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Abstract. Phase properties of elliptically polarized light propagating through a
nonlinear Kerr medium are considered within the framework of the Pegg-
Barnett Hermitian phase formalism. The joint phase probability distribution
function for the phases of two orthogonal modes describing elliptical polarization
of the field is calculated and its evolution discussed and illustrated graphically.
The marginal phase probability distribution for the individual phases are also
calculated and discussed. Analytical formulae for phase expectation values and
variances are derived for the individual phases as well as for the phase difference.
It is shown that in the course of propagation the correlation between the phases of
the two modes builds up. This correlation is responsible for lowering phase
difference variance. The expressions for the sine and cosine functions and their
variances of the individual phases as well as the phase difference are obtained and
discussed. The effect of randomization of individual phases and the phase
difference, which is a purely quantum effect, is shown to appear during
propagation. The relation between phase randomization and degradation of the
degree of polarization of the light is established.

1. Introduction

When strong elliptically polarized light propagates through an isotropic non-
linear medium, the medium becomes birefringent, which results in the self-induced
rotation of the polarization ellipse—the nonlinear optical effect observed by Maker
et al. [1] in 1964. Subsequently, propagation of light in a Kerr medium has been
studied extensively, and it has become a standard topic in textbooks on nonlinear
optics [2, 3]. To understand phenomena such as optically induced birefrigence there
is no need for field quantization. However, if the quantum properties of light
propagating through a Kerr medium are taken into account, some new effects, such
as photon antibunching and squeezing, can occur. Photon statistics and photon
antibunching have been considered by Ritze and Bandilla [4], Tana$ and Kielich [5]
and Ritze [6]. Tanas and Kielich [7] have shown that intense light propagating in a
nonlinear Kerr medium can squeeze its own quantum fluctuations. They referred to
this effect as self-squeezing, and have proved that as much as 987, of squeezing, can
be obtained in this process. The description of the field in [7] was the two-mode
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quantized field description of the elliptically polarized light propagating in the
medium. The one-mode version of the self-squeezing effect, applicable for circularly
polarized light propagating in an isotropic Kerr medium, has been considered by
"Tana$ [8] in terms of an anharmonic oscillator model. The anharmonic oscillator
model, which is very simple and exactly solvable, appeared to be very attractive, and
many properties of the quantum states of the field produced in the model have been
discussed recently [9-22].

To describe properly the effects associated with propagation of elliptically
polarized light in a Kerr medium, the two-mode description of the field is needed.
Such a description has already been used in the early studies [4-7] of the quantum
field effects that appear during propagation. In those studies, the Heisenberg
equations of motion for the field operators were solved and their solutions used to
calculate appropriate quantities revealing photon antibunching or squeezing. Horak
and Pefina [23] discussed the influence of losses and noises on the quantum effects in
the coupled nonlinear oscillators. Their approach is based on the Heisenberg-
Langevin equations of motion for the operators of the two coupled nonlinear
oscillators. Recently, Agarwal and Puri [24] reexamined the problem of propagation
of elliptically polarized light through a Kerr medium, using the two-mode
description of the field. They discussed not only the Heisenberg equations of motion
for the field operators but also the evolution of the field states themselves. The
polarization state of the field propagating in a Kerr medium can be described by the
Stokes parameters, which are the expectation values of the corresponding Stokes
operators when the quantum description of the field is used. Quantum fluctuations in
the Stokes parameters of light propagating in a Kerr medium have recently been
discussed by Tana$ and Kielich [25].

In this paper we shall discuss phase properties of elliptically polarized light
propagating through a Kerr medium, using the new Pegg-Barnett [26-28] Her-
mitian phase formalism. This formalism enables direct calculations of the expect-
ation values and variances of the Hermitian phase operators for the two modes of the
elliptically polarized light. Within this formalism we have also obtained the joint
probability distribution P(8, , 6_) for the phases 8, and 0 _ of the two modes as well
as the marginal probability distributions P(6.) and P(0_). The evolution of these
probability distributions during propagation is discussed and illustrated graphically.
The variances of the individual mode phase operators are calculated and shown to be
significantly affected by the coupling to the other mode. The essentially two-mode
phase characteristics of the field—such as the phase difference variance, the phase
correlation function for the phases of the two modes and the cosine and sine
functions of the phase difference—are calculated. It is shown that two-mode phase
characteristics depend strongly on the symmetry of the nonlinear susceptibility
tensor of the medium. The relation between the inter-mode phase properties and the
degree of polarization of the field is established.

2. Quantum description of elliptically polarized light
In quantum description of the electromagnetic field it is convenient to split the
field into positive and negative frequency parts

Ei(rr t)=ES'+)(’a t)+E§-)(I’, t)) (1)

where { denotes a polarization component of the field. Next, amode decomposition of
the field can be performed, which for the plane-wave decomposition of the free field
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propagating in a medium with (linear) refractive index n(w) gives

/2
)

where ¢¥ is the i-th component of the polarization vector associated with the
polarization state A and the propagation vector k, and V' is the quantization volume.
The operators a,; and a;; are the annihilation and creation operators of photons with
propagation vector k and polarization 4 satisfying the commutation relations

eday; exp [—i(wz— k- 1)), (2

[ 01:1] =0, 032+ 3
The polarization vectors satisfy the orthogonality conditions

A A
Zeﬁi)*efci '=d.1,
' 4)
Z DR,

For a monochromatic field of frequency @ propagating along the z-axis of the
laboratory reference frame, we can drop the index k in our notation and write

2nhw

(+) —
Ei(z,0) -l<n2(w)V

1/2
) exp[—i(wt—k2)] Y ePa,, 5)
A=T1,2
with k=n(w)w/c. Since the summation over the two mutually orthogonal polariz-
ations still remains in equation (5), we have a two-mode description of the field. If the
field is a coherent superposition of these two modes, the two-mode description can
be replaced by one mode of an elliptically polarized field

ea=eVa, +eéPa,, (6)

where /" and &2 are the i-th components of the orthogonal unit polarization vectors
&1 and & of the modes a, and a,, and ¢, is the i-th component of the polarization
vector & of the mode a. The relation (6) can also be considered in the reverse sense as
a decomposition of initially elliptically polarized light into two orthogonal modes.
Applying the orthogonality condition (4) for the polarization vectors, we get the
formula

a=cefa, +e%a,, (7)

where

=é>x=.é(1)’ e¥ =%,

So far the decomposition (6) (or, equivalently (7)) is quite general and can be
further specified either for two modes with mutually perpendicular linear polariz-
ations or for right- and left-circularly polarized modes.

If a Cartesian basis is chosen, the unit polarization vectors are &) =%, 8% =y,
whereas in a circular basis we have 8V =8&")=(&+1§)/,/2, 8@ =& =(x—§)/,/2
with X and ¢ being the unit vectors along x and y, respectively. The unit vector & of
the elliptically polarized light can be written in either a Cartesian or a circular basis as

é=eX+eg=c, &t & (8)
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with e, and e, given by [29]

e,=cosncosd—isingsin g,
) . (9)
e,=cosfsin3+isinncos 9,
and
1 .
ei=(exiiey)/\/Z=ﬁ(cosnisinr])e;'s. (10)

The parameters 3 and  define the polarization ellipse of the field—3 is the azimuth of
the ellipse denoting the angle between the major axis of the ellipse and the x-axis
measured positive from the + x-axis towards the +y-axis, and 7 is the ellipticity
parameter, —n/4 <% <n/4, where tann describes the ratio of the minor and major
axes of the ellipse with the sign defining its handedness (plus means right-handed
polarization in the helicity convention).
According to equation (7), the annihilation operator of the elliptically polarized
field can be written as
a=cta.+efa,=eXa, +e*a_, (11)

where e,, ¢, and e are given by equations (9) and (10), and the operators a are

a; =%(ax$iay). (12)

Hence, the annihilation operator a of the elliptically polarized light is a superposition
of two orthogonal modes in either a Cartesian or a circular basis.
Defining a coherent state of the field with respect to the operator a by the relation

aloy =aja, (13)
we have, simultaneously,
o) =lote Dl =ty Do >, (14)

where |a,), [¢,> and |oe, ), |@_) are the coherent states defined with respect to the
annihilation operators a,,a, and a,,a_. According to equations (11), (13) and (14),
the following relations hold

a=efa, +efo,=eko, +e*a_, (15)

and, due to the orthogonality relations

e¥e,+efe,=1, e*e, +e*e_=1,
one obtains
oA =e0
(16)
o, =e,l
oy =ey0, (17)

where ¢,, e, and e are given by equations (9) and (10), and
loral® 4l ? = for 12+ Jor |2 =od] .

Thus, Cartesian or circular bases can be used alternatively to describe the
propagation of elliptically polarized light in a nonlinear Kerr medium. In isotropic
media, however, the circular basis is much more advantageous than the Cartesian
basis.
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Relations (15)—(17) and (8)-(10) facilitate the decomposition of a coherent state of
elliptically polarized light—with the polarization ellipse described by the azimuth 9
and the ellipticity #—into two orthogonal modes that are also in coherent states, and
vice versa. However, if the nonlinear interaction between the field and the medium
takes place, the resulting state may no longer be a coherent state, even if it were such a
state initially. In this case, the relations (13)~(17) for the coherent state amplitudes
are valid only for the initial coherent states. Quantum evolution of the field
propagating through a nonlinear Kerr medium requires the two-mode description of
the field. The corresponding equations of motion will be given in the following
section.

3. Quantum evolution of elliptically polarized light propagating in a Kerr
medium
The classical description of light propagating through a nonlinear Kerr medium
involves third-order nonlinear polarization of the medium. A monochromatic light
field of frequency w propagating in the medium induces third-order polarization of
this medium at frequency w, which can be written as follows [2, 3]:

P{I(@)=} iju( — @, —0, 0, 0)E§ (@) EL (@) Ef (), (18)
Jki

where x; ju(—®, —®, w, w) is the third-order nonlinear susceptibility tensor of the
medium, and the decomposition of the field into positive- and negative-frequency
parts (as in equation (1)) has been used; dlbeit, in the classical description, the field
amplitudes E{*)(w) are classical quantities. With such decomposition of the field, the
intensity of the light beam is given by
1) =2 3 BOY0) B (@), (19)
2n i

where n(w) is the refractive index of the medium at frequency w determined by the
linear (first-order) polarization of the medium.

For an isotropic medium with a centre of inversion, the nonlinear susceptibility
tensor, X;u(®) =i —®, —®, ®,®), can be written as [2, 3]

Xijit{®) = Xy (@©)0:611 + Xxyxy(@)0s0 g + Xoeyy @) iy (20)

with the additional relation

Lrxxex( @) = Xpyyy(0) = Xxyy () + Ly (@) + Xeyyul®). (21)

Taking into account the permutation symmetry of the tensor y; 3,(w) with respect to
the first and the second pairs of indices, we have, moreover, x,,,,(®) = x,,,x(®). The
light beam is assumed to propagate along the z-axis of the laboratory reference
frame.

Inserting the polarization (18) into the Maxwell equations and applying the
slowly varying amplitude approximation, one obtains the following equation for the
amplitudes of the field [3]:

dE{"(0) i2nw
dz  n(w)c

P{Y(w), (22)

where the slowly-varying amplitudes E{*)(w) are assumed to be dependent on z.
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By equation (22) we have, for example,
dE( (@)  i2nw
dz  n(w)

+ 22y (O E (@) ES (@) + EST @) ES ()] ELV(0)}- (23)

ey @ES (@) ELH (@) + ESDH )]

If the circular basis is introduced, which is the natural basis for isotropic media, with
the circular components of the field

E‘J’(w)=§5[E;+>(w)¢iE<y+>(w)], (24)

the nonlinear polarization becomes
PG ®) = 21yxy (@) EGH 0) P EG (@) + 20 Lxxyy(@0) F Ly O E IEY (@) (25)

which gives the equations of motion for the circular component of the field

(+), ;
dEL ) _ fno (e ONES D) + [y @) + Xy N ES (@)} E ().
dz n(w)c (26)
Equations (26) immediately show the advantage of the circular basis over the
Cartesian basis used in equation (23). One easily checks that (d/d2)E ()] =0, i.e.
the intensities |E$ (w)|? of both circular components are constants of motion. This is
not the case for the Cartesian components. Since the intensities |[E$ (w)|? do not
depend on 2, equation (26) has the following simple exponential solution [30]

E N (w; 2)=exp (i@ 4 2)EY (w; 2=0), (27)
where

w

By = DB (O + D) 1 @IEST) 28
determines the light-intensity-dependent phase of the field (self-phase-modulation
or intensity-dependent refractive index). These classical nonlinear effects are well
known [2, 3], and are not the subject of our interest in this paper. We are interested in
quantum phase properties of the field propagating in a Kerr medium, and we need
quantum equations of motion for the field. Such equations—the Heisenberg
equations of motion for the field operators—can be obtained from the following
effective interaction Hamiltonian [7]

H,=1hx{at%a® +a’%a* +4dalala_a,}, (29)
where the nonlinear coupling constant k is real and is given by
V[ 2nho |
SR Biihthaadi ) 30
K h [HZ(Q)V] Xxyxy(w)y ( )

with V denoting the quantization volume, and we have introduced a nonlinear
asymmetry parameter d, defined as

Xxxyy(w)

2d=1+
Xxyxy(w)

(1)

[f the nonlinear susceptibility tensor y is symmetric with respect to all its indices, the
asymmetry parameter d is equal to unity. Otherwise d#1 and describes the
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asymmetry of the nonlinear properties of the medium. When the medium is
composed of identical molecules the asymmetry parameter d is related to the
hyperpolarizability of individual molecules [7]. Ritze [6] has calculated this
asymmetry parameter for atoms with a degenerate one-photon transition, obtaining
the results

{(2]— 1)(2J +3)/[2(2J% +2J +1)] for J«J transitions, 32)

(2J%+3)/[2(6J%—1)] for J«»J—1 transitions.

The operators a.. in the Hamiltonian (29) are the annihilation operators for the
circularly right- and left-polarized modes.

Using the interaction Hamiltonian (29) and the commutation rules (3), one can
easily write the Heisenberg equations of motion describing the time evolution of the
field operators. In the travelling wave case, the time ¢ is replaced by —n(w)z/c, and
we obtain the following equation:

da,(2) — n(w)

- k[a$(2)as(2)+2dat (2)az (2)]as(2). (33)
2 c

When the relation, obtained from equation (5),

(34)

1/2
E<;>(w)=,-[ ho ] :

n*(w)V

is applied, equation (33) reverts to the form (26), which makes the quantum-classical
correspondence quite transparent; but now we deal with the quantum field.

Since the number of photons in the two modes aJa, are constants of motion
(they commute with the Hamiltonian (29)), equation (33) has the simple exponential
solution [6, 7]

a,(t)=exp {it[a1(0)a(0)+ 2daz(0)az (0)]}a . (0), (35)
where we have introduced the notation
T=n(w)Kz/c. (36)

The solutions (35) are exact operator solutions for the field operators of light
propagating through a nonlinear, isotropic Kerr medium. These equations were
used for calculations of such quantum effects as photon antibunching [6] and
squeezing {7].

To describe the evolution of the field states we can use the evolution operator
U(t), which according to equations (29) and (36), and after replacement
t= —n(w)z/c, has the form

U(t)=exp {z% [at%a% +at?a® +4daiafa_a+]}
(37)
—exp {i%[m(m —1)+A_(A_ —1)+4dﬁ+r‘z_]},

where we have introduced the number operators #, =ala, for the two circularly
polarized modes. The resulting state of the field is thus given by

W (z)> = U@IY(0)>, (38)
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where [(0)) is the initial state of the field. If the initial state of the field is a coherent
state of elliptically polarized light, one obtains [24]

ny,n-

W)y =U@a,,a_>= Y b, b, exp {i(n+<p+ +n_@.)

+i%[n+(n+—1)+n_(n_——1)+4dn+n_]}ln+,n_>, (39)

where

o "*
\/ ny!
and the state n,,n_>=|n,dn_)> is the Fock state. Here we have used
oy =|os|exp (ipy).

Properties of the states (39) have recently been discussed by Agarwal and Puri
[24]. Tanas and Kielich [25] have considered quantum fluctuations in the Stokes
parameter defining the polarization of the field. In this paper, we examine phase
properties of the states (39) using the Pegg-Barnett [26-28] Hermitian phase
formalism.

by, =exp (—laxl*/2) (40)

4. Phase properties of elliptically polarized light propagating in a Kerr

medium

The new Hermitian phase formalism introduced by Pegg and Barnett [26-28] is a
way off the difficulties associated with the existence of the Hermitian phase operator.
They have shown that the Hermitian phase operator can be constructed from the
phase states [31]. As the Hermitian phase operator is constructed, quantities like
expectation values and variances of the phase operator can be calculated for a given
state of the field. The phase probability density, which is a very spectacular phase
characteristic of optical fields, can also be obtained within this formalism. These are
new characteristics of optical fields, open for investigation because of the new
formalism. Of course, there are ‘old’ phase characteristics such as phase cosine and
sine and their variances that were available for investigation in the Susskind-
Glogower [32] phase formalism or the measured phase formalism [33], and they also
can be investigated in the new formalism. This time, however, the phase cosine
and sine are actual cosine and sine functions of the Hermitian phase operator.

Here, we reproduce some basic formulae of Pegg and Barnett [26-28], which we
will use in this paper to study the phase properties of elliptically polarized light
propagating in a Kerr medium. The idea of Pegg and Barnett {26-28] is based on
introducing, for one mode of the field, a finite (s+1) dimensional space ¥
spanned by the number states |0),]1),...,|s). The Hermitian phase operator
operates on this finite space, and after all necessary expectation values have been
calculated in P, the value of s is allowed to tend to infinity. A complete orthonormal
basis of (s+ 1) states is defined on ¥ as

10,5=(+1)"12 3 exp (ind,)ln, (41)
n=0

where

0,=0,+2mm/(s+1), (m=0,1,...,9). (42)
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The value of 8, is arbitrary and defines a particular basis set of (s+1) mutually
orthogonal phase states. The Hermitian phase operator is defined as

B0= 3. 0ul0n<00l 43)

Of course, the phase states (41) are eigenstates of the phase operator (43), with the
eigenvalues 0, restricted to lie within a phase window 6, and 6, + 2. The unitary
phase operator exp (idhe) can be defined as the exponential function of the Hermitian
operator @,. This operator when acting on the eigenstate |0,,) gives the eigenvalue
exp (i0,,), and can be written as [26-28]

exp (idg) = (0D U+ 12 +. .. +1s— 1) <s] +exp [i(s + 1)8,]Is <0, (44)
and its Hermitian conjugate is
[exp (idg)] * = exp (—idy), (45)

with the same set of eigenstates |6,,> but with eigenvalues exp (—6,,).
To make further comparisons easier, it is useful to relate this new operator to the
Susskind-Glogower phase operator, which is given by [34}:

(exp (im)> = lexp (i)™ = lim <{Z: fn <+

S

+exp [i(s+1)8,] mil [s —n>{m—1 —n|}>
n=0

5§

m—1
=<e§(\p (im¢SG)>+lim<{exp [i(s+ 1)8,] Z’o |s—n><m—1—nl}>, (46)

where the Susskind—Glogower phase operator is given by
egc\p (im¢sg) = Zo [n>{n+m|. (47)

From the definition (47) and the definition

CQP (—impsc) = [e§(\p (imsc)]™, (48)
one gets for m=1

egc\p (1dsG) CQP (- i(bse) =1,
eXp (— idsg) €Xp (ihss) =1—10)<0],

which explicitly shows the non-unitary character of the Susskind—Glogower phase
operator.

If the expectation values are calculated in the ‘physical states’, according to their
definition by Pegg and Barnett [27, 28], the last term in equation (46) becomes
negligible and some additional useful relations between expectation values in such
states of the Pegg—Barnett phase operators and of the Susskind-Glogower phase
operators can be obtained. For example, the following relations hold [34]:

(49)

exp (img)>, = (eXp (imdsc)p, (50)
{cos $0>p =4<exp (ipy) +exp (— i$0)>p ={c0s 56V ps (E2Y)

1 z ~
Csin Gy, =7;<exp (i) —exp (— i$6)>p = <$10 P56 g, (52)
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Ccos? By, =14<exp (12¢6) +exp (—1245) +2),

=(c0s? P56 +3K(10D0)D,, (53)
sin? PoP, = —4{exp (12d) +exp (—i245) — 2D,
= (ST s, +2K(0YC0DD,, (54)

where the subscript p refers to a physical state expectation value.

In the two-mode case considered in this paper, we can discuss, besides the phase
operators for individual modes, the two-mode phase characteristics such as the phase
difference between the two modes. In the Pegg—Barnett formalism, the phase
difference operator is simply the difference of the phase operators for the two modes.
For the physical states we have the following relations

Cexp [im(§ , — B Iyp=exp (im$ ) exp (—imd )3,
=< 5 (nem), § (hemy<)-),

= (eﬁ\p + (im(ﬁsc) CQP -(= im¢sc)> | (33)
P
<COS ($+_{5—)>p=<cas (¢+_¢—)SG>p (56)

Ceos? (B4 — §)p=C[Bs (b4 —b-)sc]*Dp
HKID 100D - +(0X<0D (D -1>p (57

([Acos(Bs — BN, =<[4Bs (b —d )sc]*Ds
KD 100D - +(0X<0D (D -1>p  (58)

where the operators ¢, are the phase operators for the two circularly polarized
modes of the field defined as in equation (43), and the subscripts + denote the mode
for which the corresponding operators are defined. Relations (50)—(58) will be used
in the paper to describe phase properties of the field propagating in a Kerr medium.
Since the state (39) of light propagating in a Kerr medium is a ‘physical state’

< lim &,, =0>,

the above relations can be applied when the expectation values in this state are
calculated.

Generalization of the Pegg—Barnett formalism to the two-mode case studied in
this paper is straightforward, and the joint phase probability amplitude for the field
being in state (39) is given by

(O O (D> = (55 + 1) T2+ 1)712

S+

X Z iobn+bn_ exp{in+((p+_6m+)+in—((p——0m_)

ny=0n-=

+i%[n+(n+—1)+n_(n_—1)+4dn+n_]}. (59)
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Since the initial states of the two modes are coherent states, i.e. partial phase states, 1t
is convenient to choose phase values windows symmetrical to the phases ¢, of the
coherent states. This means

S 4

— 60
e (60)

05 =0,

and
Or—bp,=—0,,, (61)

where the new phase labels y, run in unit step between the values —s,/2 and 54 /2.
By taking the modulus square of equation (59), after taking into account equations
(60) and (61), and performing the continuum limit transition by making the

replacements
s/2 2 n
y T f do., (62)
pe=—sx/2 Si+1 -n

we arrive at the continuous, joint phase distribution function given by

1 0 0
z Z b"+b"—
=0

(27[)2 ny=0n-

P@O.,,0_ )=

2
X exp{—in+9+ —mn_0_ +i%[n+(n+ —D+n_(n_ —1)+4dn+n_]}‘ ,

(63)

with the normalization
f f P.,0_)d6,d0_=1. 64)

The phase distribution function P(f,,8_) given by equation (63) describes the
phase properties of elliptically polarized light propagating through a Kerr medium.
This function depends on 1, which means the evolution of phase properties of light
propagating in the medium. Because of the double summation in formula (63), it is
not easy to predict how the form of the distribution function P(f,,8_) changes
during the evolution. However, due to Poissonian factors &,,, the summations in
equation (63) can be evaluated numerically if the mean numbers of photons in the
two modes, N, =|a,|?, are not too great. Examples of the evolution of the phase
distribution function P(8,,60_) are shown in figures 1-3, where this function is
plotted in a three-dimensional format for various sets of parameters.

In figure 1, one mode is initially assumed as vacuum (N ; =0), which means that
the distribution is flat along the 8, direction initially, and it remains flat all the time.
Along the direction 8_, where N_ =4, the distribution is peaked initially at § _ =0,
i.e. at the phase ¢ _ of the coherent state |2 _ >, and as the evolution proceeds the peak
of the distribution is shifted and the distribution becomes broader. This behaviour
corresponds to the behaviour of the phase distribution function in the one-mode case
of the anharmonic oscillator [35]. If the mean number of photons is different from
zero in both modes, the distribution P(8,, 6_) is peaked initially for § , =8 _ =0, and
this peak is shifted and broadened along both directions.

The shape of the distribution depends on the values of the mean number of
photons N, in the two modes, which is clearly seen in figures 2 and 3. It is also seen
that the initially chosen window of the phase values, symmetrized with respect to the
phases ¢ ; of the initial coherent states of the field, is no longer well suited to describe
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the phase distribution. Because of the shift of the maximum of the distribution, the
peak splits into pieces. To minimize the phase variance, the window should be
shifted dynamically during the evolution. In figures 1-3 we have assumed the
asymmetry parameter d is unity.

Integrating the distribution function P(6,,0_) over one of the phases 6, or 6_
leads to the marginal distribution P(6 _) or P(8.) for the individual phases. We have
for example,

—-n n-=0 >ny

P(0+)=J P(0+,0_)d0_=_217; 3 82 {1+2 Y b,.by,

X cos {(n+ —11’4,)[0+ —%(mr +ny—1 +4dn_)J}}, (65)

and the expression for P(6_) can be obtained from (65) by interchanging the
subscripts plus and minus. If there is no coupling between the two modes in the
medium, i.e. d=0, the summation over n_ gives unity and the distribution P(0,)
becomes the same as in the one-mode case [35]. According to equation (32), it can
happen only for $¢»4 transitions contributing to the coupling constant. Otherwise,

) )

Figure1. Evolution of the joint phase probability distribution P(8,,0_)for N, =0, N_=4
and d=1; (a) =0, (b) 1=01, (¢) 1=02, (d) 1=073.



Elliptically polarized light 1549

(© )

Figure 2. Same as figure 1, but for N, =0-25 and other values unchanged.

the phase distribution P(8 , ) for one mode depends on the intensity of the other mode
and the asymmetry parameter d of the nonlinear medium. In figure 4 we illustrate the
dependence of P(0,) on the mean number of photons N_ of the other mode,
assuming N, =0-25, d=1 and t=0-1. It is clear from figure 4 that the distribution
P(0.) is not only shifted but also broadened as the intensity of the other mode
Increases.

As the phase distribution function P(6 ., 0_) (or P(0.)) is known, the expectation
values and the variances of the Hermitian phase operators defined by equation (43)
can be calculated in a classical-like manner by performing appropriate integrations.
We have

<¢(T)I$+|¢(T)>=¢++J— f_ 6,P@6,,0_)d8, d_

=‘P++_[ 6,P(0,)do., )
© (_1)n+—n'+
—0,—2 % B2 b, by L
- n_z=0 _n...;nQ. e n+_n’+

X sin {% (n,—n)(n,+n—1 +4d7l-)}, (66)
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()

Figure 3. Same as figure 1, but for N, =4 and other values unchanged.

~4.0 -2.0 0'(3 2.0 4.0

Figure 4. Plot of the marginal phase distribution function P(0. ) for N, =0-25,d=1,t=0-1
and various values of N_.
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and for the variance

WEIAG )W) = W@IFAW()) — Y@+ (7))
n n 2
= J oiP(0+)d0+"‘|:J 0+P(0+)d0+:|

-1 -

2 @© -1 ne—n'y
=§ w45 82 Y byby D

20 aSh, My —ny)?

X cOs {%(n+ - ) (n,+1, —1+4dn_)}

© -1 ny—n'y
_{2 Z b'zlf Z, bn+bn'+( )

’
n-=0 ne>ny n,—n,

2
x sin {%(m )y e —1 +4dn_)}} .67

Again, if d=0, formulae (66) and (67) go over into the corresponding formulae for
the anharmonic oscillator model [35]. Itis clear from the distribution function (63) as
well as from formulae (66) and (67) that, for 2d being an integer, phase properties of
light propagating in the medium are periodic with the period T'=2=, the same as in
the one-mode case. For 2d being a fraction of integers, the periodic behaviour is still
preserved but with different period. Generally, however, if 2d cannot be expressed as
a fraction of integers the periodicity of phase properties is lost. This means that
periodic behaviour appears for definite symmetry of the non-linear properties of the
medium only.

Formula (66), which describes the evolution of the mean phase of one mode,
shows that due to the coupling between the two modes there is a shift in phase of the
‘plus’ mode that depends on the intensity of the ‘minus’ mode. This is shown in
figure 5, where the mean phase is drawn, according to formula (66), for various
values of the mean number of photons N_.

One can also expect from the broadening of the phase distribution P(8 ) shown
in figure 4 that the variance of the phase operator ¢ . will increase as the number of

0.8
N.=4
0.4 1 N_=0.25
/N
"e‘+
< 0.0 1 . --¢,
—-0.4 1 \ N_=0

8 A
0.0 2.0 4.0 6.0 8.0 10.0
T

Figure 5. Evolution of the mean value of the phase (¢ ) for N, =025, d=1 and various
values of N_.
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Figure 6. Evolution of the phase variance {(4¢.)2) for N, =0-25, d=1 and various values
of N_.

1.5 - b
/()
1.0 (d)
0.5 1 (e)
H
© 0.0
| (a)
-0.51
-1.0 e
00 2.0 4.0 6.0 8.0

T
Figure 7. Evolution of the intermode phase correlation function C, _(7): (a) N, =025,
N_=4 and d=1; (b)) N, =025, N_=4 and d=1/2; (¢) N,=N_=0-25 and d=1;
(d) N,=N_=025and d=1/2.

photons N_ in the other mode increases. This is shown in figure 6, where the
variance (67) is plotted for various N_. For N_ > 1 the variance rapidly increases to
the values around n?/3—the value for the uniformly distributed phase. This means
that the phase of the ‘plus’ mode is randomized because of interaction with the other
mode. Of course, there is also the randomization effect of the ‘minus’ mode from

interaction with the ‘plus’ mode.
Except for the phase properties of the individual modes, it is interesting in the

two-mode case to study the behaviour of the phase difference between the two
modes. In the Pegg—Barnett formalism the phase-difference operator is simply the
difference of the phase operators for the two modes. The mean value of the phase-

difference operator is given by

YN+ — B Y(D)> = YDP L W ()> — <P @I _[W(x)), (68)
and can be calculated according to equation (66) and the corresponding equation for
{$_) (obtained by interchanging ‘+’ and ‘—’).
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To calculate the variance of the phase-difference operator we can use
QAP+ — P2 =<(AB )D+LAP ) —2{P.d_> =< )Xd-D}.  (69)
The variance {(4¢,)?> and {(4$_)?) can be calculated according to equation (67)

and its counterpart for the ‘minus’ mode obtained by interchanging ‘+’ and ‘— .
The last term describing the correlation between the phases of the two modes can be

calculated as

C,.-(1

I

WO+ - W(1)) — Y@ W @Y @I -Y(0))

=j j 0.0_PO,,0_)d0, do_

- n

_r 0,P6.,)d8, r 0_P(6_)d6_

-—n -R

_ (_1)n+—n'+ (__1)n_—n’_
=4 Zﬂ ”g(’gbn_ﬂ*bn;bnrbn'_

' !
nA> n,—n, n_—n_
+

x sin {%(m )y 41y — 1+ 2d(n_ +n'_)]}

X sin {%(n_ —n_ )n_+n_—1+2d(n, +n’+)]}

© —1y+ —n'y
—4{ Y. b Z b,,+b,,'+(—2——,—si {%(n+—n’+)(n++n’+—1+4dn_)}}

n-=0 ny>ny n,—n,

x{ i b2, Z b,,b,,'_g——l)—"_—ji——sin{%(n_—n’_)(n_+n'_——1+4dn+)}}

ny =0 n_>n"_ n_.—n_

(70)

From equation (70) it is evident that the phase correlation C. _(7) is equal to zero if
the two phases are uncorrelated, i.e. when d=0. Of course, there are no correlations
between the two phases for =0 because the initial state of the field is a product state.
During the evolution, the correlation between the two phases arises. This
correlation, calculated from formula (70), is plotted against 7 in figure 7 for various
mean photon numbers N, of the two modes and two values of the asymmetry
parameter d. The strengths of the correlation depends crucially on the value of the
asymmetry parameter d. The highest values of the correlation are obtained for
d=1/2. This means that the minimum of the phase difference variance, in view of
equation (69), is obtained for d=1/2. The phase difference variance is shown in
figure 8.

The phase correlation function defined by equation (70) is an essentially two-
mode characteristic of the field propagating in a Kerr medium that can be calculated
using the Pegg—Barnett phase formalism. The phases of the two modes become
correlated in the course of propagation.

Except for the phases themselves and their variances, the sine and cosine
functions of the individual phases and of the phase difference can be calculated with
the Pegg—Barnett formalism. These phase characteristics of the field can be
compared with the corresponding results of the Susskind-Glogower formalism. The
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Figure 8. Evolution of the phase-difference variance {[4(¢, —@_)]?); the parameters
describing curves (a)—(d) are the same as in figure 7.

sine and cosine functions of the individual mode phases and their variances can be
calculated and compared with the Susskind-Glogower results using formulae
(50)—(54). This gives, for example,

Y(@lexp (imd (1)) = 20 Y@)(nd><{n+ml) Y (1))

exp {m[m +%(2n+ +m—1+4dn_):|}
[(ny + 1)y +2)...(n+m)]'?

=NT'/2,,Z_0,,2 2 b2 , (71)

and according to (51) and (52)

i ° @ L +1(n, +2d
Wleos § =N § § gz LRI 2

WOind W@y=NY 3§ 7z SrL0e LT LA

ne=0n-=0 (n, +1)1/2 ’ (73)
and from (53) and (54)
<~//(r)|cos2¢3+|¢(r>>} 11y & 8, cos2p, +10n, +1+4dn.)]
W@lsin? @,y 252V 2y 2 e T G w2
(74)

The results for the phase operator ¢_ can be obtained from (71)—(74) by
interchanging the indexes ‘4’ and ‘ —’. For d=0, the summation over n_ gives unity
and formulae (71)-(74) go over into corresponding formulae for the one-mode
anharmonic oscillator model [35, 36]. It is clear from (71)—(74) that the interaction
with the other mode changes the expectation values of the sine and cosine functions
of the phase ¢, . However, there is no big difference in behaviour of the quantities
given by (71)—(74) and their counterparts for the one-mode case, which we have

already discussed in detail [35], and we refer rather to those results instead of
discussing (71)—(74).
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Here, we will concentrate on the essentially two-mode phase characteristics of
light, such as the sine and cosine functions of the phase difference. Using equations
(55) and (39), we arrive at

Y(@lexp [im(, — P (1)) =(N /N )" exp [itm*(2d —1)]

X z B2 [(ny —m+1)(ny —m+2)...(n, —n, 17

ny=m

xexp {im[p, —1(2d—Dn,]} 3. b2 exp { —imlg_ —(2d—1)n_]}

nZo [+ D(m_+2)...(n_+m)]¥ (75)

which leads to

cos (¢, 2 S N A
<x/x<r)1{sin(($+ i_)}llﬁ( »= (N) W _Z=ob3+b3¢(;/_+1)

cos
X{. }[%—<P-—T(2d~1)(n+—n-—1)], (76)
sin

COSZ($+—$_) {N. & 00 ( 1)n+ 1/2
<‘“”'{sin2(q§+_¢3_)}"”( O S LS "-[(n +)n +2)]

% cos {2(@ 4 —@_)—21(2d—1)(n, —n_—2)}. (77)

An immediate result, seen clearly from formulae (75)~(77), is that the evolution of
the sine and cosine functions of the phase difference depends strongly on the value of
the asymmetry parameter d. For d=1/2, 2d—1=0, and formulae (75)~(77) do not
depend on 7, which means that the expectation value as well as the variance of the
cosine (or sine) of the phase difference remain unchanged during the evolution. For
d+#1/2, the cosine and the sine functions of the phase difference do change during the
propagation, and examples of such evolution are shown in figures 9 and 10.

In figure 9, the variance of the phase difference cosine is plotted against 7 for
various values of the mean photon numbers N, and N_ and d values of 1/2 and 1.

N 0.60

T 0.55 -

LY (a)(b)
. 0.50 +--
o

B 0.45 (c)
o

S 0.40] (a)
| S——

v  0.35 +——rr ———

00 20 40 6.0

Figure 9. Evolution of the variance of the phase difference cosine function
{[4 cos (¢, — P .)]?D; parameters of the curves (a)~«{d) are the same as in figure 7. The
0-5-level corresponds to the uniformly distributed phase difference; it is also obtained
for N_=0.
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Figure 10. Same as figure 9, but for N, =4, N_=16 and d=1.

There is no 7-dependence for d=1/2, and the noise level lowers as the numbers of
photons N, increase. For d=1, the cosine variance increases initially, becomes close
to the value 0-5, and after the period goes down to its initial value. The value 0-5 of the
variance corresponds to the uniformly distributed phase difference. This means the
randomization of the phase difference during propagation.

This effect is even more pronounced for N, > 1, as seen from figure 10, where for
most of the period the variance i1s 0-5. The results obtained here agree with earlier
results for the degree of polarization of light propagating in a Kerr medium [24, 25],
and have clear interpretation. Only for d=1/2, light remains completely polarized, if
it were initially. .

Classically, uniformly distributed phase difference means unpolarized light, and
this result is clearly seen also from our quantum mechanical calculations. However,
it is interesting to compare the variances for the cosine function of the phase
difference (figure 9) and for the phase difference itself (figure 8). Although the
reduction of the phase difference variance for d=1/2 is quite evident, it still evolves
in 7, whereas the cosine variance does not depend on 7. The cosine function of the
phase difference rather than the phase difference itself defines the degree of
polarization of light propagating in the medium. The Pegg-Barnett phase formalism
makes it possible to distinguish between the two phase characteristics.

Using formulae (58), (76) and (77), one can easily compare the results obtained
within the Pegg—Barnett formalism and the results of the Susskind—Glogower
formalism. In our case of light propagating in a Kerr medium, the Susskind—
Glogower results for variance of the phase difference cosine are shifted down with
respect to the Pegg—Barnett results by (e ¥+ + ¢~ V). This shift is essential for small
values of N, and N _ only. For the numbers of photons in figure 10, the two curves
are already indistinguishable.

Of course, for N, — 0 the classical behaviour of light propagating through a
Kerr medium is obtained.

Conclusions

In this paper we have considered phase properties of elliptically polarized light
propagating in a nonlinear Kerr medium using the new Hermitian phase formalism
introduced recently by Pegg and Barnett [26-28]. To describe elliptically polarized



Elliptically polarized light 1557

light, the two-mode description of the field is needed. Using such a description, we
have calculated the joint distribution P(8 ., 6_) for the phases 8, and 6_ of the two
modes. Integrating this function over one of the variables, the marginal probability
distributions P(8, ) and P(6_) are obtained. We have discussed the evolution of these
distribution functions of light propagating in a Kerr medium. We have shown that
the maximum of the distribution function is shifted and the distribution broadened
in the course of the propagation of light in the medium.

Knowledge of these distribution functions enables the expectation values and
variances of the phase operators to be calculated classically. We have performed such
calculations, obtaining results for the individual mode phase variances as well as for
the phase difference variance. We have shown that the phase of one mode is
randomized due to its own nonlinear interaction with the medium as well as due to
the coupling to the other mode. The corresponding analytical formulae have been
obtained and illustrated graphically.

Special attention has been paid to the essentially two-mode phase characteristics
of the field. The correlation between the phases of the two modes has been
calculated, and we have shown that such a correlation builds up during propagation.
The degree of correlation depends strongly on the asymmetry parameter d of the
medium; the strongest correlation arises for d=1/2. This correlation significantly
lowers the phase difference variance.

The results for the sine and cosine functions of the phase difference and their
variances have been obtained and compared with the results of the Susskind-
Glogower formalism. We have shown that the expectation values and variances of
the sine cosine functions of the phase differences are not affected by the propagation
process when d=1/2. In this case, the degree of polarization of the field is also not
affected. Otherwise, for d#1/2, the variance of the phase difference cosine rapidly
increases and becomes close to 1/2—the value for the randomly distributed phase
difference. This means randomization of the phase difference, which corresponds to
the degradation of the degree of polarization of the field. For d#1/2 and N, » 1, the
light rapidly becomes unpolarized. The phase properties of elliptically polarized
light propagating through a Kerr medium considered in this paper have confirmed
earlier results [24, 25] predicting the degradation of the degree of polarization of
light. This effect is quantum mechanical in nature and cannot be obtained if the field
is treated classically.

The joint phase probability distribution discussed in this paper splits into
separate peaks if the state of the field becomes a discrete superposition of coherent
states [37], and it is a very spectacular way of presenting such superpositions.
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