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Résumé. — On considére la fluorescence de résonance collective d’un systéme d’atomes & deux niveaux
interagissant de maniére résonnante avec un champ laser fort présentant des fluctuations de phase et
d’amplitude. On discute en détail, dans le cas non résonnant, de l'effet des fluctuations du champ laser sur le
spectre et aussi sur le degré de cohérence du second ordre.

Abstract. — The collective resonance fluorescence from a system of two-level atoms resonantly driven by a
strong laser field with the phase and amplitude fluctuations is considered. The effect of the laser field
fluctuations on the spectrum as well as the degrees of the second-order coherence of the fluorescent field is

discussed in detail for the off-resonance case.

1. Introduction.

During the last years a large number of works has
been concentrated on the problems of collective
interactions of atoms with a laser field and with the
vacuum of radiation such as superfluorescence (see
[1] and Refs. therein), collective resonance fluores-
cence [2-8], collective double optical resonance [9],
collective Raman scattering [10-14], etc.

In the one-atom case the effects due to the
fluctuating driving fields have been discussed for
resonance fluorescence [12-19], double optical reso-
nance [29] and Raman scattering [20-23]. Puri and
Hassan [8] have studied the effects due to a fluctuat-
ing driving laser field in collective spectral and
statistical properties of resonance fluorescence. Con-
trarily to the paper [8] where only the exact reso-
nance has been considered, in this paper we discuss
the off-resonance case for the collective resonance
fluorescence in an intense fluctuating laser driving
field and investigate the spectral and statistical
properties due to the phase and amplitude fluctu-
ations of the driving field. ’

(*) Permanent address : Institute of Physics, A. Mic-
kiewicz university 60-780, Poznan, Poland.

2. The master equation.

We consider a system of N two-level atoms concen-
trated in a region small compared to the wavelength
of all the relevant radiation modes (Dicke model)
interacting with a mode of monochromatic driving
field of frequency w, and with the vacuum of other
modes (Fig. 1). In treating the external field classi-
cally and using the Markov and rotating wave
approximation when describing the coupling of the
system with the vacuum field, one can find a master
equation for the reduced density matrix p for the
atomic system alone in the form [6, 8, 26]

a .
_ép.t_z —ld[E*(t)JZI +E(t)']12’ p]

i
—55[-722—]1147] (1)
—YuWUnJipp —2Jupdy+pdn /i),

with 2 v, being the transition rate from the level
|2) to |1) due to the atomic interaction with the
reservoir ; 8 = w, — wy is the detuning of laser
frequency from the atomic resonance frequency
w,; ; d is the dipole matrix element ; E(¢) is the
driving laser field ; J,¢ (k, £ = 1, 2) are the collective
operators (angular momenta) describing the atomic
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Fig. 1. — Schematic diagram of the two-level atoms,
interacting with the laser driving field and with the vacuum
of radiation.

system and having in the Schwinger representation
[27, 7] the following form :

ka=cz Cf (k,e=1a2)’

where the operators C, and C{ obey the boson
commutation relations

[Cr. Ci 1= 8y

and can be treated as annihilation and creation
operators for atoms populating the level |k).

In the following, the laser field is assumed to have
the form

E(t) = (BEy+ E, (1)) e "%, 9 = 6 (0), (2)

where E; and ¢, are the nonstochastic parts of the
field amplitude and phase while E;(¢), ¢ (¢) are the
stochastic variables.

Following Puri et al. [6, 8] we discuss the case in
which the phase fluctuations are described by the
phase diffusion model [24] and the amplitude fluctu-
ations are described by the nonwhite Gaussian
process, i.e. the following relations are satisfied :

LO_w, @)

where u (¢) is Gaussian white noise with

/J“Zt5=0, /th;f"(t,)=27c8(t_t’)’ (4)

and
7—581 =0, TT—'(H 1) £ ) = (Asl)ze—73|t—t'| , (5)
ey =0, (6)

where &,(¢) = dE,(¢t); the quantities y, and v,
describe the band-widths due to the frequency and
amplitude fluctuations of the laser field, and (Ae, )?
is a measure of the fluctuations of the Rabi fre-
quency.

After Puri et al. [6, 8], for the later use, we
introduce the transformation

‘ BPEIOTAENE 103
Wm(t):e—tmdb(t)e 2 pe 2 ,
™)
Where J3 = J22 - Jll .

N° 5

It is easy to show that an equation for W,,(¢) has the
form

dW,, (1) . .
T—= [Lo—-i(m+L) () -
—igg (1) L,IW (1) (8)
here
LoWn = —igoJip + 35, W, ] i g- [J5, W,

- Yn (121 Ju W, =2J, W, Iy
+ W, I d12)

1
L1 Wm = 5 [J3’ Wm] ’
LW, = [Jn +715,, W1,

with &y = dE, being the resonance Rabi frequency.
Our next step is to obtain the master equation for

W,.(t), the transformed density operator averaged

over the ensemble with respect to the distribution of
the phases. After Van Kampen [25], using the
theory of multiplicative stochastic processes, one can
find

EW(t) = [g— 7elm + Ly -

—ie1 () L1 W, (1) )]
=LW,().

Equation (9) has been investigated in the work by
Puri and Lawande [6] where the exact steady-state

operator W) is given for the case without the

amplitude fluctuations, i.e.
g(t)=0.

Since the operator L, which is multiplied by the
time-dependent coefficient &;(¢) does not commute
with all other operators in (9), it is impossible to use
the theory of multiplicative stochastic processes to
obtain the master equation for the density matrix
averaged over the amplitude fluctuations in the same
fashion as for the phase fluctuations. We thus
restrict our consideration to strong laser field or to
large detuning & so that the Rabi frequency (2
satisfied the following relation

for the case with

12
Q- <%62+e§> >Ny . (10)

After performing the canonical (dressing) transform-
ation

Ci=Q,cos ¢ + Q,sin ¢,
C,=—Q;sine¢ +Q,cos ¢,

th(PZZE()/S,

(11)

where

one can split the Liouville operator appearing in
equation (9) into the slowly varying part and the
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terms oscillating at frequencies 2 {2 and 4 2. Since
we assume that the Rabi frequency {2 is sufficiently
large according to the relation (10) the secular

d
dt
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=W, ()= [Cg+C1—238, —2ie(t)sin o cos ¢ . L3]. W, (1),
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approximation [3, 8, 9] is justified and we retain only
the slowly varying part of the Liouville operator. We
have then

(12)

where W/, = UW,, U* with U being the unitary operator representing the canonical transformation (11)

LoWn(t) = —yem* W, (1) - iQ2[D;, W, ()] -

— yom(cos’ ¢ —sin® ¢)[Ds, W, (1)],

(13)

LLWn()= — Z;(Ry Ry W (1) — 2Ry Wh(1) Ry + W, () Ry Rpp)
- Z,(Rp Ry W, (1) —2Ry W (1) Ry + W, (8) Ry Ry),

£, Wn(t) = DIW,.(¢) -2D3; W, (1) D3 + W,,(1) D3,
£3 Wn (1) = [D3, W, ()],

Where D3 = R22 —_ Rll Wlth RU = Q:‘ Q] (l,] =
1, 2) are the collective angular momenta of dressed
atoms ;

Z, = vyycost ¢ + y sin’ . cos? @,

Z,= v, sin* ¢ + vy sin® ¢ . cos? ¢ ,
2 21 ¢

Zy = v, 5in® ¢ cos? ¢ +

+ ? (cos® ¢ —sin® ¢ )*. (16)

Now we derive an equation for W/ (¢) (i.e.

W (t) averaged over the distribution of the ampli-

tude fluctuations). Again, we use the theory of
multiplicative stochastic processes [25] and arrive at

the equation for W/ (¢) in the form

d =I =’
awm(t) = [Lo+ £ — (Ko + X1(1)) 2] W, (1),
(17)
where
Xy = vy sin® ¢ . cos? @ +
+% (cos? ¢ —sin® ¢ )
Ag, \2
+4< l) .sin? ¢ - cos? ¢,
Ya
Age -
X,@t) = —4(—1)25in2<p vcos . 07T

a

and the Liouville operators £,, £;, £, have the same
forms as given in (13), (15). For the case of exact
resonance, i.e. ctg? ¢ equation (17) reduces to that
derived by Puri and Hassan [8].

(14)

(15)

The stationary solution of equation (17) takes the
form

=70 0 fi 0,
Wm(s): N orm #
AT'Y ZM My (M| form =0,
M=0
(18)
where
Z_Zl_ yuctgt o +y.otg’ @
Z, Yu + Yectgl @
ZN+1__1
A="
Z -1

|M) is an eigenstate of the operators R;; and
N = Ry, + Ry, where R;; = Qf Q; (i, j = 1,2). The
operators Q; and Q; satisfy the boson commutation
relations

[Qi, Q;r] = 6,']'; (19)

so that

[Rijs Rirjr] = Ryjs 8305 — Ry 8 (20)

itj O -

For the later use, we introduce the characteristic
function

XRH(TI) =Tr {ei"Rll . wé(S)} = <ei"R“>S

YN+1_1
a1

=AY T
where Y=2Z.e".
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All statistical moments of dressed atoms of the
form <R7l>s can be found from the characteristic

function xg, (n) and have the following form :

(R, = %ﬁm(n) | 21)

1=0

The expectation values of the atomic observables
averaged over the distributions of the phase and
amplitude are given by

(BrmRILY =Tr (" B I% 0 (1))
=Tr {@5 " BIL)Y Wh)}, (22)

where as denoted above A' = UAU* with U being
the unitary operator representing the canonical
transformation (11).

It is easy to show from the stationary solution (18)
that

(BB In) =
Tr { Q5 B Ih) We®} if m=0,
~ o if m#0. (23)

By using the canonical transformation (18) one
can write the expectation value (23) via the statistical
moments <R7l>s given in the relation (21).

As it is seen from (18) and (23), in the secular
approximation, only the phase fluctuations (but not
the amplitude fluctuations) of the laser driving field
affect the stationary atomic density matrix and
consequently atomic observables and their corre-
lation functions (23). In the case of exact resonance
(ctg® ¢ = 1) we have Z = 1 for all values y, and the
phase fluctuations also do not influence the atomic

d
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observables and their correlation functions of the
form (23). The influence of the phase fluctuations on
the steady-state intensities and photon statistics of
the spectral components will be considered in the
following sections.

3. Steady-state fluorescent spectrum.

In this section we consider the effects that may arise
in the collective steady-state fluorescence spectrum
due to the phase and amplitude fluctuations.

Since the operator £, in master equation (17)
commutes with the operators £, and £, this equation
describes a Markov process despite the time-depen-
dent coefficient X, (¢). Thus, the two-time averages
may derived from the one-time averages by taking
the advantage of the quantum regression theorem
[28]. The steady-state spectrum of the fluorescent
light is proportional to the Fourier transforms of the
following atomic correlation functions

<J21(T)J12>S = lim <le(’ + T)le(t)> . (24)

By using the transformation (7) and canonical
transformation (11) one finds

(Tu) =Tr {T1p (1)}
= sin ¢ coS ¢ <D3>1 +
4+ COSZ P <R21>1 - Sinz [ <R12>] ’ (25)

where

(Rip),, = Tr {R; Wr()} . (26)

Equations of motion for (Ri}->m can be derived by

using master equation (17) and have the following
forms

& (D3),, = = (yem*+2Z;+2Z,){Ds) — yy(sin® ¢ — cos? ¢)(D3) .
. . (27)
+ (sin? ¢ — cos? ¢ )(N? +2N>m ,
d . .
a <R21>m =2i{ <R21>m — [‘yc m2+ 4 7”'1')’c(sln2 @ — COS2 (P)+ 4X0 + 4X1(t) +2 Zl]<R21>m
(28)

— ¥ (sin® ¢ — cos? ¢){D; R21>m ,

In the case of exact resonance, ctg’ ¢ =1, equa-
tions (27), (28) reduce to the linear differential
equations derived by Puri and Hassan [8].

For the one-atom case, one can use the well-
known operator relation

Rini'i':Rif' 6fi' (i,j,i',j'=1,2)

and equations (27), (28) also reduce to the linear
differential equations of the paper [12, 18].
For a general case, we use the factorization

(D3R;), = (Ds)g. (Ry), -

By using the steady-state density matrix (18) one can

(29)
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show that the factorization (29) yields an error of an
order of N~ in the calculation of the steady-state
fluorescent spectrum which can be neglected when N
is large [2, 11].

It is easy to see that with factorization (29) the

e r Y
<J21(T)J12>S=sin2¢.coszzp(<D§>s—T—3) e fo +sin2¢>.cos2<p.rz

+cos* ¢ (Ry Rpp) e

where

n =16sin’ ¢ - cos? ¢ -

Fy=27vy(cos* ¢ +sin* @)+ v, (1 +4sin? ¢ . cos? @) + v, (sin® ¢ — cos? ¢ )(N — 2¢Ry1)¢),
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equations (27), (28) have simple exponential sol-
utions. Using the relation (25), the solutions of
equations (27), (28), and applying the quantum
regression theorem one obtains the following ex-
pressions for the correlation function (24)

r

_ZiQT—I"l‘r—‘n(e_yaf'l)

I'y =2y, cos? ¢(1 +sin?¢)+ y.(1 +5sin* ¢ — 3 cos* ¢)

(A51)2

a

Iy = vy (5in* ¢ —cos® ¢ ) (N2 + 2 N )(Ds),.

+ 16

By using the commutation relations (19), (20) one
can write

(D%)S = 4<R%1>S —4N(Ry) +N?, (33)
(R R21>s = <R%1>s + (N + 1)<R11>s ,  (34)

(RyRp)g=—(Rij) + (N -1)(Ry)g + N,
(35)

sin® ¢ . cos” @ + vy (sin® ¢ — cos® ¢ )(N (Ry;) )

1 ®© S —w )T T
S(V)"‘ERC [ <J21(T)J12>SS dr
0

r
=sin? ¢ - cos® ¢ - ((D%)S—

+sin® ¢ (R, Rypge ,
(Aer)
v
(30)
(3
(32)

where the statistical moments (Ry;)¢ and (Rf)

are found from equation (21).

The steady-state spectrum of the fluorescent light
is proportional to the Fourier transform of the
correlation function (T, (7) T;,) ; and has the follow-

ing form

J).L
Iy) (v-w P+T3

o (=1)yq" I'y +ny
+cos’ ¢ (Ry Rpp)g-e? ¥ ( )' n. > : 2
nmo T (v -0 —202) + (I't +nv,)
' © 1Yy n 'i+ny
+sm4<p<R12R21>se” Z ( 1)' n . 1 - a .
o (v—w +202)+ (T +ny,)
r
+u-sin2<p-coszzp-6(v—wL). (36)
2T,
The steady-stat; fluorescence spectrum (36) contains intensity sin® ¢ . cos? ¢ ( (D}~ 2 ) . The two
three spectral lines centered at v = w|, w, =2 0. S Iy

In the off-resonance case, i.e. when ctg2 ¢ # 1 the
central line at ¥ = w/ contains the elastic component
with the intensity proportional to N2 and the Lorent-
zian shaped component with the width I’y and

sidebands are sums of the Lorentzians of widths
I'i+nvy,, n=0,1,... centered at frequencies v =
wp —2 and v = wy + 2 {2, and having the inten-
sities which are proportional to sin* ¢ (Ry; Ry) s
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and cos* ¢ (Ry Ryy) s respectively. For off-reso-

nance case and a large number of atoms, as for the
non fluctuating laser driving field [2], the widths and
intensities of the three inelastic lines are proportional
to N (i.e. their peak intensities are independent of
N).

In the case of exact resonance (ctg’? ¢ = 1) one
can see that I', =0 and the elastic component
vanishes. In this case the spectrum (36) is in agree-
ment with the work [8] and is the same as that for
N =1, except for the fact that the intensities of all
inelastic components are proportional to N2

In contrast with the exact resonance case [8] the
spectrum (36) is not symmetric whenever
ctg’ ¢ # 1. In figure 2 the relative intensities of the
two sidebands, i.e. the values I_;/N =sin® ¢
(R Ry) (/N (solid curves) and I,,/N = cos* ¢
(Ra1 Ryp) /N (dashed curves) are plotted as func-

tions of the parameter ctg? ¢. As it is clear from
figure 2, the intensities of the two sidebands are

20| W

0.0 1.0 Z.b 30 ctg?¥

Fig. 2. — Relative intensities I, /N (dashed curves) and
I_;/N (solid curves) as functions of the parameter
ctg’ ¢ for fixed N =50. Curves (1)-(2) correspond to
Y/ Yu = 0 and 4, respectively.

equal only in the case of exact resonance
(ctg? ¢ = 1) or in the case of Y. = 0 which means
that the asymmetry of the spectrum is caused by the
phase fluctuations of the laser driving field. We note
that the values I, are the integrated intensities of
the two sidebands and the value [, = sin® ¢ . cos? ¢
<D§> s is the integrated intensity (the sum of elastic

and inelastic components) of the central peak which
is plotted in figure 3. As it has been noted above, in
the off-resonance case (see Figs. 2, 3) the phase
fluctuations strongly affect the integrated intensities
of the spectral lines while the amplitude fluctuations
have no influence whatsoever on these quantities. In
the case of exact resonance, the integrated intensities
of the spectral lines are the same as these for the case
when the phase and amplitude fluctuations of the
laser driving field are absent.

02s5f
0.2 | ;

05| 3
01
005]

0.0

10 20 30 cigly

Fig. 3. — Relative intensity I,/N? as a function of the
parameter ctg’ ¢ for fixed N = 50. Curves (1)-(3) corre-
spond to v./vy = 0; 0.5; 4 respectively.

4. Photon statistics of the spectral components.

In this section we discuss the influence of the phase
and amplitude fluctuations on the photon statistics
of the spectral components. By using the canonical
transformation (11) one can write the collective
angular momentum of atoms J, in the following
form :

J21 = sin @ COS (PD3 + C052 ‘PRZI - Sin2 §9R12 . (37)

As it is clear from the previous section, the operators
cos” ¢Ry;, sin ¢ cos ¢ . Dy and — sin? ¢R,, can be
considered as operator sources of the spectral lines
centered at v = w; +2 0, w; and w; —2 2 and
for later use these operators will be denoted by
Sii, S¢ and S, respectively.

We introduce the degree of second-order coher-
ence for the spectral line Sy (¢ = 0,+1) in the
following form :

_ (S SF SeSe)
({(Sf Se) )

GZ

(38)

By using the stationary atomic density matrix (18)
and commutation relations (19), (20) one can find

GO(?& = <Dg>s/(<D§>s)2 >
G =GYH _,
(R Rz Ry R21>s/(<R12 Ry) ), (40)

(39)

where
(D3)s = 16(Ri;) — 32 N (R) +
+24 N3(RYy) -8 N3 (Ry) + N, (41)
(R R, Ry R21>S = <R‘1‘1>s -2(N + 2)<R?1>S
+ (N?+5N +5)(Ri1)
— (N?+3N +2)(Ry),,
(42)
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the statistical moments <D§>s and (Ry, Ry) are
found from (33), (34) and (Rf;) can be found

according to equation (21). As it has been mentioned
in section2, the statistical moments (Rf;) ; are

independent of the amplitude fluctuations and as a
consequence the amplitude fluctuations of the laser
driving field do not influence the photon statistics of
the spectral components.

For the one- atom case, by using the well-known
operators relation

Ri]'Ri'j'=Rij'6i']' (i,j,i,,j’=1,2),

one can obtain

Gi = (R + R22>s/(<R11 +Rp)y =1,
G =G¥Y _,=0.

Thus, the photon statistics of the central components
remains Poissonian and the sidebands have subpois-
sonian statistics as for the case when the phase
fluctuations are absent. In other words, for the one-
atom case the phase fluctuations do not affect the
photon statistics of the spectral components.
Contrary to the one-atom case, the phase fluctu-
ations strongly affect the photon statistics of the
collective spectral components. The degrees of sec-
ond-order coherence G{¥ and G  ; as functions of
the parameter ctg® ¢ are plotted in figures 4 and 5,
respectively. As it is seen from figures 4, 5, except
for the point of exact resonance, i.e. ctg? ¢ = 1, the
phase fluctuations of the laser field play an important
role in determining photon statistics of particular
spectral components in the collective resonance

. ctg?$
00 10 20 30

Fig. 4. — Degree of second-order coherence GO(23 as a
function of the parameter ctg’ ¢ for fixed N = 50. Cur-
ves (1)-(2) correspond to v./v, = 0; 4 respectively.
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(2}
Guy 1y

F ctg?y
0.0 1.0 20 30

Fig. 5. — Degree of second-order coherence Gt(zl),,;1 as a
function of the parameter ctg’ ¢ for fixed N = 50. The
curves (1)-(2) correspond to v./7v, = 0; 4, respectively.

fluorescence. The character of the photon statistics
(Poissonian, superpoissonian) can even be changed
due to phase fluctuations as it is evident from
figure 4.

5. Conclusions.

We have considered the problem of collective reso-
nance fluorescence in the strong laser field with
phase and amplitude fluctuations. The steady-state
solution for the atomic density matrix averaged over
the phase and amplitude fluctuations has been
obtained for the general off-resonance case within
the secular approximation. Analytical formulas for
the spectrum of resonance fluorescence have been
derived. It has been shown that in the off-resonance
case the spectrum is asymmetric with an asymmetry
which is determined by the phase fluctuations solely.
The explicit analytical formulas for the degrees of
the second order coherence for particular spectral
components have also been obtained. It has been
shown that, unlike the one-atom case, in the collec-
tive resonance flucrescence the photon statistics of
individual spectral components depends strongly on
the phase fluctuations of the laser field. It should be
noted here that the approach presented in this paper
can be used to investigate the influence of the phase
and amplitude fluctuations on the two-time inten-
sity-intensity correlation functions, the cross-corre-
lations between the spectral components and the
macroscopic nonclassical effects such as squeezing
and violation of the Cauchy-Schwarz inequality. The
research in this field in progress.

The authors thank Bogolubov for his help and
valuable discussions.

st



794

JOURNAL DE PHYSIQUE N° 5

References

[1] Gross, M. HAROCHE, S., Phys. Rep. 93 (1982) 301.

{2] CompaGNO, G., PERSICO, F., Phys. Rev. A 25 (1982)
3138.

[3] AGarwaL, G. S., Narbuccl, L. M., FENG, P. H.,
GILMORE, R., Phys. Rev. Lett. 42 (1979) 1260.

4] Narbuccr, L. M., FeEnG, P. H., GILMORE, R.,
AGARWAL, G. S., Phys. Rev. A 18 (1978) 1571.

[5] DrRuMMOND, P. D., Phys. Rev. A 22 (1980) 1179.

[6] PURI, R. R., LAWANDE, S. V., Physica 120A (1983)
43,

[7] BogoLuBov, N. N., ALISKENDEROV, Jr., E.I.,
SHUMOVSKY, A.S., TRAN QUANG, J. Phys.
B 20 (1987) 1885.

[8] Purl, R. R., HASSAN, S. S., Physica 120A (1983) 55.

[9] BoGoLuBov, N. N., SHUMOVSKY, Jr., A. S., TRAN
QUANG, Phys. Lett. 112A (1985) 323 and 122A
(1987) 25.

[10) RAYMER, M. G., WALMSLEY, L. A., MosTtowskl, J.,
SOBOLEVSKA, B., Phys. Rev. A 32 (1985) 332.

[11] BocoLuBov, N. N., SHUMOVSKY, Jr., A. S., TRAN
QUANG, J. Phys. B 20 (1987) 629, Physica 144A
(1987) 503.

[12] Tanas, R., KIELICH, S., Opt. Commun. 32 (1980)
399,

[13}] AGARWAL, G. S., Phys. Rev. A 181 (1978) 1490.

[14] EBERLY, J. H., Phys. Rev. Lett. 37 (1976) 1387.

[15] Avan, P., CoHEN-TaNNouDI, C., J. Phys. B 10
(1977) 155.

[16] ZoLLER, P., J. Phys. B 10 (1977) L 321, B 11 (1978)
805 and Phys. Rev. A 19 (1979) 1151, A 20
(1979) 2420.

[17] ZoLLER, P., EHLOTAZLEY, F., J. Phys. B 10 (1977)
3023.

[18] GEORGER, A. T., DixiT, S. N., Phys. Rev. A 23
(1981) 2580.

[19] CHATURVEDI, S., GARDINER, C. W., J. Phys. B 14
(1981) 1119.

[20] TrIPPENBACH, M., RzAzEwski, K., RAYMER, M.
G., J. Opt. Soc. Am. B1 (1984) 671.

[21] RAYMER, M. G., MosTtowsKl, J., CARLSTEN, J. L.,
Phys. Rev. A 19 (1979) 2304.

[22] AGARWAL, G. S., Opt. Commun. 35 (1980) 267.

[23] TRIPPENBACH, M., CAO LONG VAN, JO SA B3
(1986) 879.

[24] HakeN, H., Handb. Phys. 25/2c (Springer, Berlin,
1970).

[25] VAN KAMPEN, N. G., Physica 74 (1974) 215 and 239.

[26] AGARWAL, G. S., Springer Tracts Mod. Phys. (Sprin-
ger, Berlin, 1974).

[27] SCHWINGER, J. V., Quantum Theory of Angular
Momentum, Eds. L. C. Biedenharn and H. Van
Dam (Academic Press, New York, 1965).

[28] Lax, M., Phys. Rev. 172 (1968) 350.

[29] LaAwANDE, S. V., Purl, R. R., Souza, R. D., Phys.
Rev. A 33 (1986) 2504.



