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YWe consider normalized second-order correlations functions for systems of two radiati-
vely interacting atoms, In the strong-field limit we obtain analytica} solutions for the
intensity correlations, separately for the case of the point model (S®-invariant system)
and for the case when the atoms are separated by a distance ﬂh,(sz-breaking system), In
both cases the intensity correlations contain additional compornents beside those of the
usual one atom case, Thege components modify drastically the light statistics; moreover,
light scattsred by, an S®-invariant system has a statistics different from that of light
scattered by an S”-breaking system. In the latter case the statistics depends on the inte~-
ratomic separation T, as well as on the direction of observation, see Figs 2,3. The feasi~
bility of observing photon antibunching in these systems is also discussed.

Introduction

A most interesting problem, recently considered by many authors"s,is the existence of
additional sidebands in many-atom resonance f%uorescence in addgtion to the usual three
veaks of the isolated atom 40, Lgarwal et al and Mavroyannis® have recently obtained
aralytical formulae for, the spectrum of iwo-atom resonance fluorescence in the case of
strong cooperativity (S*-invariant system) and have shown that the spectrum contains addi-
tional sidebands in 2§ with an amplitude proportional to 4/Q¥ . i4s pointed out in our re-
cent paper?, the spectrum of an 53¥-breaking system of two atoms 2lso contains additional
sidebands in 28 with amplitude dependent on(gyxakﬁhere,a is a parameter degendent on in-
teratonic separation, 2nd vanishes when the atoms 2re far apart, As stated by Agarwal et
aill , the experimental detection of these lines is hardiy feasible.

hAgarwel et 2l have also considered intensity correlations in an St-invariant system,
and have shown that in the case of a high Rabi frequercy $ and high cooperation number S
(i.e. for a great nurber of atoms) it involves additional sidebands in 2§ with amplitude
of zeroth order in the parzmeter 4/§), . This has been recently confirmed by Mavroyannist?
and Kilin %, However, from their results, we cannot discuss the dependence of the inten-
sity correlations on interatomic separation or the angular distribution. Steudel and
Richter#and Steudelf¥ have considered this problem for the case of incoherently pumped
two- and three - atomic systems respectively.

In this paper, we consider the intensity correlations in resonance fluorescence of two
atoms, equally driven by a strong resonant laser field, for different interatomic distan-
ces, 23 well as in strong cooperativity. To this aim we have adopted the model described
in our recent work? and obtained a closed system of 15 equations of motion for the atomic
correlation functions which we solved by the Laplace transform method. As shown in 23 the
steady - state solutions for the case of strong cooperativity a=1 differ from those for
the case af£t1. This is connected with the S¥-conservation breaking in the case a#i. The
differences between the solutions for these two cases, for spontaneous emission, have been
discussed by Agarwalld, - -
In the strong field limit, we obtain separately approximate analytical formulae for the
i:tensity correlations function in the case of strong cooperativity a=1 and in the case
a#t,

Time~evolution of atomic variables

In our model, we consider two like two-level atoms, distant by 1, , in the field of an
intense resonant beam of laser light. We assume dipolar transitions as permitted between
the two levels of either atom. We moreover assume the intense pumping laser beam to be in
the coherent state I=> . On these asswnptions, the Lelnmberg"s master equation aprroach
leads to the following equations of motion describing the time evolution of the pseudo-
~spin operators of an individual atom '

. k3
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where 5§ and &; = (5})f

are operators raising and lowering the energy of atom 1, and S

describes its energy. The equations for the operators of the other atom are of the same
form as (4) , albeit with the interchange 1<+ 2 of the indices.
In (4) , ¥ 1s the Einstein coefficient A- , whereas ¥y , which is dependent on Aj, is in-

troduced by Lehmberg 46

factor describes the radiative interaction between the atoms.

In deriving equations (4) , for simplicity, we assumed the laser beam frequency as

strictly equal to that of the atomic transition e
glected shifts in the levels and dipole-dipole interactions,

i.e. zero detuning, and moreover ne-
Moreover, the validity of

equations hinges on the assumption that the system is a Markovian one, i,e. that

(Ml & 8

vhere At
Despite these restrictions, equations (1)
of extended systems48 ,

)

1s a time required for appreciable chanpes in the atomic levels.

have been applied successfully tc the description

The atomic cperators of eq. (1) =re slowly-varying parts of the full operators:

it

Sra) = Sty e )

S (1) = oi(r) ot

Tx(4) = SF(4) (3)

)

The set of enuvatiorns (1) leads to a finite hierarchy of enuations for the corr=lation func-
tions of the system which can be solved by the Laplsce trensform method. In the case of two
atoms we have a set of 15 equations. The set under consideration can be transformed into

the following independent subsets:

three of dimension 3 and one of dimension 6.

with
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and

m; = -upd,

W,=6 +5 -5 -9 ; U, = 95 - 59,
W, =S5 5, +51sts, - 5,55, - 5'S)S, ,
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Ve have introduced the notation:

- R _ & o
T=xt , p=3F, =9 . (7)

From (4) it is evident that WL and V represent antisymmetric combinations of atomic
operators while W

and X are symmetric combinations. Non-zero steady-state solutions ari-
se from the X quantities only. It is worth noting that the steady-state solutions as cal=-

culated from (1) lead to expectation values of the atomic cperators cother than in the case
2=1 , considered by Agarwal et alY . T

. This fact is connected with the S? conservation brea-
king in our case., The determinant of the D

matrix becomes zero as a=1 , This involves a
reduction of the d%mension of the set from 6 to 5 because of the linear dependernce of the

variables due to S¥-conservation, The reduced set is identical with that considered by

Agarwal et alg . Also the so-called scaling factor discussed previously““ appears in the
iystem with S¥ conserved and does not appear in the steady-state solutions of (1) , which
ave the form:

XS =AU+, LXD=(4-7g)

‘ | (8)
<X = '8%27 ) X5 = ol

(K= -fUdg), (xS =hU-&).
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For a=1 , the solutions of (1) have the following form:

<X =-gt(-Az) , <X =0U-4)

<CXdm e gp) |, <XDe gp ©)

)

XD =-55(4-4p) , <X, =5U-4),

Because the square of the total spin of the system can be expressed by the X operators
as follows: i

5%=2-X,+X, +2X, (10)

’
its steady-state expectation value, according to (8), is

<F=2-4(-g5) . ()

The system reaches this steady-state value even for very small deviations of the parameter
a from unity i.e. in the majority of real situations.

Intensity correlations

We consider the second-order correlation function

67Tt ; By, 0) = CBUROERADER pDECR D, (12)

-> od 0, N
for two points ﬁ" s Ry in the far field, i.e. lﬁ‘leRz =R>—53 ﬁ:zl and. the normalized
second~order correlation function(intensity correlation) defined as?

2), > -
(2), = = G (Rdntl Rlc**t)
R, por) =G QR - (13)
9 (R,, ) R,, t+T) G“)(R.,‘l‘-') G“)(Rz,fﬂf)
For two atoms we have’® :
-»I - ‘ v > 2 >
G R, Ry por) = (TR ) @) | u@l®
. .
D LSS SIS exp[ike (BB + 2o8)] e
14.K,L=4 -
2
G'“)(E,t) =(ﬂ£%%£) (@) Z 4 St(f) S (#)> Q)CP(iKo "—ZEO) ) (1)
Li=4
with: \ug)]z:

%(A-mse) s with 6 the angle betwgen the obse-E;ation diregtion unit
vector and the atomic transition dipole moment Ju,) ko-- -"—’5— = 27\ )

' and '?4'1 the vector
connecting both atoms.
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From eq. (1) we obtain that, in the steady state, the Laplace transform of (i4) has the

form:
Pz N@=) [ﬁ(i’l% ~a )XY, - (Qzth-a)(2e+3- 0.) X >, | oindy sincta (16)
2) = No M(z) (za)(2z+4-a)(22+3-a) + 8p* (22 +4)

withs
N(z) = 'ﬁP{(Z+4)(Z+2)(Z+4-o.)(2-7.+3+a) +A6F3'[22"+ (5-20)% +(4-a)(3+a)]

+[ (z+4)(z+2) (z41-0) (az+3+0) + 8p°~z(1+A+a)] cosoLQ]] [(A+ o5, )<Ko, - %((XDS +
+ X5, casely )] + { 4 (241 (2+2) Qzrhva) 2z+3+a) + qpl(zm)[h 2%+(8-0)2 +3-a ]
-a [ﬁ(z+4)(z+2)(az+4+a)(:zz+5+a) +Qp’*( 522 +2(4+a) 2 +2(a+rA ))] TN } X, -

— Co5ely { o (zen) (e 2) (Qzeha ) Qz434a) +Upi o) [27%+ (6-a) T +(U+a o)) +

N Qo.Ff‘[ 522 +2(4ra)z +20¢a)] +32[5“(2+A+¢)} XD,

+ cosa; c.osalz{ ‘q(z+A)2(z+:z)(2z+4m)(zz+3+o.) - uapzwxm) +

+q‘5(1+4)[q:z +(9+2a)1 +5’+?>a-| + ngp (z“’a)} <X > )

(17)
M(z) = 32pH [ 22% +(5-20)7 + (1-)(3+a)] +
+ QPQ'(Z*A‘Q.)[-ZO?'(QZ.*’A*Q.) + 2 (2 +Ava)(Qz+440) (2243 -a) ~ o (2+2) (52+2a. +Y4) + (18) |
+ (Z+4)(.'Z+.‘2)(21+3*a)] + (z+4)(z+2)(z+A-a)(z+4+a)[z"+(.'zm.)z +ﬁ-(4m)(3+a)] ,
Ez'ag . (19)

N, = 2 (e V@) u @, o=
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In the strong field limit p>>/l s the approximate roots of the denominator of (18) can
be found and an analytical formula describing the intensity correlations can be obtained.

Ve shall determine these functions separately for strict cooverativity a=1 and a#l.
On applying the inverse Laplace transform to(46), making use of (15), (8) and (9) we find
that, in the steady state, the intensity correlations in two-atom resonance fluorescence
have the form: .

strong cooperativity : a=1 :

- -2T -2 g
qUURT) = 4- % & cos(2gT) LA 2 gtlas(upt) (20)

and Tor a#1 :

- = _3 Az . )
(3(2)(R.,R,,t) =A-4%e urc,os(lpt) +4 e I(f a)rcos(zpt) SiMal, SiMeL, +
4 -$(320T _ i Ayt Ieba (LuT ] -£(5-2a)T
tze cos(4pl) coset, casat, + 8[5(05h(qu' )+ i simh(fUT)je ™ et o5y , (51

with We(420>Ua+h )i.

Summary and conclusions

Eqs (20) ard (21) are analytical formulae, describing the time evolution of the in-
tensity correlations function for light scattered by the system of two atoms. A plot of
the intensity correlations, which follows from eq. (20) for =3 , is shown in Fig,1. It is
in agreement with the numerical result of Agarwal et ai?® , We note that for T =0, §=035
and the function grows for small T . The last result confirms those of Carmichael?® and
Drummond 24 , The situation is the opposite if the atoms are at a distance We#0 . Figs 2
and 3 give the shape of (21) forps=3 dy= e, , different distances between the atoms, and
various emission directions with respect t6 the line connecting both atoms. We find that
l{: this case, for T=0 , %“’(o):A , the function decreases for small T . If o, #«Ly and

=Q , '

g (R,,ﬁ'z,o) = 49354 +wskoﬁi(ﬁ2-§;)} 5 L ()
hence, 1f |

-

Ko (R3-R5)

2Wn n=042.... , (23)

)

we heve quw(o)=/1 » whereas for

(a4)

Koo (RS-R3) =TI (20+a), n=0142,....

we have (z)(o) =0. @

It is noteworthy that no photon anticorrelation effect ( 9 (0)<4) takes place if the

interatonic distance Ty and observation direction fulfil the relation (23{. Moreover, if
Ly =ty i.e, if the phofons are recorded in one direction, q“'(0)=4 always. This con-
firms Kimble and Mandel'’s suggestion that anticorrelation of photons, emitted by a system
of many atoms, cannot be observed using a single photodetector.

Fhioton anticorrelation ( 2“’(0)44) is accessible to observation with a setup involving
two photodetectors. Then, o, # &y provided that the condition (24) is fulfilled.

Eq. (22) leads to yet another conclusion, namely, trat Q®(0) "is independent of the-
radiztive interactior Letween thre atoms (it is determined by the parameter a). This is so
because the two atoms are pumned by the same laser beam, so that a well defined phase re-
lationship exists provided that the distance between the two atoms is constant between
vibrations of the dipole of either atoms. It is independent of .a , since the process does
not result from the emission of a photon by one of the atoms and i{:s absorption by the
other, but is due solely to coherent pumping, which imposes a fixed difference of phase.

When deriving Eqs (20) and £21) vie oxnit‘teg dipole~dipole interaction between the atoms;
however, as shown by Freedhoff** "and Kilin? + such interaction does not affect the shape
of g®XT) significantly.
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Fig.1. The normalized second-order correlation function 3akt) for

plotted versus the dimensionless time T with [5:5 .
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system plotted versus the dimensionless time T with
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Fig.3. The same as Fig.2 but with I’l_’:,_l =2N .
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