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Abstract. Phase properties of a coherent field interacting with a two-level atom
in an ideal cavity are studied using the new hermitian phase formalism of Pegg
and Barnett. It is shown in particular that phase properties of the field reflect the
collapse and revival phenomena. The effects of finite detuning and atomic
coherences are treated. The results for the variance of the phase cosine are
obtained and compared with those based on earlier approaches.

1. Introduction

The Jaynes—Cummings model (JCM) [1] of a two-level atom interacting with a
single mode of the electromagnetic field is one of the simplest non-trivial models of
quantum optical resonance. While under the rotating wave approximation, the
model is exactly soluble, and its behaviour is far from being simple. Many interesting
features have been predicted for both the atomic variables and the statistical
properties of the field (for a review see [2, 3]). Among them one finds the remarkable
collapses and revivals of the Rabi oscillations [4]. New developments in cold cavity
techniques with Rydberg state atoms have made laboratory realizations of the JCM
possible and collapses and revivals of atomic inversion have been experimentally
observed [5].

In this paper we examine another characteristic of the system—phase properties
of the field. Our treatment is largely based on the recent works of Pegg and Barnett
[6-8], in which they presented an elegant new theory for the phase operator of the
radiation field. The theory of Pegg and Barnett is distinguished from previous
theories in considering the phase operator itself rather than the conventional
exponential or trigonometric function operators. It enables us to examine phase
properties of optical fields in a fully quantum-mechanical manner without recourse
to semiclassical or phenomenological methods.

In section 2 we outline what is essential for our present discussion from the new
phase formalism of Pegg and Barnett. For the complete and thorough exposition of
the theory the reader is referred to the literature [6—8]. In section 3 we use the Pegg—
Barnett (PB) new formalism to study phase properties of a field resulting from
interaction with an atom. We find that the phase distribution as well as the variance
of the phase reflect the collapses and the revivals of atomic inversion. Next, we
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calculate the expectation values and variances for the cosine and sine functions of the
phase operator. The results obtained are compared with those using the earlier
Susskind—Glogower (SG) approach [9] and the measured phase (MP) concept [10].
In section 4 we investigate the effect of atomic coherence on phase properties of the
field. The idea of injecting an atom initially prepared in a coherent superposition of
its states into a cavity has become quite popular. Agarwal et al. [11,12] and Zaheer
and Zubairy [13] have shown that for a certain choice of atomic phase, the amplitude
of the Rabi oscillations is strongly suppressed. In the case of spectra, for the same
choice of phase, we have an asymmetric two-peaked spectrum instead of a three-
peaked symmetric spectrum [13]. Squeezing in single-mode spontaneous emission
from a suitably phased atom has been demonstrated by Knight and co-workers
[14,15]. It is therefore natural to expect that atomic coherence also alters the phase
properties of the interacting field.

2. The hermitian phase formalism

The problem of optical field phase has been the subject of considerable study for
many years [10, 16]. Despite this, many questions still remain unanswered. One of
them concerns the construction of a hermitian phase operator. Difficulties in
constructing a phase operator have even led to the belief that no such operator exists.
Recently, Pegg and Barnett have shown a way out of this difficulty. Instead of
utilizing the usual mathematical model of the single-mode electromagnetic field,
they introduced a finite but arbitrarily large state space of s+ 1 dimensions. This
space is spanned by the first s+1 number states, and the set of orthogonal phase
states is defined by

1 S .
Om> = Y, exp(inf,)|n), (1
\/ +1 n=0
with phases
2nm
0, =0,+—— =0,1,2,...,s. 2
m 0+s+17 m y Ly &y »§ ( )

All expectation values of phase variables are first calculated in the finite dimensional
space before s is allowed to tend to infinity. In this finite space, the hermitian phase
operator is given by

S

By= 3, Ol0n><0ul, 3

so that &0,>=0,l0,>. The hermiticity of &, guarantees the unitarity of the
exponential phase operators exp (% id,y), and the cosine and sine combinations
formed from the unitary phase operators then have properties coincident with those
normally associated with phase. In the number state representation it is not difficult
to show that

exp (i®p) = 0> +[1D>2|+. .. +|s—1>{s| +exp [i(s + 1)0,]Is><0l. 4)

We will be mainly concerned with physical states [8], for which energy is finite.
Hence, the expectation value of the unitary phase operator exp (im®,) takes the
following simplified form [17]

(exp <im<ﬁa>>.,=< §O|n><n+m|> : o
n= P

= <exp (imd‘SSG)>p)
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where the subscript p refers to a physical state expectation value and the abbreviation
SG denotes the Susskind—Glogower approach. We can also easily obtain the
relations between SG and hermitian-phase sine and cosine operators

{cos @9>p =1(exp (iPy) + exp (— i60)>p)

. (6)
={cos Ps ),
- 1 R >
(sin @g), =--<exp (i®) —exp (—iy)),, 7
= <Sil’1 <§SG>p)
(cos? By, =41 (exp (2iB,) +exp (—2idy) +2),, ®)
= {cos? By ), +5(105<0) >,
¢sin? gy, = —1<exp (2idy) + exp (—2iPg) — 2, ©

= (sin® B ), + 41050,

Equations (8) and (9) indicate that the hermitian-phase and SG approaches give
strongly different results only for fields in the quantum regime, where the
contributions from the vacuum state are appreciable.

3. Phase properties of the cavity field

Jaynes and Cummings [1] considered a simple-model Hamiltonian characteriz-
ing the interaction of a two-level atom with a single mode quantized radiation field
inside an ideal cavity

H=hw R*+hwa*a+hg(R*a+ R a*), (10)

where the two-level system has been represented by the spin § operators R* and R, g
is the atom-field coupling constant, a* and a are the usual creation and annihilation
operators of a photon in the cavity eigenmode with frequency @. The Hamiltonian
equation (10) has two obvious constants of motion [2, 4]

H,=hw(a”a+ R%), (11)
Hy=hg(R*a+R a*)+hdwR?, (12)
with Aw being the field—atom frequency difference
Ao=w,—w=A4, (13)
and we will refer to 4 as the detuning parameter. One can verify directly that
H=H+H,, (14)
[Hy, Hy]=0. (15)

The mutual commutability of H; and Hy; leads to the factorization for the time
translation operator U(t)

U(t)=exp (—iHt/h)= Uy2) Uy(2), (16)
where

Uy(t) =exp (—iHyt/h), Uy(t) =exp (—iHyt/h). (17)
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As has been pointed out in [2], we can interpret the operator Uj(t) as the quantized
field version of the semiclassical unitary transformation operator from the laboratory
frame to the rotating frame of reference and the operator Uy(#) describes the time
development of the system in the latter frame. We therefore drop Uj(t) altogether
later on and will work then in the intermediate IT-picture introduced by Yoo and
Eberly [2]. This picture coincides with the usual interaction picture when the exact
resonance condition is met. Now, one can diagonalize the Hamiltonian Hy; with the
results

hAa
Hyl0; g>= —7|0;g>,

Hn|¢;it>= ihl,Jd)jt),
A2=g’n+A%/4,

|¢$>=< €08 P )|n;g>+(s‘“"’">|n—1;e>,
—sin @, cos @,

n=1,2,...,00,

tg@,=g/n/(An—4]2).

Since the eigenvalues and the eigenfunctions are known in closed form, all the
dynamical questions can be answered. Our further discussion is restricted to the case
of an initially coherent field

> =exp(—IafD) 5, T, (19)

(18)

the phase properties of which are well known [8]. We consider in this section the
atom to be initially in the ground state; the initial state of the total system is then

an

(40D =exp (—2) 3, e 20)

From equations (17), (18) and (20) one readily finds the state of the system at time ¢
lp(8)> = Un()l$(0))>

—ilnt

b,e™ [(cos® @,e +sin? @,e*)|n; g>

iMe

+sin @, cos @, (e "M —e*)n—1; e>], (21)
where we have introduced the notations

a=(@)" %,
@y @

\/n! '

With these preliminary steps in hand, it is now fairly easy to arrive at the following
expression for the phase distribution

b,=exp(—n/2)

1
[KOmlpP =—— {1 +2 Y by A, i(t) cos [(n—k) (0, — B)]
S+1 n>k

+2 Zk bybi B, (1) sin [(n— k)(f)m—ﬁ)]} , (23)
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with 4, (t) and B, () given by

A, (£)=cos (A1) cos (At) +cos [2(@, — @))] sin (A,1) sin (4,2), 24)
B, () =cos (2¢;) sin (A1) cos (4,t) — cos (2¢,) sin (4,t) cos (4:t), (25)
where
—Ap2 .
c0s Q@) =z ey SN2 =@2—£f‘j—:'/4)@7 (26)

Now we make the particular choice of 0, as

s
0.=8— 27
4] :B S+1 3 ( )
so that from equation (2)
27U
6 = — 28
m=p +3 nE (28)

where p=m—s/2 is a new phase label which goes in integer steps from —s/2 to s/2.
The phase distribution (equation (23)) then becomes symmetric in g. In the limit,
when s tends to infinity, the continuous phase variable can be introduced replacing
u27/(s+1) by 0 and 27/(s+ 1) by d6. This leads to the continuous phase probability
distribution

P, t)= ;—n {1 +2 ; bobeA, i(t) cos [(n— k)]

+2 Y b, B, (1) sin [(n— k)e]} , (29)
n>k

which is normalized so that

E(4
J P8, t)do=1. (30)
1

It does not appear possible to express the sums in equation (29) in closed form. But
for not too large 7, the direct numerical evaluations can be performed. The results
are shown in figure 1, where we have plotted P(0, ) against 0 in the polar coordinate
system for various times and for different values of the detuning parameter 4. At
time t=0, P(0, t) has a lengthened leaf shape corresponding to the initial coherent
state of the field. As the interaction is turned on, this lengthened leaf gradually splits
into two satellite distributions rotating in opposite directions. This can be seen
clearly for the case of exact resonance (figure 1 (a)) and for cases with relatively small
A (figure 1 (b)). After a certain interval of time, the two satellite distributions overlap
and then split again. This time the two distributions are on their way to the right side,
where they again overlap, and so forth. It is even more interesting that the
overlappings take place regularly with the period coinciding with that of the revivals
of the atomic inversion. In figure 1 we have presented only the first overlapping. To
make the comparison easier we have scaled the time by the factor

TR=%[ﬁ+A2/(4g2)]l/2» (31)
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Figure 1. Phase probability distribution P(8, 1) plotted in polar form for various detunings,
7=20, B=0. The scaled time T=gt|[2n(ri+ A%[4g*)"/*]. The curves shown are T=0
(solid), T=0'5 (dotted) and T=1 (dashed).
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so that the atomic inversion revives [4] (and together with it the satellite distributions
overlap) at T=1,2,3,.... The mean photon number # has been taken as 20. For
smaller values of 7, the stochastic regime sets in early and the splitting of the phase
distribution into two well-separated peaks as well as the revivals of the atomic
inversion become difficult to be seen.

We should note that the above described property of phase distribution is also
characteristic for the O-function. In a recent work [18], Eiselt and Risken have
shown that collapses and revivals can be understood in terms of interferences of
quasi-probabilities in phase space. Thus the phase distribution of the field can be
considered as an alternative description with respect to the quasiprobability
distribution Q(«, a*). The bifurcation of the phase distribution also appears in the
models closely related to the JCM, such as the Raman-coupled model or the two-
photon JCM [19].

The dynamical behaviour of P(, £) can be predicted easily from the dressed-state
viewpoint. Indeed, the state vector given by equation (21) may be rewritten in terms
of eigenstates of the Hamiltonian Hy;

B> =3 by(cos Pue®~IpF > —sin e+ MO|p=S). (32)
n=0

Equation (32) shows clearly that, if the initial distribution of the phase state is narrow
enough, the interaction causes it to split into two phase states rotating in opposite
directions in the polar coordinate system. The relation between the weights of the
peaks rotating counter-clockwise and clockwise is approximately equal to
(sin? ¢@;/cos? @;) or

(@2a+ A2V 4)2
(@®n+ 4312 —A)2°

(33)

Here we have used the fact that the Poisson photon distribution is sharply peaked
around 7. At exact resonance 4=0, the two phase states become symmetric with
respect to B. As the detuning parameter 4 increases, the intensity of one peak
increases at the expense of decreased intensity in the other peak (figure 1 (b)). In the
far-off-resonance limit (42> g?n), the phase distribution P(8,¢) is found from
equation (29) to be

P, =% {1 +2 Zk b,by cos [(n—k)(O —gzt/A)]} +O(g), (34)

where

e =4g%i| A% «1, (35)

and O(g3) is a set ofoscillatingterms with their amplitudes of order g2 or smaller. The
phase state remains almost coherent with the phase 0 replaced by (6 —g*t/4) (figure
1(¢)). Our results are in complete accord with those of Yoo and Eberly [2]. In
particular, they show that far-off the resonance, the field at time ¢ is roughly
described by a pure state

> = 3 bpexplin(B-+g*1/A)}m, (36)
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which develops in time from the initial coherent state [x) by an effective Hamiltonian
given by

Hee=— (g*/M)a"a. (37)

It is clear that equation (34) can be obtained immediately from the Hamiltonian (37).
We now proceed to calculate the expectation value and the variance of the
hermitian phase operator. They are described by the summations

(B> =Y. Oml<Onld(OI*, (38)

(ABFY =Y. (O — < B> <Ol (D)1, (39)

which may be transformed into integrals over the variable 2zu/(s+1) =0, over the
range —7 to 7. The integrals encountered are elementary, and one finds

(—‘1)" k
(Pp>=P—2 Z b,by B, (t) ——— (40)

n>k ( )

where the coefficients 4, (f) and B, ,(t) are given by equations (24)—(26). At exact
resonance B, k(t) 0, the second term in equation (40) vanishes and the average value
of the phase ($,) reduces to the constant f. This may be understood from the fact
that although in this case the phase distribution evolves, it maintains all the time the
symmetry with respect to the initial value of the average phase p. For nonzero
detunings, ($,) oscillates around f§ (we have put 8 equal to zero everywhere) with
increasing amplitude when 4 increases (figure 2). At far-off-resonance, the
amplitude of the oscillations of {®,> does not depend on 4 any more and the time
behaviour of {®,> becomes nearly periodic

" (—1y (— ) - .
{Adgy= —+4 Z bb, A4, k(t)————4 Z bb B, () ——— |, (41)

ln—k
(By=p=2 3, bhsinl(n— k" =2 o, 42)

Note that the period of {®,), which is equal to 2nd/g?, is dependent on 4 only and is
the same for all z obeying equation (35).

The variance of phase given by equation (41) is depicted as a function of the
scaled time 7 in figure 3 (a) for exact resonance and in figure 3 (b) for far-off-
resonance. Here, care must be taken in interpreting the results obtained. At t= 0 we
have chosen and fixed the reference phase , as in (27). This particular choice of 6,
determines a phase window that totally encloses the peak and yields the mean phase p
and the minimal variance. At scaled time T'=1, the phase distribution shifts by
from its initial state (figure 1), and we have a situation in which the 2z phase window
has one peak at f—7 and another at f+7. Such a phase window maximizes the
variance of the phase. The influence of a chosen reference phase on phase properties
of the field has been explored in detail by Barnett and Pegg [7]. Here, we may
conclude that both maxima and minima of the variance of the phase correspond to
the revivals of the atomic inversion. This, however, concerns only the first maxima
and minima. For longer time, the variance of phase shows quick and small
oscillations near n2/3 (figure 3 (a))—the phase variance of a field with randomly
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Figure 2. Plot of the mean value of the phase operator as a function of dimensionless time gt
for various 4, n=20, f=0.
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Figure3. The variance of the phase as a function of the scaled time T'=gt/[2n(n+ A?J4gH?]

for (a) exact resonance, (b) far-off-resonance. The mean photon number 7= 20, B=0.
Note that for t=0{AP2)> = 1/(471)>0.

distributed phase. Figure 3 (b) illustrates the time behaviour of the variance of the
phase in the far-off-resonance limit. In this situation the extrema of the phase
variance have no clear connection to the revivals of the atomic inversion because the
latter are less visible as A increases [4]. They reflect only the rotation of the phase
state on the polar diagram (figure 1 (c)).

Phase characteristics of the field, such as the phase distribution, the expectation
value of the phase operator and its variance, can be obtained within the Pegg-Barnett
formalism only. They are either lacking or have no consistent description in other
approaches so far. However, there are phase characteristics, such as the cosine and
sine functions of the phase and their variance, that have their counterparts in other
formalisms. To calculate the expectation values of the cosine and sine functions of
the phase we take into account that the state of the field in the JCM is a physical state,
for which the relation (5) holds. Then, we obtain

<COS d’so> 22 bnbn+ I[COS BAn+ l,n(t) - Sin ﬂBn+ l,n(t)]x (43)
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<Sin (ﬁ()>:zbnbn+l[8in ﬁAn+1,n(t)+cos ﬁBn+ 1,n(t)]' (44)
Similarly, from equations (5), (8) and (9) we obtain
o 1 1
<COSZ ¢0> =—i+§ Z bnbn+2[cos ZﬁAn+2,n(t) —sin 2BBn+ 2,n(t)]) (45)
L, e 1 1 .
<Sln2 (p0> :E_E aner- Z[COS 2lf"4n+2,n(l) —sin zﬁBn+ Z,n(t)]' (46)

Our formulae (45), (46) show that {cos? ®,) + (sin? ®,> =1, which is not the case
with the SG formalism. T'wo approaches give the same results for the sine and cosine
functions, but the SG squares of the phase sine and cosine differ from those obtained
using PB formalism by the amount

(47)

a2
i|<¢(z>|0>|2=geXp(_ﬁ)<1+ sin’ (g1) >

14 4%/(4g%)

as anticipated from equations (8) and (9). This difference 1s proportional to the
probability of finding the field at time ¢ in the vacuum state. It is negligible for n>»> 1,
but is essential when 7 is small. Before comparing the PB variance of the phase cosine
with the SG and MP results, we recall that the measured phase concept is based on
analysing actual techniques used in phase measurements, such as homodyne
detection and prepared atom experiments [10]. The phase cosine is defined in this
case as appropriately normalized field quadrature

ata’

CcOs (DMP :W .

(48)

The cosine variance is then simply equal to the variance of the quadrature field
component divided by a factor which contains the expectation value of the photon
number. These quantities have been evaluated more than once by many authors [1-
4,14,15,20-23], so we will not repeat them-here. The results for the variance of the
phase cosine based on three different definitions are shown in figure 4 for 4=0.
When # ts small (figure 4 (a)), the variance of the SG phase cosine behaves in quite a
different way compared with the PB and MP cases. It is shifted from the other two
and decreases in the short-time region while the PB and MP quantities increase.
Difficulties associated with the SG formalism in the few-photon regime [8] allow us
to assume that in this case the PB and MP curves describe the behaviour of the noise
in the phase cosine more adequately.

In the Jaynes—Cummings model, {#) is modulated with the maximal amplitude
equal to unity, since the atom absorbs and emits only a single photon. This
modulation is essential for small # and leads to drastic changes in the time behaviour
of {4 cos? ®yp> compared with the corresponding quadrature phase variance. In
figure 4 (a) we see that the variance of the measured phase cosine increases as time
goes on, while the first quadrature of the field in this situation exhibits squeezing
[21,22]. For large # the modulation of {#) becomes negligible and the MP cosine
variance curve now reproduces the main features of the squeezing curve [20]
(figure 4 (b)).

In figure 4 (b) we also see that when 7 is large the PB and SG results are almost the
same but, they still show some discrepancies with the MP results. The PB and SG
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Figure 4. Time evolution of the variance of the phase cosine. Results for different
approaches are compared: Pegg—Barnett (PB), Susskind-Glogower (5G) and measured
phase (MP). (@) Weak field, n=025; (b) strong field, 7=100; B=0.
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curves do not fall below their initial values and have their first minimums shifted
slightly forward compared with the MP curve. Thus, although the simplified
structure of the MP operators can be attractive, as in the case with the ideal squeezed

state [24], they should be used with extreme care for investigating phase properties of
the field.

4. Effect of atomic coherence on phase properties of the field

So far we have assumed the atom to be initially in the ground state. However, the
atom can be prepared in a coherent superposition of the upper and lower levels by an
external coherent field [12] and then be sent into the cavity. Let us consider the initial
atomic state

|$a(0)> = cos (£[2)le) + € sin (£/2)lg), (49)

and assume the field to be initially in a coherent state as before. To isolate the effects
of atomic coherence from that of finite detuning, we restrict ourselves to the exact
resonance, 4 =0. The expression for the state vector of the total atom—field system is
then found to be

|p(2)> = 20 b,e" {cos (£/2)[—isin (g\/n +1tn+1; 2> +cos (g\/n +18)|n; e>]

+€'sin (€/2)[cos (g\/nt)ln; g>—isin (g\/nt)ln —1;e)1}. (50)

Following the same lines as in section 3, one obtains the phase distribution in the
form

P(0, 1) = cos? (£[2)P (8, 1) +sin? (§]2)P(0, 1) +5:17é Zkb,,bk

x {sin [g(/n—/R)t]sin [(n—k—1)0—(B+m)] +n<>k}, (51)
where
P,0,1) 221_71{1 +2 Z b,b, cos [(n—k)0] cos [g(\/n—\/k)t]} , (52)
n>k

Pe(0,t)=L 142 Y b,b,cos[(n—k)0] cos[g(y/n+1—Jk+1)t]¢, 53
> (53)

s n>k

are the phase distributions for the atom being initially in the ground and excited
states, respectively. Equation (52) for Py(0,t) can be derived immediately from
equation (29), putting A4=0.

We also find for the average value of the phase

__1y\n—k
(@9>=ﬂ+%sinécos(ﬁ+n){ Z b,,bksin[g(\/k-kl—\/n)t]fl—lk)——l+n©k}," (54)
nk — R
n¥k+1
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and the variance

(A®}) =cos® (§/2)AP; ). +sin® (§[2){AD}),

_1\n—k
+sin£sin(ﬂ+ﬂ){ Z bbks1n[g(\/k+1—\/n)t]-(—;%1)2+n¢k}
nth 1
(_ )n k 2
—15in? € cos? (ﬁ+t1){ Z bbksm[g(\/k+1—\/n)t] - 1—+—n¢v>k} ,
itk 1

(35)

where (49}, and {49} ),, the variances calculated with the phase distributions (52)
and (53), are

__q1\n—k
APy, = +4 Z byby cos [g(y/n— \/k)t]( )k)2 , (56)
_1\n—k
(AP = —+4 Z b,b, cos [g(\/n+1—\/k+1)t]( D) . (57)

(n—k)*

For cos (£/2)=0 or sin (¢/2) =0, no atomic phase is present and equations (51)—(57)
reduce to those of the initially purely excited or de-excited atom.
" The phase distribution (51) is graphically illustrated in figure 5 for f=0, and
for various values of the atomic phase . The case of particular interest is when
the two levels are equally populated, to cos(£/2)=sin({/2) (= +n/2).
For n=m/2 (figure 5 (a)) the time behaviour of the phase distribution is exactly the
same as in the case of an initially de-excited atom without detuning. This also holds
true for the time behaviour of the atomic inversion [11-13]. As before, the phase
distribution splits into two counter-rotating distributions when the evolution
proceeds. The two satellite distributions overlap at the scaled time T=1,2,3....
"This is the time when the revivals of the atomic inversion occur. The initial atomic
state with phase n=m/3 gives rise to asymmetry between the two satellite
distributions (figure 5 (b)), which is similar to the asymmetry caused by nonvanish-
ing detuning. For =0, one peak is completely quenched and we see the phase
distribution rotating and slowly changing its shape on the polar diagram (figure
5(c)). It is known that [11-13] the state with £ ==/2, f+#=0 is an eigenstate of the
semiclassical Hamiltonian of the atom—field system. If the atom and the field are
initially prepared in this state, atomic inversion will essentially remain unaffected
despite the large field intensity.

From the similarity of the phase distributions, it is not difficult to predict the
similarity of the average values and the variances of the phase, so we will not discuss
them here. We may conclude the effects of atomic coherence on phase properties of
the field as follows. First, the time behaviour of the phase distribution preserves its
synchronization with the collapses and revivals of the atomic inversion. Secondly,
the effect of the atomic coherence on phase properties of the field when the relative
phase 47 ranges from 7/2 to 0 (or from 7/2 to 1) resembles very much that of finite
detuning as 4 increases from 0 to the far-off-resonance limit. This resemblance can
be explained as a consequence of the fact that in both cases the atom and the field
become obviously de-coupled.
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Figure 5. Phase probability distribution P(f, t) under the influence of atomic coherence.
The detuning parameter 4=0; 7=20; $=0. The scaled time T=gt/[2n(n)"/?], and as
before the curves shown are T=0 (solid), T=0-5 (dotted) and T=1 (dashed).



Dynamical properties of the phase field 2083

5. Conclusion

We have used Pegg—Barnett phase formalism to study phase properties of a
coherent field interacting with a two-level atom in a loss-less cavity. We have found
that, for large enough mean photon numbers 7, the phase distribution of the field
splits into two counter-rotating peaks. When the two peaks are well-separated,
atomic inversion shows no oscillations; when they collide, revivals occur. The
collapse and revival phenomena are also reflected in the time behaviour of the
variance of the field phase. Taking into account the influence of the fixed phase
window, we have shown that the revivals correspond to the first maxima and minima
of the phase variance. When the atomic inversion goes over into the quasi-chaotic
regime, the variance of the phase oscillates around 72/3. This means that the field is
in a state close to that with random distribution of phase. The average value of the
phase, which remains constant at exact resonance, begins oscillating near the initial
value f as 4 increases.

Comparing the effects of the finite detuning on phase properties of the field with
those of the atomic coherence, we have pointed out that they are identical. This
identity takes place for two different situations: when the field is relatively weak, so
that the influence of the finite detuning is noticeable; when the field is strong, so that
the semiclassical limit is valid. We have also calculated the phase cosine and sine
functions and their variances. The results have been compared with those based on
the Susskind-Glogower formalism and the measured phase concept. It has been
established that, for states with a reasonable photon number the PB and SG
definitions yield identical curves for the variances of the phase cosine, which are
different from the MP curve.
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