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The joint probability distribution P(6,, 8,) for the phases 6, and 6, of the fundamental and second-harmonic modes is calcu-
lated, according to the Pegg-Barnett hermitian phase formalism, for different initial states of the fundamental mode undergoing
second harmonic generation. The evolution of P(8,, 8,) is shown for four different initial states of the field (coherent, squeezed
vacuum, Fock, and chaotic). Phase properties of the resulting fields are shortly discussed.

1. Introduction

A second harmonic generation is a nonlinear op-
tical process that was observed in the early days of
lasers [1]. In the quantum picture of the process we
deal here with a nonlinear process in which two pho-
tons are annihilated and one photon with doubled
frequency is created. The quantum states of the field
generated in the process have a number of unique
quantum features such as photon antibunching [2]
and squeezing [3,4] for both fundamental and sec-
ond-harmonic modes (for a review and extensive lit-
erature see ref. [5]). Recently, Ekert and Rzgzewski
[6] have discussed the dependence of the second
harmonic intensity upon the statistical properties of
the fundamental mode. They have considered four
cases of the initial state of the fundamental mode:
Fock state, coherent state, chaotic state, and squeezed
vacuum state. The squeezed vacuum state appeared
to be the most efficient in the production of the sec-
ond harmonic light under assumption that the mean
number of initial photons is the same for all cases.

When the intensity of the second-harmonic mode
is studied, the phase information carried by the state
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of the initial field is irrelevant, and it is sufficient to
know its photon number distribution. However, the
second harmonic generation is a phase-sensitive pro-
cess, and the initial phase information is nonlinearly
transformed during the process, leading to definite
phase properties of the outgoing field. The hermitian
phase formalism introduced recently by Pegg and
Barnett [ 7-9] allows for tracing such nonlinear phase
transformations and getting quantitative informa-
tion about the phase properties of the outgoing field.

In this paper we shall study the phase properties
of the field produced in the second harmonic gen-
eration process taking into account the phase prop-
erties of the initial state of the field. The joint phase
probability distribution of the outgoing field is cal-
culated and illustrated graphically for all four cases
of the initial state of the fundamental mode consid-
ered in ref. [6]. It is shown that the phase of the sec-
ond-harmonic mode is locked to the phase of the
fundamental mode by the classical phase-matching
condition, but in quantum description the phases are
subject to quantum fluctuations and their phase dis-
tributions have finite widths. Owing to the quantum
fluctuations the phase distribution is eventually ran-
domized. It is also shown that in the course of the
evolution a degree of correlation builds up between
the phases of the two modes, which leads to the ap-
pearance of the modulation structure even for ini-
tially completely flat phase distribution of the Fock
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state. Our numerical calculations are based on the
method of numerical diagonalization of the inter-
action hamiltonian [6,10,11], which enables us to
find the evolution of the system.

2. Quantum evolution of the field

The second harmonic generation can be described
by the following model hamiltonian

H=H0 +H1
=hwa'ta+2hwb’b+hg(bta’+ba'?), (1)

where a (a') and b (b") are the annihilation (cre-
ation) operators of the fundamental mode of fre-
quency @ and the second-harmonic mode of fre-
quency 2w, respectively. The coupling constant g,
which is assumed as real and positive, describes the
coupling between the two modes. Since H, and H,
commute, there are two constants of motion: H, and
H,. H, determines the total energy stored in both
modes, which is conserved by the interaction H.
Thus, the free evolution operator exp ( —iHyt/#) can
be factored out from the evolution operator, and in
fact dropped. The resulting state of the field is then
given by

| P(1)) =exp(—iHt/h) | ¥(0) , (2)

where | ¥(0) > is the initial state of the field. The in-
teraction hamiltonian H, is not diagonal in the Fock-
state basis, and to find the state evolution we apply
here the method of numerical diagonalization of Hj,
which has already been used several times in the
context of second harmonic generation [6,10,11].

If the initial state of the second-harmonic mode is
the vacuum state, the initial state |¥(0))> can be
written as

#(0)>= 3. 5,10, (3)

where the state |n, 0> = |n) |0) is the Fock state with
n photons in the fundamental mode and no photons
in the second harmonic. The amplitudes b,,= {n| ¥,
in the decomposition of the initial state | ¥, ) of the
fundamental mode are so far not specified, and will
be specified later on for some particular states | ¥,
we are going to consider. With the initial state of the
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field given by (3) the resulting state (2) takes the
form

% [n/2]
()>= T by 3 ewlD) In=2k>, (@)

where the coefficients ¢, (¢) are given by
Cu(t) =< n=2k, k| exp(—iHt/h) |n,0) . (5)

The summation over k runs up to the integer part of
n/2, where n denotes the number of photons of the
fundamental mode, while & is the number of photons
created in the second harmonic mode. The coeffi-
cients ¢x(?), given by eq. (5), are calculated nu-
merically with the method of diagonalization of H,.
This enables us to find the field evolution and, con-
sequently, its phase properties.

3. Phase properties of the field

Here, we use the hermitian phase formalism of Pegg
and Barnett [7-9] to describe the phase properties
of the field produced in the second harmonic gen-
eration process. This formalism is based on intro-
ducing a finite (s+ 1 )-dimensional space ¥ spanned
by the number states |0, |1), ..., |s). The hermi-
tian phase operator operates on this finite space, and
after all necessary expectation values have been cal-
culated in ¥, the value of s is allowed to tend to in-
finity. A complete orthonormal basis of (s+1) states
is defined on ¥ as

|0, = \/———1 ZOCXP(WQ ) 11D, (6)
where

2nm
6,=0,+ R (m=0,1,..,5). (7)

The value of 6, is arbitrary and defines a particular
basis set of (s+ 1) mutually orthogonal phase states.
The hermitian phase operator is defined as

§o= 3 0n10n) Byl (8)

The phase states (6) are eigenstates of the phase op-
erator (8) with the eigenvalues 6, restricted to lie
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within a phase window between 6, and 6,+ 27. The
unitary phase operator exp(ig, ) is defined as the ex-
ponential function of the hermitian operator @y. This
operator acting on the eigenstate |6,,> gives the ei-
genvalue exp(if,,), and can be written as [7-9]

xp(idy)= ¥, n)<n1]

+expli(s+1)6y]1s> (0] . (9)

This 1s the last term in (9) that assures the unitarity
of this operator. The first sum reproduces the
Susskind—-Glogower phase operator in the limit s— co.

The expectation value of the phase operator (8)
in a state |y) is given by

WIdalwy= 3 001010 1%, (10)

where | (6,,|w)>|? gives the probability of being
found in the phase state |6,,>. The density of phase
states is (s+1)/2x, so in the continuum limit as s
tends to infinity, we can write eq. (10) as

Go+2n

ldolyd = or(0) do, (11)

6o

where the continuum phase distribution P(8) is in-
troduced by

PO)=1im =L oy 17, (12)
sooo 2T
where 0,, has been replaced by the continuous phase
variable 6. As the phase distribution function P(8)
is known, all the quantum mechanical phase expec-
tation values can be calculated with this function in
a classical-like manner. The choice of the value of 8,
defines the 2z range window of the phase values.
In our case of second harmonic generation, the
state of the field (4) is in fact a two-mode state, and
the generalization of the phase formalism into the
two-mode case gives, for the state (4), the result

O | Oy 19 (1) > = [ (52 + 1) (55 +1)] 772

Sa [n/2

X 3 by exp{—i[(n—2k)00m+ O]} cue1),
n=0 k=0
(13)

where we have used the indices a and b to distin-
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guish between the fundamental (a) and second-har-
monic (b) mode. There is still a freedom of choice
in (13) of the values of #3°, which define the phase
values window. We have chosen these values as

S’b =@ap— nsa,b/ (sa,b +1 ) s ( 14)
and we have introduced the new phase values
Q¢p==0m&b"¢5b’ (15)

where the new phase labels y, ;, run in unit step be-
tween the values —s,;,/2 and s, ,,/2. This means that
we have symmetrized the phase windows for the fun-
damental and second-harmonic modes with respect
to the phases ¢, and ¢, respectively. On inserting
(14) and (15) into (13), taking the modulus square
of (13), and performing the continuum limit tran-
sition, we arrive at the continuous joint probability
distribution for the continuous phase variables 6, and
6,, which has the form

1

an? i b, exp(—ing,)

n=0

P(6,, 0,) =

[n/2]
X Y exp{—i[(n—2k)6,+k0,
k=0

2

: (16)

—k(20.— ) 1} cuic(t)

The distribution (16) is normalized such that

n

f IP(@a,eb)dGad0b=l. (17)

—-—n —n

To choose the phase windows for 8, and 6,, we have
to assign to ¢, and ¢, particular values. It is inter-
esting to notice that formula (16) depends, in fact,
on the difference 2¢, — ¢, which reproduces the clas-
sical phase synchronism relation for the second har-
monic generation. Classically, if there is no second
harmonic initially, this quantity must be
2¢9,—@,=*t /2. This means that the phase of the
second harmonic is locked to the phase of the fun-
damental mode by this relation. It turns out that this
1s also a good choice to fix the phase windows in the
quantum description. If the initial phase ¢, of the
fundamental mode is zero then p,= *7/2, i.e., the
second harmonic is shifted in phase by n/2 or
—n/2 with respect to the fundamental mode.
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The joint probability distribution (16) is plotted
in figs. 1-4 to show the evolution of the phase prop-
erties of light during the second harmonic generation
with various initial states of the fundamental mode.
The initial states for the fundamental mode are cho-
sen as
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(a) Coherent state, for which we take

by=exp(—|a|?/2) a"//n! (18)
with a real (¢,=0) and 2¢,—¢,=n/2.

(b) Squeezed vacuum state, for which
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Fig. 1. The evolution of the joint probability distribution P(6,, 6,) for the initial state of the fundamental mode being the coherent state

with the mean number of photons N,=4.
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Fig. 2. Same as fig. 1, but for the squeezed vacuum state with r=0.5 initially.

JJcosh r (n/2)! and 2¢,—-g,=n/2.

(d) Chaotic light, which is described by the den-

ftanh r)"/? inn), 19 . RS . .
X (ytanh r)"“exp(iny) . (neven) (19) sity matrix diagonal in the n-photon states with the
=0, (nodd) photon number distribution given by
with n=¢,=0 and 2¢,—g,= —7/2. 1 ( Na ’
rm=y5i\n+1) (21

(c) Fock state, for which
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Fig. 3. Same as fig. 1, but for the Fock state with n

the second harmonic is generated with definite mean

phase. In fact this phase is g, = —7/2, i.e., it is shifted

, and

where N, is the mean number of photons

n/2.
In fig. 1 the evolution of the joint probability dis-

tribution P(4,, 6,) is shown for the initially coherent
state |a) of the fundamental mode with the mean

20—,

0 of the fun-

damental mode. Such phase relation is in accordance

by —n/2 with respect to the phase ¢,

with a classical picture of second harmonic genera-
tion. In the quantum picture, however, the phase dis-

|a|?=4. It is seen that a

maximum in the distribution along the 8, axis builds
up at initial stages of the evolution. This means that

number of photons N,

tribution has a finite width. The narrowing of the

distribution along the 6, axis is evident at early stages
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gt=1

Fig. 4. Same as fig. 1, but for chaotic light with N,=0.27 initially (the scaling factor in z-axis is 1000).

of the evolution, but at later times the phase distri-
bution splits into two, and later even more, peaks.
Although the distribution becomes more complex at
later times, there is the symmetry with respect to the
point 8,=6,=0, which is preserved all the time.
Eventually, owing to quantum fluctuations, both
phases are randomized, i.e., the distribution P(4,, 6,)
becomes more and more uniform after appearance
of more and more peaks. It is important to notice

284

that there is a limit for the reduction of quantum
phase fluctuations in the second-harmonic mode.
Quantitatively such fluctuations can be described by
the phase variance. More detailed discussion of the
second harmonic generation by coherent light will be
given elsewhere, and here we want to compare the
joint phase distributions obtained for different ini-
tial states.

In fig. 2 the evolution of the distribution P(8,, 6,)
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is illustrated assuming the initial state of the fun-
damental mode being a squeezed vacuum state. The
amplitudes of the squeezed vacuum state are given
by (19) with the phase #=¢,=0, and the phase win-
dow is fixed by the relation 2¢,—g@,= —n/2. This
means that the second harmonic generated by such
state is shifted by ¢, =mr/2 with respect to n=¢,=0.
An immediate result seen from fig. 2, as compared
to fig. 1, is that the number of peaks in the distri-
bution is doublet. This is a consequence of the fact
that the squeezed vacuum state has itself a two-peak
structure, which 1s close to the superposition of two
phase states [12]. The two-peak structure of the
squeezed vacuum state is preserved during the evo-
lution, and is reflected in the symmetry of the dis-
tribution with respect to the line §,=0. This sym-
metry is different from that for the coherent initial
state. The narrowing of the distribution along the 6,
axis is also visible at early stages of the evolution. We
have assumed the squeeze parameter r=0.5 for this
figure, which means the mean number of photons
N,=sinh?r=0.27.

Both coherent and squeezed vacuum states are
states that carry a definite phase information, which
is transferred into the second-harmonic mode. It may
be even more interesting to look at the phase distri-
bution P(4,, 6,) of the resulting field, when the ini-
tial state is a Fock state or chaotic light. For such light
we have initially completely flat phase distribution
(uniform distribution). In fig. 3 the results are shown
for the Fock state with the number of photons n=4.
The phase window is chosen such that 2¢,—¢,=
n/2. A well resolved modulation structure of
P(0,, 6,) appears at early times of the evolution and
evolves into more complicated (but more uniform)
structure at later times. This structure of the joint
probability distribution is the result of the correla-
tion between the phases of the two modes that builds
up in the course of evolution. Initially uncorrelated
modes become correlated during the second har-
monic generation. This fact can be easily explained
for the simplest possible case of second harmonic
generation by the field in the Fock state with two
photons. In this case there are only two different from
zerocoefficientsc, (1):¢c0(t) = cosﬁgt, ande,, (1) =
—isin ﬁgt. This allows us to write down the ana-
lytical formula for the distribution P(8,, 6,). Ac-
cording to (16) and (20) we have
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P(6,,6,)
=(2n)~%[1+sin 2\/§gt cos(26,—6,)]1, (22)

where we have put 2¢, —~ ¢, =7/2. Formula (22) de-
pends on the difference 26, — 6, rather than on the
two phases separately. This is generally true for Fock
states, and this is just the reason for which the struc-
ture of P(6,,6,) has edges along the lines
20,— 6, =const. From the point of view of the time
evolution formula (22) is periodic, but the period-
icity is lost for the states with n>2 (e.g. n=4 as in
fig. 3). The phase correlation function can be cal-
culated according to

Can= | [ 0.6,P(0,.6,) a6, a0, (23)

which for n=2 and 2¢,—¢,=n/2 gives

Ce.0, = — 3sin 2ﬁgt . (24)

It is now clear that this is the correlation between the
phases 6, and 6, that is responsible for the appear-
ance of the structure in P(4,, 6,) for Fock states. It
is, moreover, worth to notice that the marginal dis-
tributions P(6,) and P(6,) obtained from P(4,, 6,)
by integration over one of the phases are equal 1/
(2m) i.e., either phase is uniformly distributed, and
all single-mode phase properties do not change dur-
ing the evolution.

In fig. 4 the results for the initial chaotic light are
shown. The distribution P(6,, 6,) in this case is ob-
tained by summing the n-photon results with the
weight factor given by (21) with the mean number
of photons N,=0.27. This number corresponds to
that taken for the squeezed vacuum state (fig. 2).
Because of poor convergence of the series when N, > 1
in both cases, we take this number small for nu-
merical reasons. The modulation of the phase dis-
tribution, which is smoother than for Fock states, is
still maintained in this case. For small mean num-
bers of photons the behaviour is almost periodic for
some time and, for gf=1, we have again almost uni-
form phase distribution. For very long times the ran-
domization of the phases eventually takes place.
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4. Conclusions

In this paper we have studied phase properties of
light produced in the second harmonic generation
process for different initial states of the field. The
joint probability distribution for phases 6, and 6, of
the fundamental and the second-harmonic modes has
been calculated according to the hermitian phase
formalism of Pegg and Barnett [7-9]. The method
of numerical diagonalization of the interaction ham-
iltonian has been used for numerical evaluation of
the phase distribution function. The results have been
illustrated graphically for four different initial states
of the field. It has been shown that the classical phase
synchronism relation is also valid in the quantum
case. However, quantum fluctuations lead to a finite
width of the phase distribution, i.e., they impose a
quantum limit on the uncertainty in measuring the
phase. It has been shown that for the initial states
with a definite phase information (coherent, or
squeezed vacuum) this information is transferred
into the second-harmonic mode. The differences be-
tween the phase distributions for coherent and
squeezed vacuum states are clearly visible from the
pictures. We have also shown that even for the sec-
ond harmonic generation by the light with uniformly
distributed phase there is a structure in P(6,, 6,),
which arises as a result of correlation between the
two phases appearing during the evolution. The long
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time limit effect of quantum fluctuations is the ran-
domization of the phases.

The second harmonic generation discussed here is
one of the nonlinear optical processes that transform
the incoming field into the resulting field in a non-
linear way. Such transformation affects also the phase
properties of the field. Other nonlinear processes lead
to other phase properties of the resulting field, and
some of them have already been discussed [12-15].
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