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SQUEEZED STATES OF AN ANHARMONIC OSCILLATOR

R.Tana$

Nonlinear Optics Division, Institute of
Physics, A.Mickiewicz University
60-780 Poznan, Poland

In the present paper the very simple model of
an anharmonic oscillator accessible to strict solu-~
tion and, nonetheless, offering the opportunity of
obtaining squeezed states, is considered.

The Hamiltonian of the system is taken on dis-
carding the non-energy-conserving terms as:

H=hoota +hka®ol |, (1)

where k is the anharmonicity parameter assumed to be
real and the creation and annihilation operators are
taken in normal order. This Hamiltonian describes, for
example, a single mode of the electromagnetic field
interacting with a non-absorbing nonlinear medium. In
this case the anharmonicity parameter k is related to
the third-order susceptibility of the medium

(Drummond and Walls, 1980) by the equation:

y
K = G(th)zjdgT Xm('r)| win| (2)

where u(r) is the cavity mode function.
According to (1) , the Heisenberg equation of
motion for the annihilation operator & reads

&=_%EQ,H]=-L(Q+2ko¢'Q)Q . (3)
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Since ofo. is a constant of motion, equation (3) has
the solution

o.(t) = exp[-it(w +2kat (@) a())]a(0) . @)

The obvious éd°ﬁ:dependence (the free evolution)

will be dropped in the following.

With the solution (4) available, one can easily
answer the question of squeezing in such a system.
Introducing the operators Q =a@f+@ and P = -i(a-at)
which describe the in-phase and out-of-phase compo-
nents of the field and obey the commutation relation

[Q,P]=2i, 5)

the squeezing condition can be written (Walls and
Zoller, 1981; Mandel, 1982) as

(aR:S <O or (APY:iH<O0 (6)

where AQ = Q - <0 , AP = P - PS> , and
the colon stands for normal ordering of the operators.
If the oscillator at t=0 starts in a coherent
state |&> such that a(0)|e)> = «|aD> , With the mean
number of photons n=|&|?¥, on insertion of (4) into

(6) and taking the expectation value in this state we
have: -9iT

'<:(AQ(1'))Q':> = zReﬁotzocP[-i‘r +n (= 4)]

-oLQ’O(P[Q«n(C.L -4)]} +2n{4- QX.P[QH(COST'A)]} » ¢

7)
<:(A’P(’t’))2:> = -Q'Re{m-- } + Qn{ ..... } ) (8)

with T = 2kt. The expressions in the parentheses of
formula (8) are the same as those of formula (7). If
the expression (7) or (8) is negative it means
squeezing in the in-phase or in the out-of-phase com-
ponent of the field at time t. Both formulae are illu-
strated graphically in Fig.l_ as a function of the
product nT for T = 1 x 10°°. The initial phase is
chosen to have o real.
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Fig.l. Fluctuations in the in-phase and out-of-phase
components of the field against nT .

It is seen from figure 1 that both curves show
an oscillatory behavior with positive as well as nega-
tive values. For small nT the in-phase component Q
shows squeezing while the out-of-phase component P
does not. The first minimum of {:(AQ(T))*:D
occurring for nt =~ 0.6 has the value -0.66, which
is 2/3 of the limit value -1 allowed by quantum mecha-
nics. The first minimum of <:(AP(TI)*:D has the
value =-0.92, which occurs for greater values of
Nt % 1.8. This minimum means over 90 per cent_of the
allowed squeezing. The next minima of < (AQ(T))*:D
and <:(AP(T)?:D are even deeper giving as much as
97 per cent of squeezing, but they are much more
difficult to tune to. Generally, to obtain these con-
siderable amounts of squeezing a great number of pho-
tons is needed if T is very small (as it usually is in
real physical situations), but it is still quite rea-
listic to meet this requirement in practice.

However, one has to keep in mind that the model
under consideration is very simple and is far from
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including all the effects that can modify the final
results. Nevertheless, this model presents the advan-
tage of being strictly solvable and providing a clear
interpretation of squeezing. One sees clearly from

the form of the solution (4) that it is the intensity
dependent change in the phase of the field (the inten-
sity dependent refractive index of the medium) which
is responsible for producing squeezed states at time

t if there were no squeezed states at t=0. However,
this change in phase does not contribute to photon
antibunching, which is phase insensitive. On the other
hand, as Quattropani et al. (1980) have shown, the
same anharmonic oscillator, when interacting with a
thermal reservoir at thermal equilibrium, leads to
sub~Poissonian photon statistics. In this case, the
field is described by the density operator

9:NexP[—P(‘hc.)0jQ. +'hkd*9'03"):] ) (9)

which is diagonal in the number state representation
and one can easily check that there is no squeezing
in such a field. So, one can say that the nonlinear
change in phase of the field contributes teo squeezing
but not to photon antibunching, whereas the nonlinear
change in number of photons contributes to photon
antibunching but not squeezing. If the phase and the
number of photons are both affected by nonlinear in-
teraction then states can arise that exhibit both
squeezing and photon antibunching.

The author is grateful to Professor S.Kielich for his
stimulating discussion of the subject.
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