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Resonance fluorescence from a two-level atom is first shown to permit squeezing for an arbitrary intensity of the
exciting field provided that the resonance is time dependent. When the exciting field increases in intensity, the
squeezing shifts toward shorter times and its maximum value becomes double, for strong exciting fields, its maxi-
mum value in the steady state. Moreover, it is shown that intervals of time exist in which the normally ordered
variance of the fluorescence field is positive, despite the presence of squeezing in the atomic variables. Also, the
signal-to-noise ratio in the transient regime attains high values, predictably making the observation of squeezed

states experimentally feasible.

1. INTRODUCTION

The fluorescent radiation field from a two-level atom inter-
acting with a coherent-laser field is known to display two
distinct quantum features. First, the fluorescent photons
exhibit antibunching and, second, the fluorescent radiation
occurs in a squeezed quantum state under appropriate con-
ditions.

Photon antibunching in resonance fluorescence has been
theoretically predicted by Carmichael and Walls! and Kimble
and Mandel? and observed'in experiment by Kimble et al.34
The antibunching effect reflects the existence of discrete
objects, i.e., the photons, and may be directly understood as
resulting from the fact that, immediately after emission of a

photon, the atom is found in its ground state and a subsequent .

photon emission can occur only after a finite recovery time.

Squeezing, on the other hand, is a phase-sensitive effect that
describes quite another feature of the quantized electro-
magnetic field. This effect consists in the reduction of fluc-
tuations in one of the two quadrature components (the in-
phase and the out-of-phase components) of the fluorescent
field at the expense of increased fluctuations in the other
component. Squeezing in resonance fluorescence was re-
cently discussed by Wails and Zoller® and Mandel.® Squeezed
states have a negative normally ordered variance of one of the
two field ecomponents, which means that these states have no
classical analog since their diagonal coherent-state repre-
sentation cannot be nonnegative.”® Walls and Zoller® and
Walls? have shown that either of the fluorescent-field com-
ponents can become squeezed under certain conditions in the
steady state if the Rabi frequency @ of the exciting field is
sufficiently low. To satisfy this condition, when the exciting
field is perfectly tuned to the atomic transitions, the Rabi
frequency 2 has to be less than +/2v, with 2y = A (the Ein-
stein coefficient for spontaneous emission). Off-resonance
excitation further lowers this critical value of 2. Walls and
Zollerd have also pointed out, without giving the details, that
squeezing can double in the transient regime of resonance
fluorescence. Arnoldus and Nienhuis!? have considered the
conditions for squeezing in steady-state resonance fluores-
cence showing that the condition for the presence of squeezed
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states corresponds to the requirement that the intensity of the
coherent Rayleigh line be more than half of the total intensity
of the fluorescence radiation.

Mandel® has shown that the use of a one-port homodyne
detection scheme to detect squeezing in steady-state reso-
nance fluorescence always leads to sub-Poissonian photon
statistics if the detected component is squeezed. Loudon!!
recently considered the two-time photon-number correlation
function resulting in this homodyne technique. Yuen and
Chan!? have proposed a new homodyne detection scheme that
allows elimination of the local oscillator noise, thus increasing
the chances for the detection of squeezed states.

In this paper, we consider the possibility of obtaining and
recording squeezed states in the transient regime of resonance
fluorescence from a coherently driven two-level atom, We
show that, in the transient regime, contrary to the steady-state
regime, there is no restriction on the required values of .
Therefore squeezing can occur for any value of the Rabi fre-
quency of the exciting field, provided that the interval of time
is chosen appropriately. As the intensity of the exciting field
increases, the squeezing shifts toward shorter times and its
maximum value increases to double, for strong exciting fields
(2 = 200v), its steady-state value. However, this takes place
only if the atom started in its ground state and if the initial
phase of the exciting field was zero. The dependence of
squeezing on the initial phase of the laser field is discussed for
both the steady-state and the transient regimes. It is found
that certain intervals of time exist in which the normally or-
dered variance of the fluorescent field is positive, despite the
fact that squeezing is exhibited during the same intervals of
time by the relevant atomic variables. The signal-to-noise
ratio (SNR) is also considered for the fluorescent field. Itis
shown that this ratio attains high values in the transient re-
gime, in contrast to low ratio values in the steady-state regime
of resonance fluorescence.

2. SQUEEZED STATES OF ATOMIC
OPERATORS

To define squeezed states in resonance fluorescence of a
two-level atom driven by a coherent-laser field, we use pseu-

© 1984 Optical Society of America



Ficek et al.

dospin operators that satisfy the well-known commutation
relations

[S+(¢), S—(t)] = 2S3(),
[Sa(t), S%(t)] = £S*(2), (1)

where S#(t) are the raising (lowering) operators of the energy
of the atom, whereas S3(t) describes its energy.
Defining the Hermitian operators

Si(t) = H[S*(t) + S~ (1],
Salt) = — g [S+(t) — S~ (®)], @)

we have
[S1(8), Sa(t)] = iSs(t). 3

A squeezed state is then characterized by the condition
that®

([AS1(D)]?) < ol (S3(E))]
or
([AS2(6)]2) < %l (Sa(e))]. (4)

The time dependence of the expectation values of the slowly
varying atomic operators S*(t) and Ss(t) is well docu-
mented?!3 and has the form

=158 exp(—ip)(1 — iA)
(Y + YaA% + 2/32)

+ 28 exp(—ig) o ¥ [zi + (1 — ié)]eXp(zit)
1 (z; — zj)z; — 2z)

t:;j;ék
~ Bexp(—ip) % (zi + D[z + (1l — iA)]exp(z,-t)’
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where 2z; (i = 1,2, 3) are the three roots (assumed unequal) of
the cubic equation

(= + D[z + %)%+ A% + 482z + ) =0.  (6)
In Eqgs. (5) we have used the notation

wp — W
Y

where § is the Rabi frequency of the driving field. € is real
since the factor exp(—i¢), which includes the initial phase of
the laser field, is excluded. A is the detuning of the laser
frequency wz, from the atomic resonance wo, whereas Lgis the
initial population of the excited state of the atom. If the atom
is initially in its ground state, then uo = 0, whereas uo = 1 if
the atom starts in its excited state.

B=QM4y, A= %, up=(S*(0)S~(0), (7
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By definition (4) and Eqgs. (5), we find that
Fi(t) = ([AS1(8)]%) — Yl (Sa(¢))]

—B(cos ¢ — A sin @)
=1 _1
h=h { (Ys + Y4A2 + 262)

[2uoz; — (z; + D]z + (1 — iA)]

+{expi-io) 3
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2 | -%(+4%) 3
X explit) + °’c'}) B TN
i=j#k
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=1, 41 —iB(A cos ¢ +sin @)
h /4( (Y + 1A% + 26?)
+ |ﬂ exp(—ip) "}? [(Quo — 1)z; — 1][zi + %(1 —iA)]
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The time dependence of Fy(t) is illustrated graphically in
Figs. 1-3 for A = 0 and various values of the parameters B, o,
and ug. Itisseen from Fig. 1 that, for a weakly exciting field
(8 = 0.2) and ¢ = 0, Fy(¢) is always negative if the atom was
inits ground state at t = 0. If the atom was in its excited state
att = 0, F1(t) is positive for short times and, after reaching
a peak, decreases to become negative for very long times. A
change in phase by 7/2 causes an interchange of F(¢) and
Fy(t), as is obvious from Egs. (8) and (9).

As the intensity of the laser field increases, squeezing in
Fi(¢t) shifts to the region of shorter times, and F(¢) itself
shows an oscillatory behavior reflecting the Rabi oscillations.
This is shown in Figs. 2 and 3.

The maximum value of squeezing that can be obtained in
the transient regime becomes greater than the steady-state
maximum, marked by the dashed lines in Figs.2and 8. The
amount of squeezing increases as the laser field becomes in-
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Fig. 1. Plot of Fy(¢) versus time ¢ [in units of (2)~!] for various
values of the parameters on which Fi(¢) is dependent.
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Fig. 2. Plot of F1(t) versus time ¢ for strong exciting field. Dashed

line marks the maximum value of squeezing in steady state. Atom
starts in its ground state: ug = 0.
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Fig. 3. 'The same as Fig. 2, except for an extremely strong exciting
field (8 = 50).

creasingly stronger and reaches its limiting value Fy(t) = -4
~ at the time ¢ = 0.0105 for 8 =50 and ug = ¢ = 0. Thisis the
absolute maximum of squeezing [the absolute minimum of
F(t)] that can be obtained in one-atom resonance fluores-
cence. This limit is related to the fact that (S%(¢)) and
(S3(t)) in the case of a two-level atom can vary within a
strictly bounded range of values only.
For steady-state resonance fluorescence, we have by Egs.
(8) and (9)

262

Bl = e

[862 = (1 — A?) cos 2 + 2A sin 2¢).

(10)

For ¢ = 0, this formula goes over into that derived by Walls
and Zoller.> It is clear from Eq. (10) that a change by 7/2 in
the initial phase of the exciting field interchanges F; and Fs.
At this point, we should also note that, because of our different
choice of phase, our F corresponds to what would be Fy for
Walls and Zoller.5 Maximum squeezing in steady-state res-
onance fluorescence occurs for A = ¢ = 0 and 82 = Iy, when
Fy = —Y35. This value, compared with the —Y; derived above,
is one half of that obtained by us for transient resonance flu-
orescence, as already predicted by Walls and Zoller.> From
the experimental point of view, however, it is interesting to
note that, in steady-state resonance fluorescence, squeezing
occurs in the F'; component for 842 + A2 < 1 and in the F»
component for A2 > 882 + 1, i.e., in the weak-field limit.?
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Similar conditions for squeezing hold for the case of two in-
teracting atoms.14

For time-dependent resonance fluorescence, as is shown in
Figs. 1-3, squeezing occurs for all values of the incident field
intensity.

3. SQUEEZING IN THE FLUORESCENT FIELD

By defining the in-phase component E'l and the out-of-phase
component E3 of the fluorescent-field amplitude as the pos-
itive- (negative-) frequency parts E(H) (E(),

El = E(+) + E("‘)’

Eo = —i(E() — E(), (11)
we obtain the communication rule
[Ely E2] = 2iC’ (12)

where C is a positive C number if the field is described by
boson operators. Squeezed states of the fluorescent field are
defined by the requirement that the variance of one of two
noncommuting observables (E; or E5) shall be less than C,
ie.,

((AE)?) <C  or  ((AE?) <C. (13)
Since the following relations hold for the field operators:
((AE)?) = C + (: (AEp?:),
((AE2)?2 = C + (:(AEy)?:), (14)

where the colon stands for normal ordering of the operators,
the squeezing conditions [relations (13)] imply negative values
of the normally ordered variance for the squeezed-field
component. This condition may be written as

(:(AE)?:) = f (ARe 6)2P(6)d?%, (15)

where P(&) is the Glauber P representation for the fluorescent
field with the complex amplitude 6. Hence we see that
squeezed states have no classical analog in the sense that their
diagonal coherent-state representation cannot be nonnega-
tive.

The normally ordered variance of the fluorescent field may
be derived by using the following relation between the ra-
diation field and the atomic operators in the far-field
limit215;
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Fig.4. The normally ordered variance {: (AE;(t))2: }/$2(R) (dashed
curve) and Fy(¢) (solid curve) for 8 =50, A=ug=0and ¢ =0. For
0 =< 2yt < 0.015 the two curves merge.
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EM(R, t) = EdM(R, t) + i (R)S™ (t - %)’ (16)

with Y2(R) = (3hky/2R2) sin2 0, where @ is the angle between
the observation direction R and the atomic transition dipole
moment f.

According to Eq. (16), the normally ordered variance of the
fluorescent field in any direction other than that of the laser
beam is given by

(:(AE,(£)%:) = YARI[AS1(D)]?) + Yol Ss(t))},

(:(AEo(£))2:) = Y2R)([AS(8)]?) + (S3(E))}-
(17

In the steady state {Sz(»)) <0, i.e., (S3()} = —|(S3(«))|,
and squeezing in the atomic variables given by condition (4)
implies a negative value of the normally ordered variance of
the corresponding component of the fluorescent field. Inthe
transient regime, however, (S3(¢)) evolves in time and can
take positive as well as negative values. It is obvious that
intervals of time exist in which the atomic squeezing does not
necessarily lead to a nonclassical nature of the emitted field
(Fig. 4). The reduction of the atomic Hilbert space to two
states determines, by way of the relation [Eq. (16)], the op-
erator nature of the fluorescent field that causes, in the
transient regime, squeezing in the atomic variables, which does
not necessarily signify negative values of the normally ordered
variance.

4. SIGNAL-TO-NOISE RATIO

Recently, a great deal of research has been directed toward
the design of practical schemes that would make the detection
of squeezed states experimentally feasible. Since squeezing
is phase dependent, homodyne or heterodyne schemes are
preferred. Mandel® has shown that the one-port homodyne
detection scheme always yields sub-Poissonian photon sta-
tistics if the detected component of the field is squeezed. This
scheme, however, has one important drawback: It introduces
the local oscillator noise. In this context, the two-port ho-
modyne scheme proposed by Yuen and Chan,!2 which is in-
sensitive to the local-oscillator noise, is especially promising.
The quality of a particular detection scheme is often charac-
terized by its SNR. In order to circumvent various sources
of noise that can intrude in the detection process itself, one
can introduce the intrinsic SNR characterizing the relative
fluctuations of the field

" SNR = [(ED|/VTBEDD. (18)

For time-dependent resonance fluorescence, this parameter
is given by the corresponding atomic variables

SNR = [(S1(t))|/V/ {(AS1(t))?). (19)
According to definition (4), a squeezed state must satisfy the
inequality
ST  [(Sio]
VIASIO) ~ [PRLSseN]?

This means that even a high value of the SNR does not nec-
essarily mean squeezing if the right-hand side of inequality
(20) is high. In fact, for times ¢ for which (Ss(t)) = 0, we have
infinity on the right-hand side; however, in this case, the

SNR = (20)
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Fig. 5. The excess SNR versus 2yft for various strengths of the
exciting field.

quantities S1(t) and Sy(t) can be measured simultaneously -
with arbitrary accuracy, and the problem of squeezing does
not arise at all. So a measure of squeezing in resonance flu-
orescence can be provided by the excess SNR:

SNR _ [ MRl ¢Ss@N |72
151(6))] ((AS1(0)2)]
[Yal (S3())]*2
Whenever the ratio [Eq. (21)] is greater than unity, the vari-
able S;(t) is squeezed.
For steady-state resonance fluorescence, expressions (4),
(5), and (21) at ¢ = 0 lead to

[ (Sa(=))] |12 _ Thl(1 + AD (Y + A2 + 262)]1/2
[(AS1(=))2)) [Ys(e + A2) + (V4A2 + 262)2]1/2
(22)

The ratio [Eq. (22)] is greater than unity for 882 + A% <'1 and
takes its maximum value 1.105 for A = 0, 82 = Y%(+/2 — 1).

In the transient regime, the ratio [inequality (21)] can attain
much greater values, as is shown in Fig. 5, where this ratio is
plotted as a function of time for A = 0 = ¢ and various values
of the field strength 8 (note the different time scales for dif-
ferent 3). For strong fields, the time dependence of this ratio
displays a pronounced peak with values considerably greater
than unity and then a narrow dip. When designing an ex-
periment to measure this ratio directly, it would be advanta-
geous to use strong fields for the detection of squeezed states.
This, however, would require sufficiently short detection times
(of the order of ~1). It should also be noted that the maxi-
mum of this ratio does not coincide with the maximum of
squeezing defined by Eq. (8). This is because (S3(t)) also
changes in time.

(21)

5. CONCLUSION

We have studied the problem of the occurrence of squeezed
states in time-dependent resonance fluorescence from a
two-level atom interacting with a resonant laser field. Our
results show that in the transient regime of resonance fluo-
rescence there is no restriction on the values of the Rabi fre-
quency  for which squeezing can occur. As the Rabi fre-
quency of the driving field increases, the region of squeezing
shifts toward shorter times and the maximum of squeezing
that can be obtained increases. For strong driving fields it
can attain a value two times greater than the steady-state
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value, provided that the atom started in its ground state and
that the initial phase of the driving field was zero.

We have also shown that, in the transient regime, certain
time intervals exist in which squeezing in the atomic variables
does not proceed in step with the negative values of the nor-
mally ordered variance of the fluorescent field.

Our excess SNR, which can be a useful parameter to de-
scribe squeezing, is also considered. This parameter is slightly
greater than unity in the steady state and can be considerably
greater than unity in the transient regime, as is evident from
Fig. 5.

We conclude that some new properties of the fluorescent
field that are not met in the steady state appear in the tran-
sient regime of resonance fluorescence. We infer that it
should be easier to detect squeezed states in the transient
regime. This, however, would require a fast detection tech-
nique, such as the picosecond technique.
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