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The collective jumps in the steady-state intensity of resonance fluorescence and the collective population trapping in a system
of three-level atoms interacting with an intense external field are considered. It is shown that for a proper choice of parameters
the atomic populations and the steady-state intensity of resonance fluoresence from such a system display discontinuous behav-
iour (jumps) in a collective limit N-»co. Potential applications of collective jumps to measure weak transition linewidths are

shortly discussed.

Jumps in the collective limit [2-7] and bistability
[ 1 and refs. cited therein] in an atomic system inter-
acting with an electromagnetic field have attracted
considerable interest. There have recently been a
number of works concentrated on the novel problem
of observing quantum jumps in as a single atomic
system and applications of such jumps to measure
linewidths of weak transitions in spectroscopy
[8-15]. Since the weak transition linewidth may be
exceptionally narrow, this scheme has been proposed
for an ultimate laser frequency standard [12,13].

In this paper we investigate the collective jumps
and collective population trapping in a system of
three level atoms interacting with an intense external
field and discuss potential applications of the col-
lective jumps to measure narrow linewidths of weak
transitions.

We consider N three-level atoms in the A config-
uration shown in fig. 1. The states |1 > and |2) are
the ground and excited states, respectively. The state
3> may be a low-lying vibrational or rotational
excitation accessible from the ground state in Raman
scattering [6], or it may be a metastable state [ 13].
In order to keep the discussion general, we will not
specify these states and will return to this question
later on.

The three-level atoms (Dicke model) interact with
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Fig. 1. Level scheme of the atomic system.

one mode of monochromatic driving field of fre-
quency w; and with the vacuum of other modes (fig.
). The external field is assumed to be intense and
can be treated classically. By using the rotating wave
approximation and Born and Markov approxima-
tions one can obtain a master equation for the
reduced density matrix p of the atomic system alone
in the following form [16]

pldt=—1[(9/2)(Jr, ~J}1)
+G (J2) HJ12) — 23733, p]
=y (S J12p=J12pJ2 +hee.)
—¥23(J23J52p—J32pJ23 the)

—vn(UnJisp—JispJs +he)=Lp, (1)

where 2y,,(k, [=1, 2, 3) are the transition rates from
level |k> to |/> due to the atomic interaction with
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the reservoir; 2;=w,;—>,/2 (where Wy=wW;— W,
fi=1); d=w,, —w, is the detuning of laser fre-
quency from the atomic resonance frequency wy;
G= —d, E, is the resonance Rabi frequency describ-
ing the interaction of the driving field with the atomic
system; J,(k, /=1, 2, 3) are the collective angular
momenta of the atomic system having in Schwinger
representation [17] the following form

JkI=CZC/ ’

where the operators C, and C} obey the boson com-
mutation relation

[Ci, CT1=6w,

and can be treated as the annihilation and creation
operators for the atoms being populated in the level

1k>.

Further, we investigate the case of an intense
external field or large detuning & only so that the fol-
lowing relation is fulfilled

Q=(102+G*) "> >Ny . (2)
After the canonical transformation

=Q,cos{+Q,sin{,
Cy=—Q,sin{+Q,cos{,

=05, (3)

where tan 2{ =2G/d, and after performing the sec-
ular approximation [5-15,18], i.e. ignoring the part
of the Liouville operator L containing rapidly oscil-
lating terms with frequencies nG(n=2, 4), one can
find a stationary solution of the master equation in
the form [19]

p=UpU"

N P
=4"" Y XY ZM|P, M) (M, P, (4)
P=0 M=0
where U is the unitary operator representing the can-
onical transformation (3) ,
X=y3,/(y2; cotan?{) , Z=cotan*{,

Z (XZ)V'_1 1 XVt

A=71 " xz-1 Z-1 X_1

(5)
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|P, M> is an eigenstate of the operators R=
R,/ +R,, R,, and the operator of the number of
atoms N=R,,+R,,+Rs,, here R,,=010, (k, I=1,
2, 3) are the collective angular momenta of “dressed”
atoms. The operators Q,, Q} satisfy the boson com-
mutation relation

[, Q=0 » (6)
SO
[Rk/s Rk'l’] =Rk1'5k’1 _Rk’lakl’ . (7)

As in ref. [19], for later use we introduce the char-
acteristic function

Zrr(n Oy = (exp(inR,, +i(R)>=A4""

x[ Y, (Y, =Y,V —1 1 yyri—i
Y,—1 Y, Y,-1  Y,—-1 Y, -1 |’

where Y, = X exp(i{), =Zexp(in), and (..D
denotes the expectation value in the steady state
described by the density matrix (4). Once the char-
acteristic function is known, it is easy to calculate the
statistical moments

(R"RT}
an
T a(i0)" a(im)™

In particular, we have

XRIIR(”?C)'W 0,i{=0 *

(R> A"(——fx(XZ) —ﬁ(X)> (8)

2\ -1 Z
(R*>=4 (Z—lfz(XZ)_Z—lﬁ(X)>" (9)
<R11>:A"[Z 1JB(XZ)
Z (f XZ)-fo(X )] 10
—(Z-1) o(XZ) —fo(X) (10)
s g-1| £ 2z
(R >=4 [Z_lfz(XZ) A l)zﬁ(XZ)
Z:*+Z
+(Z 1)30’0(/\’2) fo(X))] (1)
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N4 /N
Z

(RRy;y=4"" [Z_ [H(XZ) 10}

08L N=25 N=100
y4 0.6}
- i(XZ)-f/i(X)) |, (12)
(Z-1) 0.4

where
0'2 I N=25

Sfo(a)=(a ')/ (a=1), ~-N= 100

fila)=[Na® 2 —(N+ D) a™ ' +al/(a-1)%,
fla)=[N?*aN*3 — (2N +2N~—1)a™*?

+(N+1)Y2aM ! —a?]/(a-1)3.

Now we discuss the stationary population of the
atomic level |3). By using the canonical transfor-
mation (3) one can write the number of atoms pop-
ulating the level |3) in the form

Ny={J33>=N-(R}, (13)

where the statistical moment (R) can be found
according to eq. (8).

First, let us consider the case of y3,/y ;3 < 1. By using
the relations (13) and (8) one can show that:

(1) For y31/y3<1, y31/y 23 <cotan’{ <y,3/y 3 (i.e.
when X<, XZ<1) and N>1 so that NV,
(XZ)¥<N-', almost all of the atoms are populated
on the level |3>, N;x N, thus the atomic level |3)
plays a role of a “trap” for the atoms.

(ii) For cotan?(<y;/y.3<1 (i.e. when X>1,
XZ<1) and N> 1 so that XV 1, (XZ)"<N~' and
in the case of cotan?{>y,3/y 5, >1 (i.e. when X<1,
XZ>1) and for N> 1 so that X< N~!', (XZ)">1
the population of the level |3) is small in compar-
ison with N,

In the points where cotan?(=y;/y,; oOr
cotan®{ =7y,4/y 51, nearly half of the atoms (N;~ N/2)
is populated on the level |3).

The jump-like behaviour of the atomic population
on the level |3) (per atom) i.e. the quantity Ni/N,
is plotted in fig. 2 as a function of the parameter
cotan®{ for y4,/y,;=0.5. In the collective limit N—co
(the dotted curve) the function N,/N has a discon-
tinuous behaviour (jump) at the critical points
cotan?{ =y3,/7»; and cotan?{ =y,4/y 4.

In a similar manner one can show that in the case

0005 10 15 20 25 30 ctg?y

Fig. 2. Population (per atom) of the level |3} as a function of
cotan®{ for y;,/7,3=0.5. The dotted curve illustrates the case
N-oo.

y31/7 23> 1 and for N>> 1 the population of the level
[3> is small compared to N for all values of the
parameter cotan?&, thus in this case the collective
jump in the function N;/N is absent. In the case when
y31/723=1 we have

N3/NN;°°0, if cotan?{>1,

M2*1/3, ifcotan2=1,

M®0,  ifcotan?C<1,

thus in the collective limit N-co the function Ny/N
shows discontinuous behaviour at the critical point
cotan®{.

We note that in the one atom case the level |3) is
the “trap” of the atom, i.e. N;/N— 1, only in the case
of y31/723-0.

The effects of the collective population trapping
and collective jump of the atomic population of the
level |3) strongly affect the behaviour of the sta-
tionary intensity 7 of the fluorescent field due to the
atomic transition [2>—|1). The explicit form for
the intensity I can be found by applying the can-
onical transformation (3) and the stationary density
matrix solution (4)

I~ {JaJ1p )y =sin*{ COSZC((R—2R11)2>

+¢08* (R Ry ) +sin*{(R1R, ) (14)
where
((R=2R)*>=(R*>+4(R1 ) —4(RR, ),
(15)
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Fig. 3. Scaled intensity of fluorescent light //N? as a function of
cotan®{ for y5,/y,3=0.5. The dotted curve illustrates the case
N-oo.

(Ry R ) =(R>—<(Ry >+ {(RR\)—(R% >, (16)

(Ri2R2 > ={(Ri 1)+ (RR, ;) —<(R1) . (17)

In the equations (15)-(17), the statistical moments
(RY, (R?), (Ry;), (R}) and (RR, ;) can be
found according to relations (8)-(12). By using the
equations (14)-(17) one can show that in the case
of y3./y23<1, y31/y23<cotan{ <y,y/y3 and N> 1
(the condition (i)), i.e., when atoms are “trapped”
on the level | 3), the intensity / is independent of the
numbers of atoms N. For all other values of the
parameters y,/y .5 and cotan®{ the intensity [ is pro-
portional to N2. The jump-like behaviour of the
quantity I/N? as a function of parameter cotan?{ for
y31/7.,=0.5 is plotted in fig. 3, where the dotted curve
indicates the collective limit N—oco. As it is seen from
fig. 3, in the case of y3,/y,3<1 and n-co the func-
tion I/N? shows discontinuous behaviour at the crit-
ical points cotan?=y,/y >3 and cotan®{ =y,3/y 3,.

The collective jump in the atomic population of
the level |3) and the intensity of the fluorescence
field is caused only by the collective interaction
between atoms and the driving field and it could be
used to measure the narrow linewidth of the weak
transition.

Let the level |3) be a metastable state, the tran-
sition |3>—]1) is forbidden and other transitions
|2>>|1> and |2)—|3) are allowed transitions
[13]. It has been argued that the weak transition
|3>—| 1), which is difficult to detect, could be mon-
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itored by the scattered light of the strong transition
[2>—|1)>. Changing the parameter cotan’{, i.e.
changing the detuning J or intensity of the external
field one can observe the jump (see fig. 3) in the
intensity of the fluorescence corresponding to the
strong transition |[2>—|1) at the critical points
cotan?{ =y4,/7 23, cotan?{ =y,4/y5;, and this allows
us in principle to measure the quantity ys,.

The authors thank Yu.M. Golubev for valuable
discussions.
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