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In this Comment certain questions of higher-order and intrinsic higher-order squeezing from an
anharmonic oscillator recently discussed by Gerry and Rodrigues [Phys. Rev. A 35, 4440 (1987)] are

clarified.

In their paper' Gerry and Rodrigues have shown that
an anharmonic oscillator model, previously shown’ to
give a high degree of second-order squeezing, leads also
to a high degree of higher-order squeezing. They calcu-
lated the degrees of higher-order squeezing up to the
sixth order, and finally state that “at the point of high
squeezing, (:(AE,)*) and (:(AE,)%:) are indeed nega-
tive indicating that the higher-order squeezing is not in-
trinsic.” This statement, however, is hardly correct and
is a misinterpretation of the otherwise correct numerical
results obtained by them. In my Comment I would like
to clarify this point.

The notion of higher-order squeezing of quantum elec-
tromagnetic fields has been introduced by Hong and
Mandel.’> Introducing the two slowly varying Hermitian
quadrature components
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where @ is an arbitrary phase and the operators £ *’ and
E (=) satisfy the commutation relation

[EH,E=C )

with C a positive number, one obtains the commutation
relation

[EI:EZ]ZZIC ’ (3)
and consequently the uncertainty relation
((AEDDCAE)Y) >, @)

where AE=FE —(E). The state is said to be squeezed if
one of the dispersions is less than its value in the coherent
state, i.e., if there exists some phase angle ¢ for which

((AE,?)<C . o))

The state is then squeezed to the second order in E,. The
normally ordered variance (:(AE|)%:) is, according to
(2), given by

((AE)%:)=((AE,?)—C, (6)
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and the state is squeezed to the second order in E, if
(:(AE|)%:) is negative.

This definition may be generalized for higher-order mo-
ments.> The state is squeezed to any even order N if

((AE V) < (N —1)mCh72 | )
This implies that
(:(AE))%:) <0,
(:(AE %) +6C((AE,)*:) <0,
GAE)S:) +15C ((AE %) +45C2((AE %) <0 .
(:(AE|)%:) +28C(:(AE|)%:) +210CX((AE %)
+420C*(:(AE|)*) <0,

(8)

for second-, fourth-, sixth-, and eighth-order squeezing,
respectively. This means that to obtain higher-order
squeezing it is not necessary to have all normally ordered
moments negative. The conditions (8) can be satisfied
even if the higher (normally ordered) moments are posi-
tive provided that the term (:(AE,)%:) predominates.
Squeezing is said to be intrinsically of Nth order® if

((AE)Y:) <0. )

That is, Nth-order squeezing does not necessarily imply
Nth-order intrinsic squeezing. As Hong and Mandel®
have shown, the situation differs from one nonlinear opti-
cal process to another.

A convenient parameter gy for measuring the degree
of Nth order squeezing is*

((AE VY —(N —1)neh 2

= (N —Dnch”2 ’ 1o
where gy is negative whenever there is Nth-order squeez-
ing; gy =—1 means the maximum of Nth-order squeez-
ing.

The anharmonic oscillator has been shown to produce
a high degree of second’- as well as higher'-order squeez-
ing. The model is described by the Hamiltonian
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H=noaa+1Kka™a?, 1y
where K is the anharmonicity parameter related with the
third-order susceptibility of the medium.* All non-
energy-conserving terms have been dropped in Eq. (11),
and only a single mode of the electromagnetic field is tak-
en into consideration.

According to (11), the Heisenberg equation of motion
for the annihilation operator @ reads
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Since @ "2 is a constant of motion, Eq. (12) has the simple
exponential solution

a(t)=exp{ —it[w+Ka '(0)a(0)]}a(0) . (13)

Omitting the dimensional constants one can identify the
field operators £ (*) and E ‘=) with @ and @ *, respective-
ly, and the constant C is then equal to unity. Assuming
that the initial state of the field is a coherent state |a), it
is easy to calculate the normally ordered moments
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r
where the commutation rules (2) were used and the aver-  states.’

age values were taken in the coherent state |a), giving,
for example,

(e=i1"93) —q exp|(e D|al?}. (15)

The shortened notation 7=K¢ and a(0)=a, a "(0)=a"
was used in (14) and (15). The average number of pho-
tons in the mode is (@ @)= | a |, and the complex am-
plitude is a= | a | e ~'%.

Expression (14) is the main result of this paper. It is
essential that an expression such as Eq. (14) in exact,
closed form can be obtained for the normally ordered
Nth-order moments. For even N, this expression is real.
Only even-order moments will be considered now in fur-
ther discussion. The triple summation in (14) is not easy
to perform, especially for small values of 7 and high
values of |a |2, which is the case in real physical situa-
tions. For 7<«< 1, however, the summations can be per-
formed by collecting separately the terms of the same or-
der in 7. The results, for 7=1X 1079, are illustrated in
Fig. 1, where the normally ordered moments
((AE,(r))V:) (N =2,4,6,8 and @=0) are plotted
against | a|27. One notes that for N =2 and 6 the nor-
mally ordered moments are negative, whereas for N =4
and 8 the moments are positive. This means that accord-
ing to the definitions of Hong and Mandel,® the anhar-
monic oscillator model leads to intrinsic squeezing of the
second and sixth order but not of the forth or eighth or-
der. So, intrinsic squeezing appears only for N /2 odd
and does not appear for N /2 even. Although our calcu-
lations have been performed up to N =8 only, one can
expect similar behavior for N >8. This is a situation
similar to that obtained for the two-photon coherent

The preceding results, however, are in contrast to the
statement of Gerry and Rodrigues,! who imply that
(: (AE )*:) and (:(AE,)®:) are negative. In fact,
(:(AE)*) has to be positive. This can be proved as well
from the numerical results of Gerry and Rodrigues.! For
| @ | 27=0.59 they obtain, for the gy parameters defined
by (10), the following values: ¢,=—0.6600,
q,=—0.884, and g4=—0.9667. Albeit, according to
their equation [Eq. (21), Ref. 1], one obtains

((AE ) =((AE D) +6(:(AE %) +3 .

Since (:(AE,)%:)=gq,, one gets 6g,+ 3= —0.96 negative,

(16)
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FIG. 1.
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meaning that (:(AE,)*:) must be positive in order to
have ((AE,)*) positive. Hence their statement that
(:(AE )% ) is negative appears to us as an obvious misin-
terpretation of the otherwise correct numerical results
obtained by them. They, in fact, have calculated directly
ordinary (nor normally ordered) moments. Obviously,
the normally ordered moments given by Eq. (14) are
easier to calculate. For |a| 2:=0.59, I obtain

((AE)%)=-0.66,
((AE*)=1.31,
({(AE;)%:)=—4.31,
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and
(«(AE))*:)=19.93,

giving ¢,=-—0.66, ¢,=—0.88, ¢gc=-—0.96, and
gz = —0.98. These results are in agreement with those of
Gerry and Rodrigues' and confirm their statement that
higher-order squeezing from an anharmonic oscillator in-
creases as N increases, i.e., gy becomes closer to — 1 with
increasing N.
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