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The resonance Raman scattering from a system of N three-level atoms that are driven by a
strong laser field with the phase and amplitude fluctuations is considered. The exact on-resonance
steady-state solution to the atomic density matrix is obtained. The collective properties of the
fluorescent spectrum for both the Rayleigh-type as well as the Raman-type processes are discussed.
The collective narrowing of the one-atom spectral lines is predicted.

1. Introduction

It is known"?) that the resonant Raman scattering of an intense laser field by
a three-level atomic system is quite different from the ordinary weak-field
Raman effect. For very intense laser fields, when both allowed atomic transi-
tions are saturated, there is no clear separation between Rayleigh-type and
Raman-type processes. This is because of the modifications of the atomic levels
due to the dynamic Stark effect, the most spectacular explanation of which can
be given in the “dressed atom” picture'). The finite bandwidth of the exciting
laser field due to phase and/or amplitude fluctuations can considerably affect
the results, as it has recently been shown for optical double resonance’). A
number of other effects related to the interaction of a three-level atom with
resonant laser fields and extensive literature on the subject can be found in ref.
4.

On the other hand, a lot of work has been done to explain the collective
properties of many two-level atoms interacting with a resonant laser field*™'°).
It would be interesting to know how the properties of an individual three-level
atom interacting with laser fields are modified when the number of atoms
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becomes large. Some recent publications deal with such collective effects in
double optical resonance'') and the resonant Raman scattering'>'®)

In this paper, we consider the effects of the driving field fluctuations on the
spectrum in the collective resonant Raman process. We use the quantum
mechanical master equation approach) and secular approximation®") to
eliminate the rapidly oscillating terms. The theory of multiplicative stochastic
processes ) is used to obtain the equation for the density matrix averaged over
the phase and/or amplitude fluctuations of the exciting field. We assume here
that the phase fluctuations are described by a Wiener-Levy process'®'")
whereas the amplitude fluctuations are described by a nonwhite Gaussion
process'®"®). It is shown that even for fluctuating laser fields an exact steady-
state solution of the master equation can be easily obtained if the laser field is
tuned to the resonance with the atomic transition. All collective steady-state
characteristics of the system can thus be derived with the use of this solution.
The equations describing the time evolution of the one-time atomic expectation
values averaged over the ensembles of the phase and amplitude fluctuations
can also be obtained from the master equation. To solve these equations we
have applied a decorrelation scheme that allows for closing the system of
equations, and to calculate the two-time correlation functions the quantum
regressian theorem is invoked. We have derived explicit analytical formulas for
the field correlation functions of the scattered light that explain the effects of
the laser field fluctuations. The collective properties of the scattered light are
discussed showing a possibility of collective narrowing of the one-atom spectral
widths.

2. Master equation and steady-state averages

We consider a system of N three-level atoms confined to a region small
compared to the wavelengths of all relevant radiation modes (the Dicke
model) interacting with a driving laser field of frequency w; and with the
vacuum of all other modes. A schematic diagram of atomic energy levels is
shown in fig. 1. The ground state |1) is coupled to the state |2) by the strong,
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Fig. 1. Schematic diagram of energy levels and possible transitions for the three-level atom
considered in this paper.
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resonant laser field, and there is a spontaneous transition from the level 12) to
|3) (Stokes line). The dipole transition between the levels |3) and 1) is
forbidden due to parity considerations, and we introduce a nonradiative
relaxation mechanism (which we do not specify) that makes the transition
|3) = |1) possible. The nonzero transition rate for the transition I3y —>[1) is
important in order to have a nontrivial steady-state solution for the density
matrix.

On treating the exciting laser field classically and making standard (Born and
Markov) approximations to describe the system-reservoir couplings, one ob-
tains a master equation for the reduced density operator p of the atomic system
alone in the following form'*) (% =1 units are used):

ap .d .0 .
a9t =1 2 [E*(t)],, + E(t)J,5, p] —i 2 [Vo: = Jis» ] — i[53, p]

~ (o1 Ji2p = JiypJ5 +hic) - Y23(J33J320 — J32pJ55 + hoc))
~ ¥u(ls1Jzp — Ji3pJ5 +hic), (1)

where (2, = w,; — @,,/2, 27,; and 2vy,; are the single-atom spontaneous emis-
sion rates for the transitions [2) —|1) and |2) —|3), respectively, and 2y,, is
the nonradiative transition rate for the transition [3) — |1); & = w,, — @, is the
detuning of the laser frequency w; from the atomic transition frequency w,,.
The collective atomic operators J;; are defined as

N
Jy= 1:21 )Gl Gj=1,2, 3)
and satisfy the commutation relations

[y Jiyl= Jij 0 = JiiByr .
In the master equation (1) the rotating wave approximation has been used and
the equation is written in the frame rotating with respect to the laser fre-
quency. :
We assume that the laser field is described by

E(t) = [Ey + AE(D)] e ™9, )

where E, and ¢, = ¢(0) are the nonstochastic parts of the field amplitude and
phase, respectively, while the time-dependent quantities AE(f) and ¢(f) are
stochastic variables describing the amplitude and phase fluctuations of the laser
field, respectively.
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As is usually done'’™"), we will model the phase fluctuations by the
Wiener-Levy process (phase diffusion model) and the amplitude fluctuations
by a nonwhite Gaussian noise. So, we have

0w, Q)

where () is a Gaussian white noise with zero mean value and the correlation
function

p(Ou(t') =2y,8(t— 1) 4)
and

AE(r)=0,

AE(DAE() = (AE)? e ™" (5)

where (AE)® is a measure of the amplitude fluctuations, and v, and v, describe
finite bandwidths due to phase and amplitude fluctuations, respectively. The
bar is used to denote the average value over an ensemble of phase or
amplitude fluctuations. A double bar will be used to denote averaging over
both phase and amplitude fluctuations. We treat here the phase and amplitude
fluctuations as independent stochastic processes.

To proceed further, we adopt the procedure used by Puri and Lawande®) in
the calculations of laser fluctuation effects in a system of two-level atoms. We
introduce the transformation

Wm(t) =g ime() e_(i/2)¢(‘)(-’22‘-711)p e/2e(OU2—11) (6)

into the master equation (1), and obtain the following equation for the
transformed quantity:

dw,_ (1)

dt
where

=[L,—i(m + L) ¢(t) —ie(t) L)W, (1) , (M

LoW,, = —ie[yy + J i, W, ] —i g [Ty = J11, W,,]
—i0[ T3, W,u] = Y1 (U1 J1a Wi = 20, W, Ty + W0y 115)
3 d3s Wiy = 2053 W, Doy + W, T30 T0)
s s Wy = 203 W, sy + W, 050013 (8)
LW, =3[0y, — i, W,],
LW, =[Jy + Iy, W,]
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and €, = 3dE,, €(t) = $dAE(t) with d = d,, being the transition dipole moment
between the states |1) and [2).

Taking into account the stochastic properties (eqs. (3) and (4)) of the phase
fluctuations and applying the theory of multiplicative stochastic processes'’)
one can obtain the master equation for the density matrix averaged over the
phase fluctuations, W, (¢), which has the form

dW,,()
dt

=[Ly— y.(m + Ll)z - ie(t)Lz]Wm(t) . 9)

Since the operator L, which is multiplied by the time-dependent coefficient
€(t) does not commute with all other operators in (9), it is not possible to use
the theory of multiplicative stochastic processes to obtain the master equation
for the density matrix averaged over the amplitude fluctuations in the same
fashion as for the phase fluctuations. We thus restrict our considerations to
strong laser fields only. To make these considerations more transparent we
introduce the Schwinger representation for the atomic (angular momentum)
operators®’):

Jy=cle =123, (10)

where the operators ¢, obey the boson commutation rules [c,, c;'] =§;.
After performing the canonical (dressing) transformation

¢, =0Q,cosv+ Q,sinv,

c,=—Q,;sinv+Q,cos v, (1
;= 05,

where
tg2v =2¢,/6 ,

one can split the Liouville operator appearing in eq. (9) into the slowly varying
part and the terms oscillating at frequencies 242 and 4(2, with £ denoting one
half of the Rabi frequency. We assume here that the Rabi frequency is
sufficiently large and satisfies the relation

0= %(52+45(2))1/2<N721;N723;N'Y31 ’ (12)

but 2 < w,,; and the transition |3) — |2) is not affected by the laser field. In this
case the secular approximation®'®) is justified and we retain only the slowly
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varying part of the Liouville operator. We then have (the prime is used to
distinguish the transformed density matrix)
dW,(1)

- [£, — 2€(?) sin v cos v LW (1) , (13)

where
LW o) = =y’ W (1) = (12 + my, )[D;, W, (0)]
—i4[Rs3, W, (O] = %[ D5, [Ds, W, (0)]]
~%[Ra1, [Riz, WOl = %Ry, [Roy, W]
— 3 8in°w [Ry3, [Ryy, W,,'(1)]] — Y53 €08> ¥ [Rys, [R5, WO
= ¥31 €08 ¥ [Ry;, [Rys, W, 0)]]
~%18in” v [Ray, [Rys, W, (011,

y V (14)
LW (1) =[D;, W, (1)].
In egs. (14) we used the notation
! =y(cos’ v —sin’ v),
Yo=Yy, sin’ v cos” v + %’f (cos® v —sin’® v)*,
¥, =Yy €08’ v + ,sin’ v cos® v, (15)

.4 s a2 2
Y=V SN v+ y sin” vcos v,

Dy;=Ry,— Ry,

and the operators R, = Q0 ; are new, dressed atomic operators that satisfy
the same commutation relations as the operators J; (the transformation (11) is

canonical).

It is easy to check that the operator ¥, commutes with %, and the theory of
multiplicative stochastic processes can now be used giving the following master
equation for the density matrix averaged over the amplitude fluctuations:

WD =12+ LI (16)

The Liouville operator %, has the same form as given in (14) while %, is given
by

LW,,(0) = [n(t) - (O)][ D5, [Ds, W, (0], (17)
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with
2

4 _
7(t) = ; sin’ v cos®> v e ™™, (18)

a
where € = }d*(AE)’ is a measure of the Rabi frequency fluctuations.

The master equation (16) can be used to calculate the expectation values of
the atomic observables averaged over the phase and amplitude fluctuations.
When the laser field is tuned to the resonance with the atomic transition
|1)—2) (6 =0), we have sin® v = cos’ v = { and the master equation (16) has
an exceptionally simple stationary solution

0 form#0, ]

v, = 19

W =147 S X S IR NN, R, (19)
R=0 Ny =0

where X = v,,/v,, and

(N+DX¥ 2= (N+2)X¥*" +1
(X -1)* '

A=

The states |R N,) are the eigenstates of the operators Ry, (the eigenvalues
N;), R=R;; + R,, (the eigenvalues R) and the operator N=R,, + R, + Ry,
with the eigenvalue N being the number of atoms.

The solution (19) allows to calculate all stationary expectation values of the
atomic observables. Some of the results that will be needed in our further
considerations are given in the appendix. It is interesting to notice, however,
that the solution (19) does not depend on the laser field fluctuations
parameters,

3. Time-dependent averages

The master equation (16) can be used to describe the time evolution of the
expectation values of the atomic observables. The parameter m in the transfor-
med density matrix W/(¢) has to be chosen appropriately to the character of
the operator the average of which is to be calculated. It is easy to show using .
the transformation (6) and the commutation rules for the atomic operators
that, for example,

Tr{(y, = J1)p(0)} = Tr{(Jy, = J; )W, (1)},
Tr{T,,p(0)} = Tr{J,, W,()} ,
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Tr{J;p(8)} = Tr{]23W1/2(t)} . (20)

So, knowing the averages calculated with the transformed density matrix one
can get the “true” averages by putting for m the appropriate value.
For an arbitrary operator Q, according to (16), we have

£40), = —vm(Q),, ~ (2 + y)([Q. D)),
—(¥% +1(0) = n(®){[Ds, [D5, QD).
“%{{[Q; RyuIR,,), + (Ry[Ryy, Q) )
—%{{[Q; RizIR: ), + (Ryp[Ryys Q1))
=Yy {sin” ¥ [{[Q, Ri3]Ry;) ,, + (Rys[Ryy, Q1)
+cos” v [{[Q, Ry3]Rs, ), + (Rys[Rsy, Q1) 1}
=v{cos’ v [{[Q, Ry IR 3), + (Ryy[Ry5, Q)]
+sin’ v [([Q, Ry,]R;3) ,, + (Ray[Rys, Q1) 1) (21)
where (Q), =Tr{ QV?’,;,(t)}. We shall use eq. (21) to find the evolution of

atomic observables. Further on, we assume the exact resonance case, 8 =0, in
. 2 2
which cos” ¥ =sin” » = 1. We then have

<R12> —[2i0 + ')’cm Tn s 4%+ 1(0) — () KRy,),,
— (73— ')’31)<R33R12>m ’ (22)
<R13> —[i(42, +~Q)+'ch + 2(')’1+'}'2)

+ 5723 + Y1+ ¥ +1(0) - n(t)]<R13>m
- %('}’23 - 7’31)[<{R33 =Ry, Rl3}>m - <R22R13>m] > (23)
S Rug) = ~[i(12 ~ ) + v’ + 1 + )

+ %')’23 + v+ %+ n(0) - n(t)]<st>m
"%(')’23 - 7’31)[<{R33 — R,,, R23}>m - <R11R23>m] > (24)

1o

<R22—R11>m [%m +2( + %) + 1R, Ryy) .,

— (723 _731)<R33(R22_R11)>m s (25)

[=5

t
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where

{A,B}=AB+ BA.

Eqgs. (22)-(25) are so far exact. They contain, however, terms with products of
operators, which make them unsolvable. Therefore, some approximations are
needed. To deal with the product terms we apply a decorrelation scheme
similar to that used by Compagno and Persico’). The only difference consists
in the fact that we decorrelate symmetrized products of operators (anticom-
mutators). This allows us to preserve one-atom terms unchanged and clearly
separate them from the collective terms. The decorrelated operators that do
not enter the equations as “proper” variables are replaced by their steady-state
averages calculated with the density matrix (19). For example, we assume

<{Rm Rk1}>m = 2<RiiRkl>m = 2<Rii>s : <Rkl> > (26)

where -
(A),=Tr{AW"} .

With such approximations egs. (22)-(25) have simple exponential solutions
with the one-atom and collective damping constants clearly separated. On
neglecting the collective part one immediately obtains the one-atom results. Of
course, for large numbers of atoms the collective part can dominate over the
one-atom part, and the latter has little importance. By using the density matrix
(19) one can show that'®) in-the case of large N the factorization (26) yields a
small error (with an order of N™''?) in the calculation of the steady-state
fluorescent spectrum. The explicit expressions for the collective terms can be
obtained with the use of the steady-state averages given in the appendix.

4. Two-time correlation functions

Since the operator %, in the master equation (16) commutes with the
operator %, this equation describes a Markov process despite the time-
dependent coefficient 7(f). Thus, the two-time averages may be derived from
the one-time averages by taking advantage of the quantum regression
theorem®"). The spectrum of light spontaneously emitted due to the transitions
l2)—|1) and [2)—3) is proportional to the Fourier transforms of the
following atomic correlation functions:

(Ju(D) 1) = }gg (L1t +1)7,,(0))

— e — 27N
(Lo3(Tay) s = }3}3 (L5t + 7)055())
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We have assumed here that {2 < w;,, so the Rayleigh-type and the Raman-type
processes can be clearly separated. In fact the correlation functions (27) reflect
this separation. The first one describes the Rayleigh-type scattering while the
second one describes the Raman-type scattering (the Stokes line). According
to the transformation (11), for the resonant case, we have

In= %[Rzz — R+ Ry, — Ry,
(28)

1
3= 7= [Ryn — Ry3],
V2

which relates the ‘“bare” atomic operators J,; and J,; to the ‘“dressed”
operators R;. Using the relations (28), the solutions of egs. (22)—(25) for
one-time averages, and applying the quantum regression theorem one obtains
the following expressions for the correlation functions (27):

<J21(T)le>ss = %‘(((Rzz - R11)2>s e o
+ <R12R21>s e AT 4 <R21R12>s CZim_FZI(T)} ’ (29)
<J23(T)J32>ss = %{<R13R31>s e-i(03+ﬂ)r—1“13(f)
+ <R23R32>s e-i(03—n)r—rz3(r)} ) (30)
where ‘
Io =2y, 4+ v+ s + (123 — 5 ) (N — <R>s) >
I,(7) = I (7)
= [%(')'c )t st 452/')’3 + (%3 = Y )(N — <R>s)]7
4¢”

+ — (1 - C_Ya‘r) , (31)
Y

L3(7) = Iy (7)

= [%('Yc T Yot vs) Yt 52/'Ya + %('}’23 — ¥51)(N — 2<R>s)]7'
2
+ 5 a-emy.

a

The exact expressions for the weighting factors of the particular exponents are
given in the appendix. The terms proportional to (y,; —7,,) in the width
functions (31) are the collective terms and neglecting them we obtain the
one-atom results that include, however, the effects of both the phase and
amplitude fluctuations of the exciting laser field. Since the collective parts of
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the widths do not anyhow depend on the laser field fluctuations (at least for the
resonant case and within the approximations used by us), the immediate result
of our calculations is that the laser fluctuations affect only the one-atom parts
of the widths. This is similar to the result obtained by Puri and Hassan'’) for a
system of two-level atoms. The correlation functions (29) and (30) have the
well-known structure with the Mollow triplet for the Rayleigh line and the
Autler-Townes splitting of the Stokes line. For the one-atom case, on neglect-
ing the laser field fluctuations, our results agree with that of Cohen-Tannoudji
and Reynaud') and Agarwal and Jha®). For many atoms, however, the
collective parts of the widths can become dominant. In fact, there are three
qualitatively different cases when the number of atoms is large. From eq. (A.1)
we have for N>1

N ifX>1,
ZN ifX=1,

(R),—~>3° (32)
Ty X<,

where X = v,,/v,5, and

Y3 ifX>1,
(723'"')’31)(N_<R>s)_> 0 %fX:l’ (33)

Ny — ) fX<1,

{0 ifX=1,
%(723—731)(N”2<R>s)_){%N|‘yz3_731| ifX#1 - (34)

So, for X>1, i.e. vy, > v,;, practically all the population is shared by the
atomic levels |1) and |2) and the collective narrowing of the one-atom
Rayleigh lines takes place. In the limiting case the 7,, contribution to the
one-atom width is completely canceled out by the collective contribution. In
this case the weighting factors of the Rayleigh-type lines are proportional to N*
and this part of the emitted radiation exhibits superradiant behaviour. The
Stokes lines have the weighting factors proportional to N and their widths have
broad (~N) collective components.

In the opposite case, X <1, i.e. y,, <¥,5, practically all the population is
concentrated on the level |3). The weighting factors of the Rayleigh-type lines
do not depend on N and only very weak radiation with a broad (~N) width is a
remnant of the strongly driven |1) — |2) transition. The Stokes lines, as before,
have the amplitudes and widths proportional to N.

In the particular case X =1, the three atomic levels are equally populated,
all the collective widths are zero, and all the weighting factors are proportional
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to N> Thus in this particular case also the Raman-type radiation exhibits
superradiant behaviour,

One thus can say that, for N> 1, X > 1, the three-level atom system behaves
like a two-level atom system when looking at the Rayleigh part of the emitted
radiation. The effects of the phase and amplitude fluctuations of the laser field
are exactly the same as for the two-level atom system®'’). The amplitude
fluctuations affect only the sidebands while all the lines are affected by the
phase fluctuations.

The Stokes lines are affected by both the phase and amplitude fluctuations of
the exciting laser field.

5. Conclusions

We have considered the problem of collective resonance Raman scattering of
an intense laser field from the point of view of the collective effects and the
influence of the laser field fluctuations. The phase fluctuations of the field were
modeled by the phase diffusion process while the amplitude fluctuations by a
nonwhite Gaussian process. The master equation for the density matrix
averaged over the phase and the amplitude fluctuations has been obtained in
the secular approximation. It has been shown that for the exact resonance the
master equation has a very simple solution. This solution has been used to
calculate all needed steady-state averages. A decorrelation scheme has been
used to obtain the solutions for the time-dependent averages, and the quantum
regression theorem to deal with the two-time correlation functions. The field
correlation functions have been calculated for the Rayleigh-type and the
Raman-type processes. It has been shown that the laser field fluctuations affect
only the one-atom parts of the spectral widths. The collective narrowing of the
spectral lines has also been predicted. The collective (superradiant) properties
of the emitted light have been discussed for various ranges of values of the
atomic parameters. It was shown that only for X =1 the Raman part of the
emitted light exhibits superradiant behaviour.

Corresponding formulas for the intensity correlation functions can be ob-
tained in a similar manner.

Appendix
In this appendix we give the explicit expressions for the steady-state averages

of the atomic operators that have been calculated with the use of the density
matrix (19). The normalization factor A appearing in the formulas is given by
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A=[(N+DX¥7? - (N+2) X" +1]/(X - 1),
where X = v,,/v,,, and the formulas are
(R), = AT'[N(N + 1)XV*? = 2(N + 2)NX"*?
+(N+1)(N+2)X" —2X]/(X - 1), (A1)
(R*), = A [N*(N + 1)X™** -~ NGN> + 6N - 1) X"
+(N+2)(3N* +3N-2)X""* — (N + 1) (N +2) X"

+4XE+2X]) /(X —-1)*, (A.2)
(Ry),={Ry)=13(R),, (A.3)
(Ry),=N—(R)s, (A.4)
(Rys— Ry, = (Rys— Ry )= N—3(R),, (A.5)
<R21R12>s = <R12R21>s = %((Rzz - R11)2>s

=t[(R*),+2(R).], (A.6)
(Ri3Ry3) = (RysRy),
= JI(N +1)R),— (R*)]. (A7)
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