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A comparison is made between squeezing obtained from two versions of the anharmonic oscillator model. The periodic revivals
of squeezing in the long-time scale are shown to exist in both cases and the differences in this scale are shown explicitly. It isshown
that in the short-time scale, for large numbers of photons, both versions of the model lead to the same results. The approximate
formula describing the normally ordered variances in this case is derived and illustrated graphically. Some recent misinterpreta-

tions are clarified.

1. Introduction

The anharmonic oscillator model is probably the
simplest model to study nonlinear interactions of
light in a nonlinear medium. This strictly solvable
model can give some insight into the nonlinear dy-
namics. It has been shown [1], for example, that a
high degree of squeezing can be obtained in such a
model. A possible realization of the model is strong
light propagating through a nonlinear Kerr medium.
Such light can squeeze itself during the propagation
and squeezing obtained in this way was referred to
as self-squeezing [2]. In recent years, a number of
papers appeared [3-9] in which many aspects of
squeezing obtainable from the anharmonic oscillator
model have been discussed.

There are basically two versions of the model that
are used in discussions of squeezing: (i) with the in-
teraction Hamiltonian H;=}%x(a* )2a? in which the
annihilation and creation operators are taken in the
normal order, and (ii) with the interaction Hamil-
tonian Hy=4#x(a*a)? in which the nonlinear term
is proportional to the square of the linear oscillator
Hamiltonian. The two interaction Hamiltonians dif-
fer by the term i%xa*a which can be incorporated
into the free part of the Hamiltonian by changing ap-
propriately the frequency of the oscillator. In squeez-
ing, which is a phase-sensitive phenomenon, how-

ever, this extra phase shift may have some
significance, especially in the homodyne detection
when the local oscillator frequency is just the free os-
cillation frequency.

Recently, Buzek [10], using version (ii) of the
anharmonic oscillator, discussed periodic revivals of
squeezing and obtained what he called the “abso-
lute” minimum of the variance of the field. He also
suggested some basic discrepancies between his re-
sults and my earlier results [ 1] obtained for version
(i) of the anharmonic oscillator. The aim of this Let-
ter is to make an explicit comparison of the results
obtained for squeezing in the two versions of the an-
harmonic oscillator and to clarify certain points.

2. The model

The two versions of the anharmonic oscillator
model that are going to be compared in this paper
are defined by the Hamiltonians

(i) H=hwa*a+itk(a*)%a?, (1)
(i) H' =hwa*a+ihx(a*a)?, 2)

where k is the nonlinearity parameter, which real and
assumed the same in both cases.
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The Heisenberg equations of motion for the an-
nihilation operators are then

(i) d=—~fi;[a,H]=_i(w+Ka+a)a, (3)

(i1) d=—%[a,H]=—i(a)+%K+xa+a)a. (4)

Since a *a is a constant of motion in both cases the
solutions are the exponentials

(i) a(t)=exp{~it[w+ka™(0)a(0)]}a(0),
(5)

(i) a(t)=exp{—itlw+ix +xa*(0)a(0)]}a(0).
(6)

Egs. (5) and (6) are the exact operator solutions de-
scribing the dynamics of the two versions of the an-
harmonic oscillator. It is seen that the only differ-
ence is the extra phase shift ixr which appeared in
(6).

Since we are interested in squeezing, we define the
Hermitian quadrature operator

Q,=a(t) e =" 4a™ (1) e @9, (7)

which for p=0 corresponds to the in-phase quad-
rature component of the field and for ¢=n/2 to the
out-of-phase component.

The variance of such an operator is given by

Var[Q,)= (25> =< Q>
=2 Re{<a?(1)y eZ@=9_ (qg(1))2 e}

+2{<a*a)—<a*()>Ca(t)}+1. (8)

For the vacuum state as well as coherent states this
variance is equal to unity. If it becomes smaller than
unity the state of the field for which this occurs is
referred to as squeezed state, and perfect squeezing
is obtained if Var[Q,] =0. It is convenient to use the
normally ordered variance

V(1) = C:02(1):> = {Qy(1) >?
2Re{¢a?(1)y e~ —a(1))? X))
+2{<a*()a(t)>—<a*(t)>La(t))}. (9

Negative values of this variance mean squeezing and
its value equal to — 1 means perfect squeezing.
Assuming that the initial state of the field is a co-
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herent state |a)> with the mean number of photons
N=|a|? and using egs. (5) and (6), one can easily
calculate the normally ordered variances (9) for both
versions of the nonlinear interactions. The results are
as follows:

(i) V,(tr)=2N{exp[N(cos2t—1)]
X cos[2(p— o) + 7+ Nsin 27]
—exp[2N(cost—1)]
X cos{2(¢p—py) +2N sin 1]
+1—exp[2N(cost—1)1]}, (10)
(ii) Viy(t)=2N{exp[N(cos21—-1)]
X cos[2(p—@y) +27+ N sin 27]
—exp[2N(cos1—1)]
X cos[2(p—gy)+T+2N sin 1]
+1—exp[2N(cost—1)]}, (11)

where we have introduced the notation t=x¢ and
a= \/]V ¢'?° with @, being the initial phase of the field.

So, when putting ¢ —@,=0 in (10) and (11), one
obtains the normally ordered variance for the in-
phase quadrature component of the field, or
@—@po=m/2 gives the corresponding variance for the
out-of-phase component. Eq. (10) reproduces my
earlier results [1], while eq. (11) reproduces the
corresponding formulas ((14a) and (14b)) of Buzek
[10], although in a slightly different and more trans-
parent form.

3. Comparison of the results

Even a superficial look at formulas (10) and (11)
shows that they are quite similar. The only differ-
ence is the extra phase shift by 7, as one would expect
according to the solutions (5) and (6). In both cases
the variances are periodic in the long-time scale

V,(1)=V,(1+kx2m),
Vi(t)=V,(t+kx2m), (12)

for k=1, 2, ....

Hence, in both cases there are periodic revivals of
squeezing in the long-time scale with exactly the same
period. The statement made by Buzek [10] that in
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case (i) the variance “tends to oscillate irregularly
and never becomes squeezed again” is completely
unjustified. Since the extra phase shift 7 is the time-
dependent shift, there is an essential difference in the
shape of the variances for both cases within the pe-
riod. This is shown in figs. 1 and 2, where the nor-
mally ordered variances for the in-phase and the out-
of-phase quadrature components are plotted against
1 for the two versions of the anharmonic oscillator.,
It is seen from fig. 1 that in the long-time scale and
for a small mean photon number only the in-phase
component can be squeezed in case (i). Fig. 2 re-
produces the corresponding figure obtained by BuZek
[10] for case (ii) and shows that squeezing can go
from the in-phase to the out-of-phase component of
the field during the evolution.

If the anharmonic oscillator model is to be used to
describe the propagation of light in a nonlinear Kerr
medium, the estimates based on the realistic values
of the nonlinear susceptibilities give, assuming the
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Fig. 1. The normally ordered variances V,(t) (eq. (10)) plotted
against 7, for N=0.25: solid line: the in-phase component; dashed
line: the out-of-phase component.
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Fig. 2. The same as in fig. 1, but for variances Vo(t) (eq. (11)).
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length of the medium to be of the order of meters,
for 7 values of the order of 1 X 106 [2]. So, the long-
time scale is far beyond the limits that can be reached
in any real system and has a rather academic mean-
ing. In real systems, however, one can still expect a
high degree of squeezing when the mean number of
photons N is sufficiently large [1,2]. This brings us
to the short-time scale. In this case, when 7<<1 and
N>>1, the variable that properly describes the scale
on which essential changes in the variances take place
is [1]

xX=1N. (13)

Taking advantage of the inequalities T<< 1 and N> 1,
one can expand the variances (10) and (11) into
power series and, after leaving only the leading terms
in x=1N, obtain the following simple expression for
the two variances:

Vo(x)=V,(x)
=—2[xsin 20—-x%(1—cos 26)], (14)

where 8=¢—g¢,+x.

Again, for p—p,=0 we have the variance for the
in-phase component of the field, while for p—g,=
n/2 we have it for the out-of-phase component. The
generalization of formula (14) to include higher or-
der nonlinearities is given elsewhere [11].

Strikingly, in the short-time scale (1< 1) and for
a large number of photons (N>> 1), there is no dif-
ference between the two versions of the anharmonic
oscillator model. One could expect this because, for
T 1, the extra phase shift which is just 7 is small.
However, one should be warned of dropping the free -
T’s in the cosine functions altogether. This would be
wrong. The reason why both versions give the same
result i the same difference in phase, equal to 7, be-
tween the two phase-sensitive cosine terms which are
subtracted in each variance. The variances (14) are
illustrated graphically in figs. 3 and 4. In fig. 3 the
in-phase and the out-of-phase component variances
are plotted against x. This figure is just the repro-
duction of my earlier results [1]. Both variances
show oscillatory behaviour with minima that exhibit
a considerable amount of squeezing. In fig. 4 the var-

iance for the in-phase component of the field is plot-
ted against the extended range of x to visualize how
the subsequent minima become deeper and nar-
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Fig. 3. The normally ordered variances (eq. (14)) for short times
and large numbers of photons plotted against x; solid line: the in-
phase component; dashed line: the out-of-phase component.

0 5 10
X

Fig. 4. Appearance of the subsequent minima in the variance (eq.
(14)) for the in-phase component.

rower. This means that squeezing in the subsequent
minima becomes closer to perfect squeezing, but this
large squeezing lasts over a very narrow range of x.

Buzek [10] has calculated what he called the “ab-
solute minimum” of the variance obtaining the value
—0.63. To find this minimum he calculated the first
derivative of the variance and equated it to zero to
derive the point of the minimum. However, he
somehow overlooked that there are more than one
zeros of the derivative and, consequently, more than
one minima of the variance.

So, the “absolute minimum” is not at all absolute.
It is simply the first minimum and there are other
minima which are deeper than the first one. In fact,
the limit of the variance for N—oo calculated by
Buizek (his formula (23)) after appropriate change
of variables agrees with my formula (14), which has

220

PHYSICS LETTERS A

6 November 1989

been obtained in a direct way from the exact for-
mulas (10) and (11).

I would like to emphasize that there is no differ-
ence in squeezing between the two versions of the
anharmonic oscillator for short times (7« 1) and
large numbers of photons (N> 1),

4. Conclusions

In this Letter the explicit formulas for the nor-
mally ordered variances for two versions of the an-
harmonic oscillator have been obtained. It has been
shown that in both versions the variances are peri-
odic with the same period, which means periodic re-
vivals of squeezing in the long-time scale. The dif-
ference in the long-time scale behaviour is illustrated
in figs. 1 and 2. Moreover, it has been shown that in
the short-time scale, for large numbers of photons,
both versions of the anharmonic oscillator give the
same formula for squeezing, which exhibits oscilla-
tory behaviour with the subsequent minima being
deeper and narrower. A comparison has been made
to the recent results by Buzek [10] and, as I believe,
certain misinterpretations have been clarified.

Acknowledgement

This work was supported by the Polish Research
Programme CPBP 01.06.

References

[1]R. Tanas, in; Coherence and quantum optics, Vol. 5, eds. L.
Mandel and E. Wolf (Plenum, New York, 1984) p. 645.
[2] R. Tana$ and S. Kielich, Opt. Commun. 45 (1983) 351;
Opt. Acta 31 (1984) 81.
[3]1 G.J. Milburn, Phys. Rev. A 33 (1986) 674.
[4] M. Kitagawa and Y. Yamamoto, Phys. Rev. A 34 (1986)
3974.
[5] C.C. Gerry, Phys. Rev. A 35 (1987) 2146.
[6] G.S. Agarwal, Opt. Commun. 62 (1987) 190.
[7] C.C. Gerry and S. Rodrigues, Phys. Rev. A 35 (1987) 4440.
[8] V. Pefinova and A. Luk3, J. Mod. Opt. 35 (1988) 1513.
[9] R. Tana$, Phys. Rev. A 38 (1988) 1091.
[10] V. BuZek, Phys. Lett. A 136 (1989) 188.
[11]R. Tanas$ and S. Kielich, to be published.



