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Phase properties of the field in a coherent state interacting with a two-level atom in a lossless cavity (Jaynes—Cummings model)
are studied using the new phase formalism of Pegg and Barnett. The phase density distribution, the expectation values and the
variances of the hermitian phase operator are calculated. On a polar diagram, the initial phase distribution is shown to split into
two counterrotating satellite distributions. When the two satellite distributions overlap, revivals of the atomic inversion occur.
Phase properties of the field in a model with an intensity depending coupling, for which the time behavior is exactly periodic, are

also discussed.

1. Introduction

The Jaynes—Cummings model [1-3] of quantum
optical resonance has been the subject of consider-
able attention in recent years. The model describes
an isolated two-level atom interacting with a single-
mode quantized electromagnetic field in a lossless
cavity. This model has been studied extensively be-
cause of the relatively realistic way that it presents
the actual dipole coupling of an atom to an electro-
magnetic field. Within the rotating wave approxi-
mation this model is exactly soluble.

One of the most remarkable effects predicted the-
oretically and then observed experimentally in the
JCM are the collapses and revivals of the atomic in-
version. Eberly et al. [4], using a combination of nu-
merical and approximate analytical techniques, have
shown that if the atom is initially in its ground state
and the field is fully coherent, then the atomic in-
version undergoes a cosine oscillation which decays
rapidly at short times, but periodically regenerates to
large amplitudes on a longer time scale.

The central role in studying the collapse and re-
vival phenomenon is played by the infinite sum
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R0y ==t exp(=m) ¥ Tcosl@(mel, (1)
with

Q(n)=2gﬁ,

where 77 is the mean photon number, g is the atom—
field coupling constant. The collapses and revivals of
{R*(t))> have a simple interpretation [4]. At =0
the system is prepared in a definite state and there-
fore all terms in (1) are then correlated. As the time
goes on, they start to oscillate with different fre-
quencies and become decorrelated. A revival of the
collapsed {R*(t) > occurs when the phases of oscil-
lation of neighboring terms in (1) differ by the fac-
tor 2z for noc /1. That is, the internal Tk between re-
vivals can be found from the relation

[Q(A+1)—-Q2(A) Ty =2x, (2)
or
Tr=2n(A)"%/g (A>1). 3)

This qualitative result is in agreement with approx-
imate analytical calculations [4]. Here, we discuss
only the exact resonance since the features described
by Eberly et al. [4] are seen most clearly for this case,
and the mathematical expressions simplify consid-
erably.
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The collapse and revival phenomenon can be stud-
ied from another point of view. Recently, Eiselt and
Risken, using the Q-function, have shown that the
collapses and revivals can be understood in terms of
interferences in phase space [5]. Phoenix and Knight
have mentioned the splitting of the phase probability
distribution into two counterrotating satellite distri-
butions in the model consisting of a two degenerate
atomic levels coupled through a virtual level by a
Raman-type transition [6]. The similarities between
P(6) and Q-function were marked in connection with
the ideal squeezed states [ 7] and the problem of dis-
crete superpositions of coherent states generated by
the anharmonic oscillator [8].

In this paper we examine the phase properties of
the field in the Jaynes—Cummings model, using the
new phase formalism introduced by Pegg and Bar-
nett [9~-11]. We show that the time behavior of the
phase density distribution presented on a polar dia-
gram resembles a lot that of the Q-function in phase
space. Namely, the interaction forces each phase state
to split into two phase states rotating in opposite di-
rections. During the period when the counterrotat-
ing distributions are well separated, the atomic in-
version shows no oscillations. When the two satellite
distributions overlap again, the revival of the atomic
inversion occurs. Naturally, the variance of the phase
carries some information about the collapses and re-
vivals. However, in this case care must be taken be-
cause a particular choice of the reference phase may
influence the calculated phase properties of the state
[10].

Finally, we shortly discuss the phase properties of
the Jaynes—Cummings model with intensity depen-
dent coupling [12]. This model is of interest be-
cause it gives rise to commensurable Rabi frequen-
cies. The dynamical behavior of it is exactly periodic
and can be compared with the standard JCM.

2. The hermitian phase operator

According to Dirac, each quantity that can be
measured for a physical system can be represented
by a linear hermitean operator [13]. The algebra
these operators obey is based on the commutation
relations that mark the departure of quantum me-
chanics from classical mechanics. However, diffi-
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culties have been found with proper description of
phase variables (see ref. [14] for a recent review).
Recently, Pegg and Barnett have suggested a new ap-
proach using the states of well-defined phase as a
starting point [9-11]. To construct a phase operator
that is hermitean they restrict the state space to a
(s+ 1 )-dimensional space ¥ spanned by the first
(s+1) number states. The value of s can be made
arbitrary large. Expectation values are first calcu-
lated in ¥ before s is allowed to tend to infinity. The
state space W is also spanned by (s+ 1) orthogonal
phase states,

10,5 = (s+1)=172 5 exp(inf,,)|n) , (4)
n=0

with

0,=60,+2mm/(s+1), m=0,1,2,..,§. (5)

These states are eigenstates of the hermitian phase
operator

S
(ﬁﬂE 200m|0m><0ml (6)

It can be seen from eq. (5) that the eigenvalues of
&, are restricted to lie within a phase window be-
tween 6, and (6y+2n). The value of reference phase
0, is arbitrary. Its choice determines the particular
range of eigenvalues of &, and will influence the re-
sults of the calculated phase properties of the states.
This emphasizes the need of caution in interpreting
the results obtained by employing the phase operator
with a particular choice of 6.

Unlike the earlier approach of Susskind and Glo-
gower [14], the Pegg and Barnett formalism allows
to discuss a phase distribution function, an expec-
tation value of phase operator and its variance. For
a general pure state of field mode

= Zocnm, (7)

the phase probability distribution is
2

[ <6 1f>1?=(s+1) 7|} caexp(—inb,)| ,  (8)

with the expectation value and the variance

(B> =Y 0| Onlf>1?, 9)
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AP =Y (0, —<Ds>)? (0, I/> 1. (10)

These formulae will be used below to describe phase
properties of the field in the JCM.

3. Phase properties of the field mode in the JCM

We consider a system of one two-level atom and
one mode of the electromagnetic field. These two are
coupled by the dipole interaction within the rotating
wave approximation, and the system is described by
the hamiltonian

H=tw(a'a+R?*)+hg(Rt'a+R-a"), (11)

where at, a are the Bose creation and annihilation
operators for the photons at frequency w. The two-
level atom is described by the Pauli raising and low-
ering operators R*, R~ and the inversion operator
R?, and gis the coupling constant. For simplicity, we
take the exact resonant case only: W,om = Wgelg = W.
This model has been realized in the laboratory with
a Rydberg atom contained in a high-Q cavity [16].
To study these properties of the field, we need to
know the state evolution of the system. Later on, we
will neglect all free evolution terms, as they only
change the field phase in a trivial way. For an atom
initially in its ground state and a field initially in a
coherent state ), where a=(7)!"? exp(if), the
wavefunction of the total system is found to be

()= T byexp(ing)
X [cos(gy/nt)|n;g) —isin(gy/nt) n—1;e>].
(12)

Here, we have denoted by |e), |g) the excited and
ground states of the atom. The coefficient b, is given
by

b,=exp(—r/2)(A"/n)1/2. (13)

At t=0 the cavity field mode is in a coherent state,
which is a particular case of the partial physical phase
state [ 11]. Therefore, following Pegg and Barnett we
chose the reference phase 6, appearing in eq. (5) as

Op=pf—ns/(s+1), (14)

and introduce a new phase index
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p=m—s/(s+1), (15)
which ranges in integer steps from —s/2 to s/2. Us-
ing eqgs. (5), (8), and (12-14) we obtain the fol-
lowing expression for the phase probability
distribution,

1
|<9mlvl(l)>2=m

+ 2 Y. bpbicos[ (n—k)p2n/(s+1)]
k

s+1.5
X cos[ (/n—/k)gt] . (16)

As s tends to infinity the summation in eq. (16) may
be transformed into an integral after replacing u2n/
(s+1) by 6 and 2n/(s+1) by db. This leads to a
continuous phase probability distribution

P, 1)= 2i<1+2 S b

4 n>k

X cos[ (n—k)] cos[(f——ﬁ)gt]), (17)

which is normalized so that

jp(e,z) do=1. (18)

-

From egs. (9), (17), replacing the summation in (9)
by an appropriate integral and taking into account
that

0,=0+p (19)

in the limit as s tends to infinity, one finds the av-
erage value of the phase,

Cy(t)1Bylo()>=4. (20)

Thus, the interaction of the field and the atom does
not give rise to changes of the average phase value.
This can be seen immediately from eq. (17). Since
at any time ¢, the phase probability distribution is an
even function with respect to 6, the integral from — 7z
to n leads to a vanishing average value of 6, and con-
sequently the average value of phase is always equal
to the initial quantity 8 (eqs. (9), (19)). We should
note that if a more general situation is taken under
consideration, for example, when the resonance is
non-exact or when the atom is injected into the field



Volume 79, number 6

in a coherent superposition of excited and ground
states the time variation of (&> will occur.

Now, let us continue to examine the properties of
the phase probability distribution. Despite the ap-
parent simplicity of the formula (17), it is difficult
to predict the shape of P(6, ). But if we rewrite eq.
(17) into the form

P@6,t)y=4[P.(6,)+P_(6,1)], (21)

where

P.(6,0)= —217r(1+2 S by

n>k

xcos[(n—k)ewﬁ—ﬁc)gz]), (22)

from which it can be seen that as the time goes on,
the phase probability distribution P(8, ¢) splits into
two separate distributions rotating in opposite di-
rections. When we depict them in a polar diagram
with @ as the polar angle and P the radius distance
they have the same shape and are located quite sym-
metrically about the line §=0 (see fig. 1). After a
certain interval of time the two counterrotating dis-
tributions *“collide”. They completely overlap when
the mean value (&, >, (P, ) _) averaged according
to the probability distribution P, (6, t) (P_(6, t))
increases by n (—m). At that time the components
of the field oscillate nearly in-phase with one an-
other, and the intuition allows us to think that the
atomic inversion will show the revival. The numer-
ical calculations corroborate this convincingly in fig.
1, 2. In fig. 1 the phase probability distribution P (8,
t) is plotted against 8 in a polar coordinate system
for various values of time. For comparison, time re-
cord of the atomic inversion ¢ R*(¢)) is plotted in
fig. 2. The time is scaled by the factor 2z (7A)!/%/g:
T=gt/{2n(7)'/?] so that the revivals take place
when T=1, 2, 3, ... . We have taken everywhere
fi=20.

At T=0 the phase distribution assumes a length-
ened leaf shape corresponding to the initial coherent
state of the field [8]. It gradually splits into two sep-
arate leaves as the evolution proceeds (fig. 1a). Dur-
ing this time the collapsed atomic inversion shows
no oscillations. At 7=1 when the two distribution
curves are completely mixed up, the amplitude of os-
cillation reaches its maximum (see fig. la and fig.
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2). After a while the distribution splits again and the
two peaks this time move to the right hand side of
the picture, where they collide again (fig. 1b), and
so forth. In the course of time the width of the dis-
tribution gets broader, and the splitting of the dis-
tribution into two leaves becomes difficult to be seen
(fig. I¢). This corresponds to the spreading of the
revivals in time (fig. 2).

The time behavior of the phase variance together
with the density distribution carries some informa-
tion about the collapses and revivals. To show this,
we first obtain the explicit expression for the vari-
ance using egs. (10), (17),

w() | ADF (1)) =4n?
+4 Y bybecos[ (/n—/k)gt]
n>k

X (=19 /(n-k)?, (23)

where we have transformed the summation in (10)
into an integral. ( A®3> is illustrated graphically in
fig. 3 for 7=20. The variance goes up initially and
reaches a maximum at the scaled time 7=1. It looks
as it would contradict the fact that the phase density
distribution on the polar diagram (fig. 1a) has only
one peak then. Nevertheless, as have been pointed
out by Pegg and Barnett {10], care must be taken in
interpreting the results obtained with a particular
choice of §,. Here, 8, has been chosen as to minimize
the variance of phase in the initial coherent state of
the field. This does not hold true at 7=1. At this time
the density distribution P(#, t) plotted against 0 in
a cartesian coordinate system splits into two sym-
metrical peaks located at —z and = (fig. 4). If we
move the phase window by x, the variance is min-
imized again. Thus, with such a particular choice of
reference phase 6, we may conclude that both the
maxima and the minima of the phase variance cor-
respond to the revivals of the atomic inversion. The
deeper the extrema are, the more distinctly the cor-
responding revivals can be seen. For longer times
(AD%> shows small oscillations around the value
n?/3, the phase variance of a field state with ran-
domly distributed phase. This reflects the existence
of a quasi-irreversibility inherent in the coherent-state
JCM [4].

We have shown the relations between the atomic
inversion collapses and revivals and the phase prop-
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Fig. 1. Phase probability distribution P(6, ¢) plotted against 6 in
~0.4 L L 1 L ! ! the polar coordinate system for various values of time. The scaled

time T=gt/[2n(#)'/2]. The mean photon number 7=20.
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Fig. 2. Time record of the atomic inversion of (R?(¢) ) with 7=20. The scaled time T'=gt/ [2r(7)/?].
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Fig. 3. The variance of the phase operator as a function of the scaled time T'=1/[2n(#) 1721, The mean photon number 7=20.
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Fig. 4. Phase probability distribution P(#6, t) plotted against 6 in
the rectangular coordinate system for the values of the scaled time
T=0 and T=1. The mean photon number 7i==20.

erties of the field based mainly on the numerical cal-
culations. A rigorous analysis is difficult because of
the square root appearing in the summation (17).
However, there exist some other models close in spirit
to the original JCM, for which the dynamical be-
havior is exactly periodic. One among them is the
JCM with an intensity dependent coupling. This
model was introduced by Buck and Sukumar {12]
with the hamiltonian

H¥=tw(a’a+R?)+hg(RTs+R~s), (24)

where s=a(a'a)'/?, sT(ata)!/%a". It is interesting to

compare the two models from the point of view of
phase properties. Repeating the procedure used above
we arrived at the following results for the phase den-
sity distribution,

PBS(0,1)=4[P55(0,1)+PB5(6,1)], (25)

with

PB(6, )= —1—<1+ 23 bybe cos[(n—k)(Gigt)]).
2n n>k
(26)

From eqgs. (25), (26) it can be seen that, different
from the standard JCM, the phase density distri-
bution P®3(6, t) is exactly periodic with period 27/
g. The two counterrotating distributions P%>(6, ¢) are
nothing but the phase density distributions for co-
herent field with phase 6 replaced by (0Fgt) re-
spectively. They completely overlap after every sub-
sequent time interval of n/g. This is just the time
when the revivals of the atomic inversion in this
model occur [12]. The variance of the phase,

(AD3SBS=1724 4 Y b,b,cos[ (n—k)gt]
n>k

X (=)0 (n—k)?, (27)

naturally also oscillates with the same period as the
phase density distribution. The exact periodicity of
the phase density distribution and the phase vari-
ance in the JCM with the intensity dependent cou-
pling is not surprising because, in this model, the re-
vivals of the atomic inversion restore exactly its
initial value [12].
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4, Conclusion

Using the new phase formalism of Pegg and Bar-
nett, we have shown how the collapse and revival
phenomenon is reflected in the phase properties of
the field. When the components of the field oscillate
in-phase with one another the revivals occur. When
the components of the field oscillate with strongly
different phases the atomic inversion goes over into
the collapse regime. The phase distribution is a one
more example revealing the quantum nature of the
field—-atom interaction. We have also examined the
modified JCM with an intensity dependent cou-
pling. For this model the period between the over-
lappings of the counterrotating satellite distributions
has been obtained analytically. The average value of
phase shows no changes in time in both the models.
But, we have found that this property disappears in
more general cases, for example, when we take into
account the field—atom frequency detuning. This will
be reported elsewhere.
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