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Second-harmonic light generation (SHLG) is analyzed from the viewpoint of the photon statistics of the fundamental
and generated beams versus the peth traversed by the two waves in the medium. The calculations lead to an anti-bunching

effect for coherent incident light.

1. Introduction

The problem of the statistical properties of light
propagating in various media can be dealt with from
the viewpoint of the changes in its statistical proper-
ties due to interaction with the medium, or from that
of the dependence of the gain of various optical proc-
esses on the statistics of the incident light beam.

In the present investigation, we propose a quantum
theory of second-harmonic light generation in the as-
pect of photon statistics. The problem has been dealt
with repeatedly [1-7]. Our approach resembles that
of ref. [4]; however, we moreover consider the change
in statistics of the fundamental beam. Our results dif-
fer from those of Dewael [4]. For coherent incident
light, our calculations lead to a negative Hanbury-
Brown and Twiss effect [8]. This appears to us of
considerable interest and worthy of further investiga-
tion.

2. Theory

In the cavity type of problem the time evolution
of the field operators is considered. In the processes
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of harmonic generation, however, we are dealing with
the propagation type of problem. Substituting z =
—z[v, where z is the path traversed by a wave in a
medium and v its velocity, the cavity problem may
be replaced by the problem of the travelling wave
(Shen [2]). Starting from the phenomenological
hamiltonian given by Shen [2] for slowly varying
parts of the photon annihilation operators agp(z) of
the fundamental beam f (frequency w) and gener-
ated beam h (frequency 2w), at phase matching we
obtain the following quantum equations of motion:

da :
—g =2iK*d{(2)a, (2),

da, (z)

—— =ikel(@), )

where K is a coupling constant defined by the non-
linear susceptibility tensor of the medium and the
polarisation state of the beams [2].

This set of operator differential equations is inac-
cessible to an exact solution. The most commonly
considered case of dzy(z)/dz = 0, which can be solved
exactly, is irrelevant from the point of view of the
problem considered here.

We calculate the field correlation functions:
GM(z) of the first and G@)(z) of the second order,
for the two beams. Quite generally, for a correlation
function of order 1, we assume the form:

GM(z) = a* (2)]" [a(2)] ™, )
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where the symbol ¢ ) denotes quantum-mechanical
averaging over the states of the field.

" Our procedure involves the approximate method
[9] of expanding the correlation functions in a power
series in z:

k ~(n
G2)=6"(=0)+ T ZTI: #6¢") 3)
k=L gk z=0

If the variations of the correlation functions along
the path z are small, only the first few terms need to
_be considered. In this paper we include, at the most,
the sixth approximation.

By egs. (1) and assuming no second-harmonic pho-
tons to be present at z =0, we obtain:

dag(z) da(z); 14 2
% =0 2 | =-2UKPagap,
]z=0 dz® |,
dadz) d*a(z)!
)
=0, el LK
dz 12=0 dz |Z=0 )
+ + 2
+ag0910950), @
and
dah(z)I = iKa2 dzah(z)j _
Tdz o ag, T
dz lz=0 dz? lz=0 >
d3a (zy
h e/ ~ A 2 + 2 + 3
37 T UK e agan +aggar),  (5)
L Cag P

where, for brevity, we have written afz =0) =ag,.
Above, only the derivatives useful for our further cal-
culations are given, omitting all terms involving apq
and a;o as these do not affect the shape of the cor-
relation functions with regard to normal ordering
within their products.

On insertion of eqs. (5) into (3) and by having re-
course to the commutation rule for operators, [aro,
a;'ol =1, we obtain the following resuits for the first
and second order correlation functions for the gen-
erated beam:

G @) =IKPGR2 ~ 3K 26D + D)t + .

D) =1kPcHs4 - $IKIPQGE) +368N S + .,
6

with Gf.'('} = (a%'a'f'o). Our expression for G,(‘I)(z) dif-

230

OPTICS COMMUNICATIONS

May 1977

fers from that of [4] in the second term. Although
the functions Gél)(z) and G;‘Z)(z) are of a form in-
volving terms of order 4 and 6, their calculation — on
the assumption that second harmonic pliotons are
absent at the input — requires but the thirq;,ldériva-
tives of the creation and annihilation operators of
egs. (5).

For the fundamental beam, we have:

6P(2)= G - 26W(z),
6P =62 - 2Kk226Y + 6@) 2
+HKPOCR+ 126D + 6Dy L, - ()

The first of egs. (7), on multiplication by the energy
of the photons.of the fundamental beam, expresses
the energy conservation principle for SHLG.

Were the fields treated classically [a(z) would then
be a number, not an operator], the round parentheses™
of (6) and (7) would contain only the correlation
function Gt("(? of the highest orders. The other terms
in these parentheses result from the application of
boson commutation rules and thus express the quan-
tum properties of the field.

3. Discussion

The results reported above for the correlation func-
tions (6) and (7). make it possible to calculate the
magnitude of the Hanbury-Brown and Twiss effect
(8], which is proportional to the difference G@)(z) —
[cU )(z)] 2,

The quantities in question are given, for the two
beams, by the following expressions:

(i) in the case of a coherent incident beam (G%) =
{ngo*, where (1¢g) is the mean number of photons
incident on the medium),

G~ [GP@1? =-8IkBa*f+ ... (8)
6P - [6V@)? = 2k ? 2+ .. ()
(i) In the case of a chaotic incident beam (Gg’)) =
nKngp)"), and restricting ourselves to the lowest non-

vanishing approximations in z,

G - [6P@))? = 201K 1* o p)* 2

— BIKI8 (S40ne) + 17 * )25+
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GP(@) - [6P()]? = (ngy?
—4IKI? gy’ + )} ¢ (10)

Thus, for coherent incident light we obtain a neg-
ative Hanbury-Brown and Twiss effect (anti-bunch- -
ing), due solely to the quantum properties of the
field. The terms responsible for this effect have arisen
as a result of applying the commutation rules for the
annihilation and creation operators of photons. In
the process of harmonic generation, the radiation
field from a classical source can go over into a radia-
tion field having no classical counterpart. For a cha-
otic incident beam, the quantum nature of the field
causes but a decrease in the bunching effect.

Experimental studies of photon statistics in sec-
ond-harmonic generation of light will surely provide
guidelines regarding the need to quantize the electro-
magnetic field.-Our investigation of third-harmonic
light generation now under way leads to similar re-
sults. The quantum properties of the field lead to
anti-bunching also in two- [10] and, generally, in
multi-photon absorption [11] and in processes in-
volving degenerate parametric amplification [12].
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