, but the phase variance for the ideal
squeezed state monotonically approaches its asymp-
totic value n2/4, while for the quantum pump case
the phase variance of the signal (subharmonic) mode
starts to oscillate at later times. This confirms the
statement that there is a limit imposed by the quan-
tum fluctuations of the pump on the applicability of
the ideal down-converter model. The phase variance
of the pump mode rapidly increases from its initial
value for the coherent state, and also shows oscil-
latory behaviour approaching the value 7%/3 at the

"o s
Nb:4
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P i /3
$4.0 | | 3,

— 20 ] ¢ e
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Fig. 4. Plots of the phase variances: the signal mode: solid line;
the pump mode: dashed line; and the ideal squeezed state: star
line. Ny=4.
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long-time limit. Thus, the long-time effect of the
quantum fluctuations of the pump mode is a ran-
domization of the phase distribution for both signal
and pump modes. The route to this randomization
is through a sequence of more and more peaks in the
joint distribution P(8,, 6,), as is already seen from
fig. 1.

4. Conclusions

Our aim in this paper was to study the effect of
quantum fluctuations of the pump mode on the
quantum phase properties of light generated in the
down-conversion process. We have applied the new
Pegg-Barnett [19-21] phase formalism to find the
joint phase distribution function P(8,, 8,) for the
phases of the signal (6,) and the pump (6,) modes.
It has been shown that initially this function has two
peaks, and the marginal probability distribution
P(8,) for the signal mode has also two peaks and is
indistinguishable from the phase distribution for the
ideal squeezed state. For longer evolution times,
however, the two distributions differ essentially. The
phase properties of the ideal squeezed states have re-
cently been discussed by Vaccaro and Pegg [18], and
by Grenbech-Jensen et al. {25]. Our calculations
show that quantum fluctuations of the pump mode
set a limit on the squeeze parameter r that can be
obtained in practice. Of course, there are other fac-
tors, like damping, that we ignored in our consid-
erations, but which will affect the results, especially
in the long-time limit. We have shown here that even
for a unitary evolution with the quantized pump
mode the phase properties of the resulting state of
the field differ considerably from those of the ideal
squeezed state. The quantum fluctuations of the
pump mode lead eventually to a randomization of
the phases of both signal and pump modes. There is,
however, an interval of time for which the quantum
fluctuations of the pump do not affect essentially the
properties of the signal mode, and the ideal down-
converter model works well.

For numerical reasons, our calculations have been
performed for mean values of photons of the pump
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mode that are rather small. However, the value N, =4
leads to results that already have some features of
the solutions for N,>>1 (classical limit) while, on
the other hand, the quantum properties are still
clearly visible.
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