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Phase propertics of pair coherent states are re-examined from the point of view of the Pegg-Barnett hermitian phase formalism.
The joint probability distribution for the phases of the two modes is calculated and illustrated graphically. Strong correlation
between the two phases is shown 10 exist, and the correlation coefficient calculated. The variance of the cosine of the phase-sum-
operator is calculated. The resuits are compared to the earlier results of Agarwal.

1. Introduction

Pair coherent states introduced recently by Agarwal [1,2] are quantum states of the two-mode electromag-
netic field which are simultaneous eigenstates of the pair-annihilation operator and of the difference in the
number operators of the two modes of the field. Agarwal [2] has discussed the nonclassical properties of such
states showing that they have remarkable quantum features such as sub-poissonian statistics, correlations in
the number fluctuations, squeezing, and violations of Cauchy-Schwarz inequalities. He has also presented re-
sults for the fluctuations in the phase operators using the Susskind-Glogower {3] definition of the phase op-
erator. It is known that the Susskind—Glogower definition of the phase exponential operator leads to the non-
unitary operators. Recently, Pegg and Barnett [4-6] have introduced a new hermitian phase formalism in which
the hermitian phase operator is constructed and the problem of nonunitarity is avoided.

In this paper we re-examine the problem of quantum phase fluctuations in the pair coherent states from the
point of view of the new Pegg-Barnett phase formalism. The joint probability distribution for the phases of
the two modes is obtained, and it is shown that this distribution depends only on the sum of the phases of the
two modes. The strong correlation between the phases of the two modes in pair coherent states is shown to
exist, and the correlation function of the hermitian phase operators for the two modes is calculated. The var-
iance of the cosine function of the sum of the phase operators of the two modes is also calculated and compared
to the results obtained by Agarwal [2].

Pair coherent states have very interesting quantum features that are worth of experimental effort to reveal
them. Agarwal [1,2] has shown that such states can be produced by the competition of processes corresponding
to nonlinear gain and nonlinear absorption in a two-photon medium. The competition betwcen nonlinear-ab-
sorption and four-wave-mixing processes studied by Malcuit et al. [7] makes hopes for experimental success
more realistic. Recently, Lee [8] has generalized pair coherent states by replacing the Fock state for one mode
by a coherent state claiming that it should be easier to produce such states. He has discussed many-photon
antibunching in generalized pair coherent states.
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2. Phase properties of pair coherent states

Pair coherent states introduced by Agarwal [1,2] are defined for a two-mode field. If a and b are the an-
nihilation operators associated with the two modes, the operator ab, acting on a Fock state, simultaneously
annihilates photons of modes a and b, and it can be referred to as the pair-annihilation operator. The pair
coherent states are defined as eigenstates of the pair-annihilation operator [2]

abll, q> =01, 9>, (n

where { is a complex eigenvalue and q is the degeneracy parameter, which can be fixed by the requirement that
1¢, g) is an eigenstate of the difference in the number operators for the two modes

(ata—b'b)|{,q>=4q1( q) . (2)

When photons are created and destroyed in pairs, the difference in the number of photons remains constant,
and if the pair creation starts from vacuum, the parameter g will be zero.
The solution to the above eigenvalue problem, assuming ¢ to be positive, is [2]

=y § s Int ) 3)

where N, is the normalization constant,

oo 2n 172
Nq=(n§0;,—!('—f,'m) = [(+1L1) =T (201L) 1772, (4)
The state |n+q, n) is the Fock state with n+¢ photons in mode a and n photons in mode b. Eqs. (1)-(4)
define the pair coherent states, phase properties of which we are going to study in this paper.

We shall use the hermitian phase formalism of Pegg and Barnett [4-6], which is based on introducing a
finite (s+ 1)-dimensional subspace ¥ spanned by the number states |0, |1), ..., |s>. The hermitian phase
operator operates on this finite subspace, and after all necessary expectation values have been calculated in ¥,
the value of s is allowed to tend to infinity. A complete orthonormal basis of (s 1) states is defined on ¥ as

10,5 =(s+1)"72 3 exp(inf,)ind , (5)
n=0

where

0, =0,+21m/(s+1), (m=0,1,..,5). (6)

The value of 8, is arbitrary and defines a particular basis set of (s+ 1) mutually orthogonal phase states. The
hermitian phase operator is defined as

¢?8-=‘ Zoemlom><0m|- (7)
Of course, the phase states (5) are eigenstates of the phase operator (7) with the eigenvalues 8, restricted to
lie within a phase window between 6, and 6,+27. The unitary phase operator exp(ig,) can be defined as the
exponential function of the hermitian operator ¢,. This operator acting on the eigenstate |0,,> gives the ei-
genvalue exp(if,,), and can be written as [4-6]

exp(ige) = 10> (1 + 1) (2] +..+|s— 1) (s] +exp(i(s+1)6]1s) (O] , (8)
and its hermitian adjoint is

[exp(ifs) 11 =exp( —idy) (9)
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with the same set of eigenstates |0,,> but with cigenvalues exp(—i6,,).
To make the further comparisons easier, it is useful to relate this new operator to the Susskind—-Glogower
phase operator. This gives following relation [9]

s—00 n=

exptimgs)> = Cexp(ig 17> = tim (5 1ny b mi +erplics+ D01 5, 15> ¢m—1 1))

m—1
= {exp (impsg) D> + lim <(exp[i(s+1)00] Y ls—n) (m—-l—n|>> , (10)
S—+00 n=0
where the Susskind—Glogower phase operator is given by
exp (imbsg) = Zoln>(n+m| . (11)

The Susskind-Glogower phase operator defined by (11) is not unitary. From (11) and the definition

exp (—imepsg) = [eXp (im¢SG)]T: (12)
one gets, for m=1,
eXp (igsg) €Xp (—igsg)=1, €xp (—ipsg) €xp (igsg)=1-[0><0], (13)

This is in a sharp contrast to the unitary exponential phase operator in the Pegg-Barnett formalism.

When the expectation values are calculated in “physical states™, according to their definition by Pegg and
Barnett [5,6], the last term in eq. (10) becomes zero and there is no difference between the expectation values
of the exponential phase operators in the two formalisms. The differences do appear, however, when the var-
iances of the cosine and sine functions of the phase are considered [9].

It is worth noting that in the Pegg-Barnett formalism the hermitian phase operator exist, and the exponential
phase operator is simply the exponential function of this hermitian phase operator. The existence of the her-
mitian phase operator makes it possible to discuss quantum fluctuations in the phase itself, and to derive the
phase probability distribution function.

Generalization of the Pegg—Barnett formalism into the two-mode case is straightforward, and we can directly
apply this formalism to the pair coherent states. Before doing this we rewrite eq. (3) defining the pair coherent
states in a slightly different form. If the complex number { is written in the form

¢=1{lexp(ig) , (14)

the state (3) can be written as

16 qy= gobnexp(irw) |n+q,n), (15)
where
b,=N, _____&__2 >0. (16)

"EN I (n )]

When the state (15) is projected onto the phase states (5) of modes a and b, one gets the joint probability
amplitude

O | (O 18, > = (s+q+1)7"2(s+1)"""? exp(—iq0,,,) Z baexp[in(@—0,, —0m,) 1, (17).
n=0
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where we have taken into account the fact that the dimension of the Fock space for mode a is larger by ¢ from
that for mode b. For the joint probability of the phase of modes a and b having the values 6,,, and 6, we
obtain the following expression

I<0ma|<6mb|C>q>|2=(S+q+l)_l(s+l)_l Z 2 bnbkexp{i(n_k)[¢~(0ma+0mb)]}' (18)

n=0 k=0

Since the phase ¢ of the complex number { makes the pair coherent state a partial phase state, one can choose
6o, and 6, as to symmetrize the two phases with respect to ¢/2. This means the choice of 6, and 0o, the values
[4,5]

0o, =9/2—ms;/(s;+1), (i=aorb) (19)
and the new phase labels
wi=m;—s;/2

that run in unit steps from —s,/2 to s,/2. After such symmetrization and performing the continuum limit tran-
sition one arrives at the continuous joint probability distribution for the continuous phase variables 6, and 6,,
which is given by

P(Oa,()b)=(2n)“2(l+2 Y b,,bkcos[(n—k)(0a+0b)]>, (20)
n>k

where b, is given by eq. (16). The distribution (20) is normalized such that

I j P(6,, 6,)do,do,=1. (21)

One important phase property of pair coherent states is seen directly from the form of formula (20). It is clear
that the joint probability distribution (20) depends on the sum of the two phases only

P(6,,6,)=P(0=0,+6,) . (22)

This means the strong correlation of the two modes.
Integrating P(8,, 6,) over one of the phases gives the marginal phase distribution P(d,) or P(6,) for the
phase 6, or 6,, which are uniformly distributed

h 1
P(6,) = J P(6,, 05) 46, =5, P(f).,):P(oa):EI?—t. (23,24)

Formulas (23) and (24) allow for direct calculations of the expectation values of the phase operators, defined
by eq. (7), for modes a and b. We have

- . 9, L . 9 f 4
Goy= 3 01O L =2+ ¥ aicic0r=2+ [orera=2, (25)
my =0 2 p=—5sa/2 2 T 2
and similarly
(Do, >={Pe,>=0/2. (26)
Consequently,
(Po.—PBa> =0, (Po,+Pa>=0. (27)
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For the variances of the individual phasc we obtain the results for uniformly distributed phases
((Bga)*> =< (Bda)*>=7/3. (28)

Thus pair coherent states have very interesting phase properties: the individual phases 8, and 6, as well as the
phase difference 0, — 6, are uniformly distributed, and the only nonuniformly distributed phase quantity is the
phase sum 0, 6,. The mean value of the phase sum is given by (27), and is equal to the phase ¢ of the complex
number {. Example of the joint probability distribution P(8,, 6,) is shown in fig. 1. The symmetry with respect
to the diagonals of the square of the phase windows for 8, and 6, is clearly visible, and it reflects the dependence
of P(0,, 6,) on the sum 8,4+ 6, only. Thus the phase propertics of pair coherent statcs can be illustrated by
plotting P(0=0,+0,), i.e., looking at the section in a plane perpendicular to the symmetry axis. The depen-
dence of P(60) on |{] is shown in fig. 2, and the dependence on g for given |{] in fig. 3. It is seen that as |{|
increases the distribution P(#) becomes narrower. Quite opposite, increase of ¢ broadens the distribution P(8),
which is seen from fig. 3.

0.2 q=0
[¢] =4
o~~~
 o1- _
o <=1
|¢]=0.25
I¢]=0
0.0 -
-6.28 0.00 6.28
C)
Fig. 1. Plot of the joint probability distribution P(0,, 6,), for Fig. 2. The section of P(0,, 0,) = P(0=0,+6,) in a planc perpen-
|{|=1and g=1. dicular to the symmetry axis plotted against 6=46,+6,, for ¢g=0

and various |{{.

=1

€] 4=

=1
_ ! g
2 .05 9= ®
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0 <1

Fig. 3. Same as fig. 2, but for |{} =1 and various q. Fig. 4. The phase correlation coefficient Cgq, plotted against ||

for various values of g.
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The variance of the sum of the phase operators is given by

CLA(Po,+P0n) 120 = C(AG6) 2D + {(Ad) 2> +2(K BB > — B0, > (B> ) , (29)

where the variances for the individual phases are given by eq. (28), and the correlation between the two phases
1s given by
. PR babs
Can=CGadn> = Bu>(Ba>= | [ 0.0.,P(0,6) a0 06,= -2 3 ok, (30)
—n —n

This correlation coefficient which is negative lowers the variance (29) of the phase-sum-operator. The de-
pendence of this correlation coefficient on |{]| is plotted in fig. 4. It is seen that as |{| increases the correlation
coefficient (30) decreases (its absolute value increases) meaning that the phase-sum-operator variance also
decreases, i.¢., the sum of the two phases becomes less uncertain. Asymptotically, for |{| — oo, this coefficient
approaches —7%/3, and the variance (29) approaches zero, and we have the classical situation of perfectly
defined phase sum. This phase correlation coefficient can be contrasted with the photon number correlation
coefficient between modes a and b considered by Agarwal [2]. The photon number correlation coefficient in-
creases as |{| increases.

Agarwal [2] has considered phase properties of pair coherent states introducing, following Carruthers and
Nieto [101], the exponential phase operator of the two-mode field being the product of the exponential phase
operators of the Susskind-Glogower type for the two modes. He has calculated and discussed the variance of
the cosine phase operator of the two-mode field. This would correspond to the cosine function of the phase-
sum-operator in the Pegg-Barnett formalism. Introducing the two-mode version of eq. (10) and taking into
account that the pair coherent state is a physical state, one obtains for the phase-sum-operator exponential

(exp[im(Bg, +Pa,) 1) p=Cexp(imdy,) exp(imdy,) >,

=(5, mycntmi 5 (16 cktmi)y) = (Rou(imdsa) Roulimpsc) o 31

p

Taking the expectation value (31) in the pair coherent states leads to the expectation value of the exponential
phase operator obtained by Agarwal [2]

<o oo 2n
sr 7 - —eaiv — ipAT 2 |C'
<C’¢I!CXP[1(¢8.+¢0.,)]|C,‘I> € "gobnbn+l ICIe Nqngon! (n_'_q)' [(n+1)(n+q+l)]l/23 (32)
and for the cosine function of the phase-sum operator we have
. oa @ ® 1£%"
— — 2
<C» qlCOS(¢0‘+¢(}°) IC’ q) —COS(an'o bnbn+l =CO0s ¢ICINq"§0 [n| (n+q)| (n+ 1 )' (n+q+ 1 )!]I/Z (33)
which agrees with the corresponding expression obtained by Agarwal [2].
For the square of the cosine of the phase-sum operator we obtain
L, qlcos?(Pa, + Pa,) 16, g =4 (exp[2i(Pg, + Pa,) 1 +exp[ —2i (g, + o) 1 +2)
oo oo |Cl2n
— —141 2)2
_%+%coszw"§0bnbn+2_2+2COS2¢|C| N(l"2=:0 [n! (n+2)! (n+q)!(n+q+2)!]|/27 (34)

which is different from the expression obtained by Agarwal [2] who used the Susskind-Glogower type phase
operators.
The variance of the cosine of the phase-sum operator is equal to
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¢, qlcos?(dg, +da,) 18, > — <, qlcos(do, + D) 14, qD?

2 2
=%|:1—( Zobnbn+l) :|+%0082 Zobner-Z_( obnbn+l):|

~ > g1 ’
~[1-(10% & o b e |

. o 11
+14 cos 2¢[IC|2N3”§=:0 [n! (n+2)! (n+q)! (n+q+2)1]'/>
- k& 2
2
—-<|CINqn§0 (! (n+q)! (n+1)! (n+q+1)!]”2> ] >

As one could expect, our formula (35) differs from the Agarwal formula, and the difference is most important

for |¢] < 1. For the two-mode vacuum (|| =0) formula (35) gives the value 1/2 in contrast to 1/4 obtained

from the Agarwal formula. This once more proves the advantage of the Pegg-Barnett [4-6] approach over

that of Susskind-Glogower [3] in interpreting the vacuum as the state with randomly distributed phase.
For ¢g=0, formula (35) can be expressed by the modified Bessel functions 1,(2]{]), which gives

. Lol (meinY L, L(21C1) (11(2ICI)>2]
ceortn+an—ceostiarimy=[1-(HEE) [ 26 - (GGia) | o9

Asymptotically, for large |{|, the variance (36) behaves as |{| ~', i.e., the asymptotic behaviour is the same
as in the case of Agarwal’s formula. In the limit |{| —oo, the variance (36) tends to zero, which means the
classical behaviour of the field with perfectly defined sum of phases. This is in agreement with our results (29)
and (30) for the fluctuations in the phase-sum-operator itself.

3. Conclusions

We have re-examined phase properties of pair coherent states from the point of view of the Pegg-Barnett
hermitian phase formalism. The joint probability distribution for the phases of the two modes has been ob-
tained and shown to depend only on the sum of the two phases. It has been shown that in the pair coherent
states the only nonrandom phase distribution is that for the sum of phases. The strong correlation between the
phases of the two modes has been shown, and the correlation function of the hermitian phase operators for
the two modes has been calculated. This correlation lowers the variance of the phase-sum-operator, and in the
limit of large || the sum of the two phases becomes well defined, although the individual phases are randomly
distributed. The variance of the cosine of the phase-sum-operator has also been calculated. It has been shown
that the result obtained within the framework of the Pegg-Barnett formalism differs essentially from the result
of Agarwal [2] obtained within the Susskind-Glogower phase formalism when [{] < 1. For large [{], the
asymptotic behaviour of the two results is identical, as one would expect.

We should also emphasize that the results for the phase expectation values and the variances depend on the
choice of the phase windows for 6, and 6, or in other words they depend on the choice of the square over
which the integrations are performed. It is seen from fig. 1 that there is the second ridge of the distribution
which is split into two pieces that are located in the corners of the integration square when the choice of the
phase windows is taken as in eq. (19). As || increases, parts of this additional ridge of the distribution are
pressed more and more into the corners and do not contribute essentially to the integrals. Were the windows
chosen differently, the two-ridge structure of the distribution would affect essentially all the expectation values
and obscure their physical interpretation. For example, the phase-sum-operator variance would not tend to zero
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for |{| -0, and the clear picture of asymptotically classical behaviour would be disturbed.
Generally, pair coherent states have very specific phase features, and the new Pegg-Barnett phase formalism,
as we have shown, allows to reveal fine details of these features.
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