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Abstract

We discuss the evolution of entanglement for a system of two two-level atoms interacting with

a common reservoir at finite temperature. The Markovian master equation is used to describe

the evolution of entanglement measured by concurrence. The phenomena of sudden birth and

sudden death of entanglement are discussed. It is shown that entanglement sudden death is a

standard feature when the reservoir has finite temperature. Entanglement sudden birth, which

is the result of the collective behaviour of atoms, appears only for a sufficiently small mean

number of photons of the reservoir (sufficiently low temperatures), and it gradually diminishes

as the temperature increases. The results are illustrated for the system prepared in the Werner

state.

PACS numbers: 03.67.Mn, 42.50.Fx, 42.50.Nn, 42.50.Dv

(Some figures in this article are in colour only in the electronic version.)

1. Introduction

Entanglement is the crucial feature distinguishing quantum

and classical worlds. It is a necessary resource for various

quantum algorithms. Since entanglement is a very fragile

quantity and quickly deteriorates when the quantum system

interacts with the environment, to know the evolution

of entanglement of a quantum system in a dissipative

environment is of vital importance for quantum information

processing. The time evolution of entanglement for a system

of two qubits or two two-level atoms can be qualitatively

described for various physical situations, and it has been

studied extensively in recent years [1–8]. A lot of discussion

has been devoted to the problem of disentanglement of

the two-qubit system in a finite time, despite the fact

that all the matrix elements of the two-atom system

decay only asymptotically. Yu and Eberly [5] coined the

name ‘entanglement sudden death’ (ESD) for the process

of finite-time disentanglement. ESD has recently been

confirmed experimentally [6]. Another problem related to

entanglement evolution that has attracted attention is the

evolution of entangled qubits interacting with non-Markovian

reservoirs [9–11]. It has also been shown that a squeezed

reservoir leads to steady-state entanglement [12] and revivals

of entanglement [13].

To quantitatively describe entanglement evolution, it is

usually assumed that the two atoms are independent, each

of them is embedded in its own reservoir, and they are

prepared initially in an entangled state, pure or mixed, and

the time evolution of entanglement quantified by the values of

concurrence [14] or negativity [15, 16] is studied.

If the two atoms are separated by a distance of the order

of the wavelength of light emitted by the atom, or smaller,

and if both atoms are interacting with a common reservoir,

the entanglement evolution becomes richer, exhibiting not

only ESD or asymptotic decay, but entanglement can also be

created during the evolution [2, 3], or one can observe revival

of the entanglement [7] as well as ‘entanglement sudden

birth’ (ESB) [8]. ESD and ESB have recently been discussed

for the two atoms interacting with a common structured

reservoir [17]. Experimental conditions for the realization of

the collective Dicke model have been studied [18]. It has
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also been shown [19, 20] that for separate reservoirs at finite

temperatures, entanglement always disappears at finite time,

which means that there is always ESD when the reservoir has

finite temperature.

In this paper, we discuss the evolution of entanglement,

measured by concurrence, for a system of two two-level atoms

interacting with a common reservoir at finite temperature. The

evolution of the system is described by the Markovian master

equation introduced by Lehmberg [21] and Agarwal [22],

taking into account the cooperative behaviour of the atoms. It

is shown that the temperature of the reservoir has an important

influence on the evolution of entanglement in such a system.

2. Master equation

We consider a system of two two-level atoms with ground

states |gi 〉 and excited states |ei 〉 (i = 1, 2) connected by

dipole transition moments µi . The atoms are located at

fixed positions r1 and r2 and coupled to all modes of the

electromagnetic field, which we assume to be in a thermal

state.

The reduced two-atom density matrix evolves in time

according to the Markovian master equation given by [21–23]

∂ρ
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where S+
i (S−

i ) are the raising (lowering) operators, and

Sz
i is the energy operator of the i th atom, Ŵi i ≡ Ŵ are the

spontaneous decay rates and N is the mean number of photons

of the reservoir. We assume that the two atoms are identical.

The parameters Ŵi j and �i j (i 6= j) depend on the distance

between the atoms and describe the collective damping and

the dipole–dipole interaction defined, respectively, by
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where k = ω0/c and ri j is the distance between the atoms.

Here, we assume, with no loss of generality, that the atomic

dipole moments are parallel to each other and are polarized

in the direction perpendicular to the interatomic axis.

To describe the evolution of the two-qubit system, the

standard basis of atomic product states can be used. We,

however, prefer to use, instead of the standard basis, a

basis of the collective states: |g〉 = |g1〉 ⊗ |g2〉, |e〉 = |e1〉 ⊗
|e2〉, |s〉 = 1√

2
(|e1〉 ⊗ |g2〉 + |g1〉 ⊗ |e2〉) and |a〉 = 1√

2
(|e1〉 ⊗

|g2〉 − |g1〉 ⊗ |e2〉). The states |s〉 and |a〉 are the symmetric

and antisymmetric states of the two-atom system. They are

maximally entangled states or Bell states of the two-atom

system. Such a basis is convenient for finding the solutions

to the master equation (1). Assuming that initially the system

density matrix has the so-called X form, which is preserved

during the evolution according to the master equation (1), we

obtain the following system of equations [23]:

ρ̇ee = − 2Ŵ(1 + N )ρee + N [(Ŵ + Ŵ12)ρss + (Ŵ − Ŵ12)ρaa] ,

ρ̇ss = (Ŵ + Ŵ12) [ρee − (1 + 3N )ρss − Nρaa + N ] ,

ρ̇aa = (Ŵ − Ŵ12) [ρee − Nρss − (1 + 3N )ρaa + N ] ,

ρ̇as = − [Ŵ(1 + 2N ) + 2i�12] ρas,

ρ̇ge = −Ŵ(1 + 2N )ρge. (4)

Solving equations (4) we find all the matrix elements required

for calculating the time evolution of the system entanglement.

Although analytical solutions are possible, they are rather

complicated, and we use numerical solutions in the following.

3. Entanglement evolution

To quantify the entanglement, we use concurrence introduced

by Wootters [14]. In the case we consider, concurrence can be

calculated analytically, and it has the form [3]

C(t) = max {0, C1(t), C2(t)} ,

C1(t) = 2|ρge(t)| −
√

[ρss(t) + ρaa(t)]
2 − [2ℜρsa(t)]

2,

C2(t) =
√

[ρss(t) − ρaa(t)]
2 + [2ℑρsa(t)]

2 − 2
√

ρee(t)ρgg(t).

(5)

Inserting into (5) the corresponding solutions to equations (4),

we find the values of C1(t) or C2(t), and whenever one of

the two quantities becomes positive, there is some degree of

entanglement in the system.

First of all, before we calculate the time evolution, we find

the steady state solutions to equations (4), which are given by

ρee(∞) =
N 2

(2N + 1)2
,

ρss(∞) = ρaa(∞) =
N (N + 1)

(2N + 1)2
, (6)

ρgg(∞) =
(N + 1)2

(2N + 1)2
,

and the steady state values of coherences ρas(∞) and ρeg(∞)

are zero. From solutions (6), it is immediately seen that

C1(t) must become negative at some finite time td. Moreover,

since
√

ρee(∞)ρgg(∞) = ρss(∞) = ρaa(∞) , it means that

C2(t) must also become negative at some finite time td. The

steady state solutions (6) do not depend on the collective

parameters Ŵ12 and �12, which means that independently of

the interatomic distance, there is always ESD if the mean

number of photons of the reservoir is different from zero.

This confirms the results found earlier for atoms in separate

reservoirs [19, 20]. For the long-time behaviour of the system

in a thermal reservoir, it is not important whether the atoms

behave collectively or not.

The collective behaviour of the two atoms, when the

interatomic distance is less than the wavelength of the
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Figure 1. Evolution of concurrence C for the Werner state (7) and
interatomic distance r12 = 10λ (independent atoms), for (a) N = 0
and (b) N = 0.01.

light emitted by the atom, leads to the sudden birth

of entanglement [8]. Here, we illustrate the evolution of

entanglement in a system of two two-level atoms interacting

with a common reservoir, which is governed by the master

equation (1). We assume that the initial state is the Werner

state of the form

ρ(0) = p|s〉〈s| + (1 − p)
I

4
, (7)

where p is the population of the symmetric state |s〉 and I

is the 4 × 4 unit matrix. In figure 1, we plot concurrence as

a function of t for various values of p assuming that the

interatomic distance is large (r12 = 10λ), which means that

both atoms can be treated as being independent, and this is

equivalent to the situation when each atom interacts with its

own reservoir. Figure 1(a) shows the concurrence evolution

for the mean number of photons of the reservoir equal to

zero (vacuum). It is seen that for p smaller than 1/3 there

is no entanglement initially, and it never appears during the

evolution. For p close to unity there is asymptotic decay (no

sudden death), and for some intermediate values of p, ESD

is evident. However, when the mean number of photons is

non-zero, as in figure 1(b), where N = 0.01, ESD is observed.

The death time is different for different values of p, but there

is no asymptotic decay of entanglement.

In figure 2, we show the situation when the interatomic

distance is small compared with the resonant wavelength

(r12 = λ/12). In this case, ESD appears in almost the whole
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Figure 2. Evolution of concurrence C for the Werner state (7) and
interatomic distance r12 = λ/12 (correlated atoms), for (a) N = 0
and (b) N = 0.01.

range of p values, except for the limiting value of p = 1,

but after the death of entanglement we can observe revival

of entanglement. What is even more interesting, is the

appearance of entanglement for values of p smaller than

1/3, which is ESB. Surprisingly, the birth of entanglement

is most effective for the initially isotropic state, for which

all levels of the system are equally populated (ρ(0) = I/4).

Figure 2(a) illustrates the situation for N = 0, and figure 2(b)

for N = 0.01. From figure 2(b) it is seen that the death time

becomes shorter as N increases and the region of ESB is

gradually shrinking. For longer times, after the birth, there

is a subsequent death time after which the entanglement

disappears again.

To illustrate the situation more convincingly, we plot in

figure 3 the dependence of the entanglement death time td on

the mean number of photons N , for p = 1 (ρ(0) = |s〉〈s|)) and

r12 = λ/12. This initial state is a pure, maximally entangled

state (Bell state), and it is seen that for any non-zero value

of N there is ESD, and the death time decreases as the mean

number of photons increases. Only for N → 0 the death time

td → ∞, and the asymptotic decay can be observed.

The other limiting case is illustrated in figure 4, where

the initial state is the isotropic state (ρ(0) = I/4). There is

no entanglement initially, of course, but after some finite

time tb (birth time) entanglement is created in the system,

it lasts for a finite period of time, and it dies out at the

death time td. It is interesting to note that the timescale over

which the entanglement lasts in this case is much longer

3
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Figure 3. Dependence of the entanglement death time td (in units of
Ŵ−1) on the mean number of photons N of the reservoir for the
initial state ρ(0) = |s〉〈s| and the interatomic distance r12 = λ/12.
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Figure 4. Dependence of the entanglement birth time tb and death
time td (in units of Ŵ−1) on the mean number of photons N of the
reservoir, for the initial state ρ(0) = I/4 and the interatomic
distance r12 = λ/12.

than it was in the previous case. This is related to the fact

that this entanglement comes from the population of the Bell

state |a〉, which decays on a much longer timescale (Ŵ −
Ŵ12)

−1 [3]. The grey areas in the figures denote the presence of

entanglement. Again, only when N → 0 the asymmetric state

decays asymptotically to zero and the asymptotic behaviour of

entanglement takes place. Another interesting feature of ESB

is the fact that it appears only for rather small values of the

mean number of photons N . Above a certain value of N there

is no ESB. This value depends on the interatomic distance,

it becomes higher as the interatomic distance decreases, and

there is no ESB for independent atoms.

4. Conclusions

We have discussed the dynamics of entanglement in a

two-atom system interacting with a common reservoir at finite

temperature. The evolution of the system is described by

the Lehmberg–Agarwal Markovian master equation, which

takes into account the collective behaviour of the atoms. The

collective spontaneous emission is a source of entanglement

even for the isotropic initial state, which is referred to as

ESB. We have shown that for non-zero temperature reservoir,

the ESD is the standard feature of the evolution, and only

in the limit N → 0 is the asymptotic decay of entanglement

possible. This means that in real situations of reservoirs at

finite temperatures, there is always ESD. On the other hand,

ESB created by correlated atoms appears only for reservoirs

at sufficiently low temperatures, and it disappears at higher

temperatures.
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[7] Ficek Z and Tanaś R 2006 Phys. Rev. A 74 024304
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