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Abstract

If a broadband squeezed vacuum is treated as a reservoir with respect to a
two-level atom, the non-zero phase-dependent reservoir correlation
functions characterizing the squeezed vacuum introduce ‘squeezing terms’
to the master equation. These terms are responsible, for example, for the
well known narrowing of the spectral lines in the resonance fluorescence
spectrum of the atom. For a squeezed vacuum reservoir with finite
bandwidth it is possible to derive the master equation that is consistent with
the Born—Markov approximation by a two-step procedure which consists in
dressing the atom first and next coupling it to the finite-bandwidth reservoir.
The master equation is valid whenever the bandwidth of the reservoir is
much broader than the atomic linewidth but not necessarily broader than the
Rabi frequency. This procedure can be applied not only for the squeezed
vacuum reservoir but also for the ordinary vacuum with the structure of the
mode density that is not flat, e.g., modelled by a Lorentzian function as in a
cavity. The master equation for this case, in the operator form, shows some
similarities to the master equation for the squeezed vacuum reservoir due to
the presence of the ‘squeezing-like terms’. The similarities and differences

of the two master equations are discussed in this paper.
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1. Introduction

Spontaneous emission of an excited two-level atom results
as an effect of its interaction with a continuum of vacuum
modes that play a role of a reservoir to the atom. The
spontaneous emission rate is usually supposed to be an inherent
property of the atom, but, in fact, it has been known for
a long time that the atomic damping rates depend on the
mode structure of the atomic environment [1-3]. However,
when the density of modes of the reservoir is essentially
flat, as for a vacuum, one can neglect any modifications
of the atomic spontaneous emission rate and assume that it
is equal to the Einstein A coefficient. When the atom is
driven on resonance by a strong monochromatic laser beam
the structure of atomic levels changes dramatically. For
very strong fields, when the Rabi frequency becomes much
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bigger than the spontaneous emission rate, the dressed atom
picture can be used to describe atomic dynamics [4,5]. In
many cases, the strong laser field can be considered as a
classical field, and the ‘semiclassical dressed states’ can be
used to describe atomic radiative properties [6-8]. Also, in
the dressed atom description the damping rates are usually
treated as constants that do not depend on the strength of the
applied field and the structure of the reservoir. However, the
situation is quite different when the driven atom is placed in
an environment with the density of modes that appreciably
depends on frequency [3,9,10]. Lewenstein and Mossberg [9]
have analysed the spectral and statistical properties of atoms
driven by a strong, single-mode light field and coupled to a
reservoir of electromagnetic field modes with strong frequency
dependence. They used a non-Markovian approach leading to
a rather complicated set of equations describing the atomic
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dynamics. Their theory predicted a number of interesting
features of the atomic spectra, one of them was an asymmetry
of the fluorescence spectrum radiated to the background modes
which has been measured by Lezama et al [11].

Recently, the master equation has been derived [12, 13]
for the reduced atomic density matrix under the Born-Markov
approximation which takes into account the dependence of the
relaxation rates on the strength of the laser field. In this master
equation, even for flat reservoirs such as an ordinary vacuum,
the relaxation rates depend on the strength of the field through
the @ factor in the vacuum density of modes. Keitel et al
[14, 15] have shown that in the secular limit the resonance
fluorescence spectra should be symmetric even for tailored
reservoirs with an asymmetric density of modes despite the fact
that the dressed states populations are not equal. The reason
for this is that the difference in populations is compensated for
by the difference in the transition rates between the dressed
states. They emphasized that it is important for strong fields to
perform the dressing operation first and only after that consider
the coupling of the dressed atom to the reservoir modes. The
results obtained in this way differ from the results obtained in
the conventional treatment.

Gardiner, in his seminal paper [16], has shown that
when an atom is damped to a squeezed vacuum reservoir
the atomic dipole moment can decay with two different rates,
one much longer and the other much shorter than that in the
ordinary vacuum. Consequently, a subnatural linewidth has
been predicted in the spontaneous emission spectrum. The
addition of a coherent driving field to the problem introduces a
strong dependence of the atom dynamics and the fluorescence
spectrum on the relative phase between the coherent field
and the squeezed field. Carmichael ef al [17] have shown
that, depending on the phase, the central peak of the Mollow
triplet [18] can either be much narrower or much broader than
the natural linewidth of the atom. Thus, the spectrum can be
modified quantitatively from the spectrum associated with the
normal vacuum. Apart from the quantitative modifications,
the qualitative changes of the fluorescence spectrum have also
been predicted. Courty and Reynaud [19] have found that for a
certain detuning of the driving field from the atomic resonance
the central peak and one of the sidebands can be suppressed
due to a population trapping in the dressed state. Smart and
Swain [20-22] have found unusual features in the resonance
fluorescence spectra, such as a hole burning and dispersive
profiles. These features, however, appear for Rabi frequencies
comparable to the atomic linewidth and are very sensitive to
the various parameters involved.

Most of the studies dealing with the problem of a two-level
atom in a squeezed vacuum assume that the squeezed vacuum
is broadband, i.e. the bandwidth of the squeezed vacuum is
much larger than the atomic linewidth and the Rabi frequency
of the driving field. Experimental realizations of squeezed
states [23-26], however, indicate that the bandwidth of the
squeezed light is typically of the order of the atomic linewidth.
The most popular schemes for generating squeezed light are
those using a parametric oscillator operating below threshold,
the output of which is a squeezed beam with a bandwidth of
the order of the cavity bandwidth [27,28].

First studies of the finite-bandwidth effects have been
performed by Gardiner et al [27], Parkins and Gardiner [29]

and Ritsch and Zoller [30]. The approaches were based
on stochastic methods and numerical calculations, and were
applied to analyse the narrowing of the spontaneous emission
and absorption lines. The fundamental effect of narrowing
has been confirmed, but the effect of finite bandwidth was
to degrade the narrowing of the spectral lines rather than
enhance it. Later, however, numerical simulations done by
Parkins [31, 32] demonstrated that for strong driving fields a
finite bandwidth of squeezing can have a positive effect on the
narrowing of the Rabi sidebands.

It has recently been shown by Yeoman and Barnett [33]
that it is possible to obtain a master equation consistent with the
Born-Markov approximation by first including the interaction
of the atom with the driving field exactly, and then considering
the coupling of this combined dressed atom system with
the finite-bandwidth squeezed vacuum. The advantage of
this dressed-atom method over the more complex treatments
based on adjoint equation or stochastic methods [31, 32, 34]
is that simple analytical expressions for the spectra can be
obtained, thus explicitly displaying the factors that determine
the intensities of the spectral features and their widths. This
idea has been extended by Ficek et al [35] to the case of a fully
quantized dressed-atom model coupled to a finite bandwidth
squeezed field inside an optical cavity and by Tanas et al [36]
to the case of a non-resonant classical driving field. It has
been shown [36] that despite the complexity of the problem, it
is possible to obtain a quite simple operator form of the master
equation that is valid for arbitrary values of the Rabi frequency
and the detuning but is restricted to the squeezing bandwidths
much greater than the natural linewidth. The same approach
has been used by Kowalewska-Kudtaszyk and Tanas$ [37] to
derive the master equation for a two-level atom driven by a
strong laser field and damped to a reservoir with the non-flat
density of modes, that is, the structured or tailored reservoir.
It has been shown that despite the non-squeezed nature of the
reservoir, the resulting master equation contains terms of the
type known for the squeezed reservoirs that have been referred
to as ‘squeezing-like’ terms.

The aim of this paper is to compare the two different mod-
els. The operator form of the master equation for either model
is derived under the same approximations using the two-step
procedure described above. Particular attention is paid to the
role of the ‘squeezing-like’ terms that appear in the master
equation whenever the reservoir has finite bandwidth. The
Bloch equations based on the master equation for either model
are derived and their solutions discussed shortly. Analytical ex-
pressions for the parameters governing the Bloch equations are
found, in particular, the expressions for the two different damp-
ing rates of the quadrature components of the atomic dipole and
for the steady-state values of the dressed atom population in-
version. It is shown that these quantities depend strongly on
the nature of the reservoir. The similarities and differences of
the atomic evolution in both reservoirs are emphasized.

2. An atom in a squeezed vacuum reservoir with
finite bandwidth

2.1. Master equation

In this section we consider a two-level atom driven by a
monochromatic laser field of frequency w; with the Rabi
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frequency 2 detuned by A = w; — w4 from the atomic
transition frequency w,, which is damped to a squeezed
vacuum reservoir with finite bandwidth. The idea of the
approach was proposed by Carmichael and Walls [38] and
Cresser [39], and recently used by Yeoman and Barnett [33]
and Tanas et al [36] to derive the master equation for a two-level
atom damped by a squeezed vacuum with finite bandwidth. In
this approach, we first perform the dressing transformation to
include the interaction of the atom with the driving field and
then couple the resulting dressed atom to the reservoir. We
derive the master equation under the Markov approximation
which requires the reservoir bandwidth to be much greater than
the atomic linewidth, but not necessarily greater than the Rabi
frequency of the driving field and the detuning. For simplicity,
we assume that the squeezing properties are symmetric about
the central frequency of the squeezed field which, in turn, is
exactly equal to the laser frequency.

We start from the Hamiltonian of the system which in the
rotating-wave and electric-dipole approximations is given by

H:HA+HR+HL+H1 (1)

where
Hy = %ha)Asz = —%hAO’Z + %ha)Laz 2)

is the Hamiltonian of the atom,
o0
Hp=hnh / wb™ (w)b(w) dw 3)
0

is the Hamiltonian of the vacuum field,
Hy = 31 Qo exp[—i(p, +wrt)]+o_ expli(py +w,1)]] (4)

is the interaction between the atom and the classical laser field,
and

H =in /oo K(@)[ob(@) — b (@)o_1de (5
0

is the interaction of the atom with the vacuum field. In
(2)-(5), K(w) is the coupling of the atom to the vacuum
modes, A = w; — wy is the detuning of the driving laser
field frequency w; from the atomic resonance w,, ¢y, is the
laser field phase, and o4, o_, and o, are the Pauli pseudo-spin
operators describing the two-level atom. The laser driving field
strength is given by the Rabi frequency €2, while the operators
b(w) and b* (w) are the annihilation and creation operators for
the vacuum modes satisfying the commutation relation

[b(w), b*(@")] = 8(w — ). ©)

In order to derive the master equation we perform the
two-step unitary transformation. In the first step we use the
second part of the atomic Hamiltonian (2) and the free field
Hamiltonian (3) to transform to the frame rotating with the
laser frequency w,, and to the interaction picture with respect to
the vacuum modes. The rotating frame is also shifted in phase
by ¢, i.e. we introduce new raising and lowering operators

which absorb the phase factor according to the relations
o_e¥r — g_, o.e7 5 o, @)

After this transformation our system is described by the
Hamiltonian
Hy + HJ (1), (®)
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where
Hy=—1nAo. +1nQ(o, +0.) 9)

and

H/ () = ih/ K (w)o.b(w) expligr, +i(w;, — w)t]dw + H.c.
0

10)
The second step is the unitary dressing transformation

performed with the Hamiltonian Hy, given by (9). The
transformation
i i
oy(t) = exp[—ﬁHot}oi exp[ﬁHot:| (11

leads to the following time-dependent atomic raising and
lowering operators:

or(t) = 3[F(1 £ A)6_ exp(—iQ'r)

+ (1 F A)é, exp(iQ'r) + Q6,] (12)
where
6 =31 = Mo — (1+ Ao, — Qo]
& = H—(1+A)o_ + (1 — Ao, — Qo] (13)

0, = Qo_ + oy) — AO‘Z

are the dressed operators oscillating at frequencies —2/, Q'
and 0, respectively, and

~ Q ~ A
Q=— A=— Q' =vQ2+ A2

14
oY oY (14)

Since we assume Q' > 0, as Q — 0, the dressed operators
0+ — 04,0, = o, for A <0,and 64 - —04, 6, - —0;
for A > 0.

Under the transformation (12) the interaction Hamiltonian
takes the form

H;(t) =inh /OO{K(a))m(t)b(a)) expligy +i(w; — w)t]
0

—K*(@)b* (w)o_(t) exp[—ip; —i(wp — w)t]}dw. (15)

The master equation for the reduced density operator p
of the system can be derived using standard methods [40]. In
the Born approximation the equation of motion for the reduced
density operator is given by [40]

9 IOD 1 t b
o =i /0 Trr{[H; (1), [H(t—7), pr(0)p~ (1 —7)]]}dT
(16)

where the superscript D stands for the dressed picture, pg (0) is
the density operator for the field reservoir, Trp, is the trace over
the reservoir states and the Hamiltonian H; (¢) is given by (15).
We next make the Markov approximation [40] by replacing
pP(t — 1) in (16) by pP(¢), substitute the Hamiltonian (15)
and take the trace over the reservoir variables.

In the case of a squeezed vacuum reservoir, the trace over
the reservoir operators gives the non-zero values for the two
‘diagonal’ correlation functions

Trrlpr(0)b()b* ()] = [N() + 118(0 — o)

a7
Trrlpr(0)b™ ()b(w)] = N (@)§(w — )
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where N () is the mean number of photons at frequency w, and
the two ‘nondiagonal’ correlation functions, which are specific
for the squeezed vacuum reservoir

Trrlpr(0)b(@)b ()] = M () exp(ips)s 2o — @ — o)

Trrlpr(0)b" (0)b* () ]=M (w) exp(—ig;)§ 2wy —w—a)

(18)
where M (w) describes the value of squeezing and ¢, is
the phase of squeezed light, and we have assumed that the
carrier frequency of the squeezed field w; is equal to the laser
frequency w;. The phase-dependent two-photon correlation
functions (18) introduce ‘squeezing terms’ proportional to
M (w) that will appear in the master equation.

The explicit form of N () and M (@) depend on the source
of squeezed light. The most popular sources of the squeezed
vacuum are the degenerate parametric oscillator (DPO) and
nondegenerate parametric oscillator (NDPO), which generate
two different types of squeezed field. For a degenerate
parametric oscillator (DPO) the squeezing properties are
described by [27]

22— pu? 1 1
N(x) = - 19
() =" |:x2+u2 x2+A2] (19)
M(x) popr 1o, 1 (20)
X)=7¢§
4 X2+ u? x2+22

while for a non-degenerate parametric oscillator (NDPO) the
frequency dependence is given by [28]

22— pu? 1 . 1
8 (x—a)2+u? (x+a)?+u?

Nx) =

1 1
_(x—a)2+k2_(x+a)2+k2] D
M()_Az—uz[ 1 N 1
VTR oot Grare sl
1 1
+(x—a)2+)\2+(x+ot)2+)\2i| @2)

where x = w — oy, and A and p are related to the cavity
damping rate, y,, and the real amplification constant, €, of the
parametric oscillator according to

A=y +e€
(23)
K=Y~ €.

The parameter « is characteristic of a two-mode squeezed
field generated by the non-degenerate parametric oscillator
and represents the displacement from the central frequency
of the squeezing at which the two-mode squeezed vacuum is
maximally squeezed. Thus, for a realistic source of squeezed
vacuum N (w) and M (w) are combinations of Lorentzians
(positive and negative) with the widths A and p and they
have important frequency dependence. In order to validate the
Markov approximation used here, we assume that the widths
of the Lorentzians are much larger than the atomic linewidth.

In the Markov approximation we can extend the upper
limit of the integration over 7 in (16) to infinity and next
perform necessary integrations using the formula

o 1
/ exp(Fier)dr = n8(e) £iP- (24)
0 €

where P means the Cauchy principal value. After lengthy but
simple operator algebra, which can be performed, for example,
with the computer algebra program Form [41], we obtain the
master equation which, in the frame rotating with the laser
frequency w, and shifted in phase by ¢, can be written as [36]

p = 3id[o, p] — 3iQlo, +o_, p]

+ %]\7(2@,00_ —0_0.0p — pO_0y)

+ %(N +1)2o_poy —0,0_p — poo_)

—Mo,po, — M*o_po_

+3(Blow. [0z, pll + B*lo_, [0z, p]]) (25)
where y is the natural atomic linewidth, and the other
parameters are defined by

N =yN,+1(1 - AHRel_

M =y (M, +iA8y)e — 1(1 — ADI_

§=A+yAsy — 11— AHImT_ (26)
B =yQli(Sy +8ue®) + AT'_]
I'_=y(No— N.) — y(My — M,)e"
where
Ny = N((,()L) N, = N(LL)L + Q/)
My = M(w;) M, =M(w, +€)
& =201+ g
| % N(x) (27
(SN =—P dx
T J_ s X+
1 © M
Sy = —P @) gy
T J oo X+

In the derivation of equation (25) we have assumed that the
phase ¢, does not depend on frequency [42], and we have
included the divergent frequency shifts (the Lamb shift) to the
redefinition of the atomic transition frequency [40]. We have
also assumed that the squeezed vacuum is symmetric about
the central frequency wy, so that N(w; — Q) = N(wr + Q')
(N- = Ny, Mo, — Q) = Mo + Q) (M- = M,).
Moreover, the coupling K (w) is assumed to be a slowly
varying function of w with respect to the squeezing parameters
N(w) and M (w), so we can consider it as being constant,
K(w) =y /2m.

The Cauchy principal values of the integrals in (27) can
be evaluated using the contour integration which gives

Sy =8, — b5
(28)
(SM = 8# +(Sx

where the form of §,, and §, depends on the type of squeezing
being considered and is explicitly given by:
(i) for the degenerate case

5, =y ! (29)
T @R )

A2 —pu? 1
Y @) G0
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and (ii) for the non-degenerate case with @ = '

5=y T ! 31)
CEY T uee v )

Az —pu? 1
5, =yt K (32)

4 A(AQT+AY)’

The master equation (25) has the form known from
the broadband squeezing approaches with the new effective
squeezing parameters N and M given by (26). Beside the
known terms, there are also new terms (proportional to §),
which are essentially narrow bandwidth modifications to the
master equation. All the narrow bandwidth modifications
are determined by the parameters I'_, §y and &, defined
in (26) and (27). The parameter I'_ describes the asymmetry
of the squeezing properties at the centre (w = wp) and
at the sidebands (v = w; £ '), and the parameters Sy
and &y, are the shifts associated with the non-zero Cauchy
principal values appearing in (24). All of them become zero
when the squeezing bandwidth goes to infinity (Ny = N,
My = M,). In the broadband squeezing reservoir the
characteristic squeezing terms, o,po; and o_po_, in the
master equation (25) are proportional to the constant squeezing
parameter M = My = M. The squeezing terms come from
the squeezing properties of the reservoir expressed exclusively
by the correlation functions (18), and in this case they are really
squeezing terms in the sense that they disappear if there is no
squeezing in the reservoir (M = 0). However, it is also clear
from (26) that for finite bandwidth of the reservoir M can be
non-zero even for My = M, = 0and A = 0if Ny # N,,i.e.if
the mean number of photons of the reservoir is different at the
centre and at the sidebands. Thus, we can distinguish between
the contributions from (18) and (17) to M. We will refer to the
latter as ‘squeezing-like’ contributions. The role of particular
contributions becomes more clear when looking at the Bloch
equations generated by the master equation.

2.2. Bloch equations

From the master equation (25) we easily derive the
optical Bloch equations for the mean values of the atomic
operators [36]

4 [ fo-0) (-0} [0
< ( <o+(z)>> =-A ( <a+(z>>> - (o> (33)
(0.(1)) (0:(1)) y

where
L+N—is M —1
A= M* LiN+is i@ (34)
—iQ+p* iQ+p  y+2N
Defining the Hermitian operators o, and o, as
ox=lo_+0)  oy=(0-—0) (39

we get from (33) the following equations of motion for the
atomic polarization quadratures:

d [ (o) (0x(1)) 0
I ((%(ﬂ)) =-B ((%(O)) - <0> (36)
(0:(1) (0:(0) Y
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with the matrix B given by

Vi dy 0
B=| -8 y» -l (37)
—2Q; 2Q, Yty
where we have introduced the notation
yx:%+N+ReM y),:g+1\~[—ReIl~4 (38)
S, =8—ImM 8y =8+ImM (39)
Q,=Rep Qy, =Q+Im§p. (40)

The quantities y, and y, given by (38) describe two different
damping rates for the two quadrature components of the atomic
dipole moment. They are modified with respect to the values
known for the broadband squeezing [16] because the values
of N and M are different from their broadband squeezing
counterparts, although the form of the damping rates remains
the same. Similarly, §, and §, are modified detunings.

According to (26) the damping rates y, and y, can be
rewritten in the form

Y = v[4 + Ny + My cos ¢ — Ay sin¢] (41)
¥y = y[3 + Ni — M, cos ¢ + Ady sin ¢
+(1 = AM[Ng — Ny — (Mo — M) cos ¢]] (42)
and on resonance (A = 0) we have
Ve =y} + Ny + M, cos §] (43)
vy = v[3 + No — M cos ¢] (44)

which shows that on resonance y, is determined by the
squeezing properties on the sidebands while y, is determined
by the squeezing properties at the central line [33]. Both of
them depend on the squeezing phase. For broadband squeezing
they go over into the well known form [16].

The Bloch equations (36) can be easily solved for the
steady-state values of the atomic variables, and the result is
given by

1yQ8é,
2 d
_LyQy,
2 d
Y ayy +8:8y)
d

(Ox)ss

(45)

(Uy)ss =

(Uz)ss =
where

d=(y:+ Vy)(yx]/y + 8x5y) + Q(nyy + (3ny)- (46)
An interesting feature of the steady-state solutions (45) is

the fact that the dispersion component (o, )ss of the atomic
dipole can be non-zero even for a resonant driving field
(A = 0). We find from (26), (27) and (39) that
8y =8+ImM =y M(w,)sin¢ 47

indicating that even for A = 0 the (o,),; component of
the Bloch vector can have a non-zero steady-state solution
provided the phase ¢ is different from O or 7 and there is
a non-zero squeezing at the atomic resonance. This effect
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can lead to unequal populations of the dressed states of the
system [43], which has important physical consequences [36].
The steady-state dressed population inversion &, according
to the transformation (13), is related to the steady-state
solutions (45) by

<5z)ss = 29(”}()35 - A<Gz>ss (48)
and on resonance (A = 0) it is expressed solely by (oy)s;s,
which is different from zero when 4, is non-zero. Thus,
the squeezed vacuum reservoir makes it possible to produce
population inversion between the dressed atomic states even
on resonance provided the squeezing phase is different from 0
or .

The different damping rates y, and y, given by (38) have
important consequences in the fluorescence and absorption
spectra of the atom in a squeezed vacuum leading to narrowing
or broadening of the spectral lines [17,33,36]. The phase-
dependent narrowing of the spectral lines is a characteristic
feature of the atomic resonance fluorescence when the atom is
damped to a squeezed vacuum reservoir which has been widely
discussed in the literature (see, for example, [44—46] and the
papers cited therein). Here, we restrict our considerations
to the master equation and the Bloch equations, and we are
going to compare their forms for two different reservoirs: a
squeezed vacuum with finite bandwidth and a structured but
non-squeezed reservoir.

3. An atom in a structured reservoir

3.1. Master equation

In section 2.1 we have presented the derivation of the
master equation for the case when the atom is driven by
a strong laser field and is damped to a squeezed vacuum
reservoir. The crucial element of the derivation was to
perform dressing transformation before the atom was coupled
to the reservoir and next to make the Markov approximation
despite the finite bandwidth of the squeezed vacuum reservoir.
Strictly speaking, the reservoir with finite bandwidth is non-
Markovian, but if the bandwidth of the reservoir is much larger
than the natural atomic linewidth, or to be more specific, if the
linewidths of the Lorentzians appearing in N (w) and M (w) are
much larger than the atomic linewidth, we can safely assume
that the Markovian approximation still works sufficiently well.
Performing the dressing transformation before the atom is
coupled to the reservoir allows us to lift the requirement that
the bandwidth of the reservoir must also be larger than the Rabi
frequency describing the coupling of the atom to the laser field.
Under these assumptions it turned out to be possible to obtain
a simple master equation, in the operator form quite similar
to that known for the broadband squeezing reservoir, in which
modifications coming from the finite bandwidth of the reservoir
have been explicitly accounted for. The important feature
of the master equation for the atom in a squeezed vacuum
are ‘squeezing terms’, o, p0, and o_po_, that stem from the
correlation functions (18). Such terms do not appear in the
master equation in the case of the thermal reservoir, which is
characterized by the correlations (17) with N (w) being a slowly
varying function of w. It is interesting to see, however, that
for the reservoir with the mode density having a non-trivial

structure, e.g., a Lorentzian peak as in the cavity situation,
the terms o, po, and o_po_ do appear in the master equation
even if the reservoir is described solely by the correlations (17).
We refer to such terms as ‘squeezing-like’ terms because they
have a different origin, but yet they have some properties of
the squeezing terms. To show this explicitly, we present here
the master equation for the atom driven by a strong laser field
and damped to a structured or tailored reservoir, in the form
derived by Kowalewska-Kudtaszyk and Tanas [37].

Again, we consider a two-level atom driven by a strong
monochromatic laser field of frequency w; with the Rabi
frequency 2 and detuned by A = w; — w4 from the atomic
transition frequency w,. We derive the master equation
that takes into account explicitly the dependence of atomic
relaxation rates on the strength of the field as well as the
structure of the reservoir. The derivation proceeds along
the same lines to those presented in section 2.1, ie. we
first perform the dressing transformation (11) to include the
interaction of the atom with the driving field and then couple the
resulting dressed atom to the reservoir. We make the Markov
approximation which requires the reservoir bandwidth to be
much greater than the atomic linewidth, but not necessarily
greater than the Rabi frequency of the driving field and the
detuning. Since the reservoir is assumed to be thermal, it
is characterized by the correlations (17), where N(w) is the
mean number of photons at frequency w and its dependence
on w can be ignored. However, the density of modes has a
structure, which is accounted for by assuming that the coupling
parameter K (w) depends essentially on frequency. To take this
dependence into account we put

3
K2 () = l(w%) n()

2w “9)

where 7(w) describes the deviation of the reservoir density
of modes from the vacuum density of modes, for the
vacuum n(w) = 1 and K(ws) = +/y/2m, as assumed
before. In the calculations we take into account only the
frequency dependence assuming that the integration over
angular variables has already been performed. The w’
dependence stems from the ordinary vacuum density of modes
and y is the natural atomic linewidth. With these assumptions,
following the same steps as in section 2.1, we arrive at the
following master equation [37]:

i i
0 = zd[oz, p] — Eﬂ[m +o_,p]

2
+%1§7 Qoypo_ —o_0orp — po_oy)
+ %(1\7 +a)(2o_po, —o0,0_p — poLO_)
—Mo,po, — M*o_po_

+ %L[(Lr, po,] — %L*[a_, o.p0]
+2(L+b)o_, po.] — 2(L +b)*[oy, 0.p] (50)

and now the parameters appearing in the master equation are
defined by

S=A+A,
A, = g[a + A1 +2N_)b_ + (1 — A)2(1 +2N,)bs
+2(1 — AD(1 + 2No)bo]
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N = %[(1 +A)N_a_ + (1 — A)?N.,a, +2(1 — A*)Noag]

a="10+ A a + (1~ &a, +20 — B)aq]

M= %(1 — A)[(1+2N_)(a_ —ib_)

+(1+2N,)(ay — iby) — 2(1 + 2Ng)(ag — ibo)]
L= %Q[(l +A)N_(a_ +ib_) — (1 — A)N,(a, +iby)

(S

—2ANy(ag +1ibo)]

b= %fl[(l +A)(a_ +ib_) — (1 — A)(a, +iby)
—2A(ap +iby)]

and

N() = N(wL) Ni = N(wL + Q,)
wy, 3 wy, + Q/ 3 ,
ao=|— | nlwr) ar=|—— | n(or £ Q)
WA WA

1 [ K(w)?
bo =——P dw
4 0 wL—w

(52)

1 *  K(w)?
bi:——P/ _ K@y,
y Jo or—oxQ

where N (w) is the mean number of the reservoir photons at
frequency w. As before, in the derivation of equation (50) we
have included the divergent frequency shifts (the Lamb shift) in
the redefinition of the atomic transition frequency, and we have
explicitly calculated the shifts that come from the principal
value terms in (52). These shifts can give contributions to
the master equation in cases when the atom is placed in a
cavity with frequency-dependent density of modes and 7(w)
has essential @ dependence.

The principal value terms in (52) can be evaluated when
n(w) is known. In the calculations we model the mode
structure by the dimensionless Lorentzian functions. Let us
assume that n(w) is a Lorentzian
e

(0 — )+ 9?2 43

n(w) =

with the width y, (y. > y) and centred at some frequency w,
(for y. — oo n(w) — 1). Physically, this can be considered,
for example, as a cavity situation. More realistic modelling of
the cavity introduces flat background modes and cavity modes
with a Lorentzian peak at the cavity resonance [3,9]. In such
a case, instead of being just a Lorentzian, n(w) would be a
constant independent of w representing the background modes
plus a Lorentzian describing the cavity modes. Since we are
mainly interested in structured reservoirs, here we use only the
Lorentzian function to describe the non-flat reservoir, although
adding a constant part would be straightforward (the constant
part does not contribute to the shifts). The width y, should
be much greater than the atomic linewidth y in order not to
violate the Markovian approximation made in the derivation
of the master equation. From the definitions (52), using (53),
we can calculate the parameters by and by in the following
way:

1 ® K (w)?
bo:—fP/ ©) 4
Y 0 WL —

1 o\’ v2 1

= -—=P — - dow

2 Jo \wa) (@—w)?+y2o,—ow

wy, 3 1
—|—) =P

(a)A) 2

3 2
1 o0

Ny g

wa) 2w ) (X*+y2)(x —6c)

1o 3 8eVe
o 2 wA

Z+ve
where 8. = w; — w., and after changing variables we have
extended the integration from —w, to —oo. Proceeding in the
same manner we get

, 1w £\ 6.+ Q).
=T 2( wa ) (G £ Q)2 +y2
The values of the shifts depend on the width y. and the position
of the mode density peak. The most interesting cases are when
the peak is centred at the laser frequency (5, = 0), or at the
Rabi sidebands (8, = £').

The master equation (50), in operator form, is a
generalization of the standard master equation known for
the two-level atom. The generalization takes into account
the dependence of the relaxation rates on the strength of
the driving field, described by the dependence of a. on
the Rabi frequency ' through the w® terms as well as the
difference of the reservoir mode density 1 () from the ordinary
vacuum mode density. Ny and Ny are the mean number
of reservoir photons at the laser frequency w; and at the
sidebands w; £ ', respectively. On neglecting the shift
terms, master equation (50), although different in form, is
equivalent to the generalized Bloch equations introduced by
Kocharovskaya er al [12]. The difference is that we have
performed the dressing transformation on the operators rather
than on the atomic states. As we believe, the advantage of
this approach is a strikingly simple and transparent form of the
master equation (50) which allows for easy identification of the
standard terms known for the ordinary vacuum and recognizing
the new, non-standard terms that appear due to the strong-
field modification of the damping rates and/or tailoring of the
reservoir. It is also easy to compare master equations obtained
for squeezed vacuum and structured reservoirs, which is the
main goal of this paper.

For weak driving fields and thermal reservoirs (n(w) = 1),
we have ap = ax = 1 and Ny = Ny is the mean number of
photons of the reservoir, which means that N = y Ny and
a = y while M = L = b = 0, and master equation (50) takes
the well known standard form. For non-thermal or tailored
reservoirs, however, for which n(w) is different from unity,
the new terms become important, and the atomic evolution
is changed in an essential way. It is particularly interesting
that the new terms, proportional to M , that are well known
for the atom damped to the squeezed vacuum reservoir, appear
in the master equation (50) despite the fact that the reservoir
does not exhibit non-diagonal, phase-dependent correlations.
These terms appear for the ordinary vacuum because of the
asymmetry introduced to the system by the strong field and/or
the non-flat mode structure of the reservoir. Other non-
standard terms are those proportional to b and L.

R

0 2
1
/ Ye dw
0 @—w)P+yZo,—o

(54)
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Since the atomic operators o4 contain, according to (7),
the phase factors exp(Fig), the terms proportional to €2, M,
b, and L in the master equation (50) are phase dependent.
Their phase dependence, however, stems solely from the
phase of the driving field in contrast to the squeezed vacuum
reservoir, where the squeezing terms come from the phase-
dependent reservoir correlation functions (18). Therefore,
the phase will appear in the steady-state mean values of the
atomic dipole moment (o4),s, for example, but not in the
resonance fluorescence and absorption spectra, in which the
phase factors cancel. This makes an important difference
between the ‘squeezing-like’ terms, proportional to M in the
master equation (50) and the real squeezing terms coming
from the squeezed vacuum reservoir appearing in the master
equation (25). In the case of squeezing reservoir the phase
dependence of these terms is exp(+i¢), where ¢ = 2¢ + ¢,
and even if the phase factors stemming from the driving field
cancel in the resonance fluorescence spectrum, the dependence
on the squeezing phase remains, and the fluorescence spectrum
is sensitive to the squeezing phase ¢;. However, as it will
become clear later, the phase-sensitive terms that appear in the
master equation (50) lead to some effects that are known for
squeezing reservoirs, e.g., the difference in the damping rates
of the two quadrature components of the atomic dipole.

For strong laser fields and flat reservoirs, assuming that
n(w) = 1 and Q'/ws <K 1, we can expand ap and a4 in a
power series with respect to this small quantity. Keeping only
the linear terms we get the approximate relations

" / N » Q/
ag~ 1+3A— ar ~1+3(AL£Q)—.
WA WA

(56)

Moreover, if the reservoir is the ordinary vacuum (thermal
field at T = 0), which means that the mean number of photons
Nop = Ni = 0 and the mode structure is flat (n(w) = 1),
we have N = L = 0 and by = by = 0. This gives us the
following approximate expressions:

- .
a~ y[l +3A(1 — Q)w—]
A

3 <,
b~ —Zy(l—A*— 57)
2 wA

M=~0

which shows that when the asymmetry introduced to the
system comes from the dependence of the relaxation rates
on the strength of the field only, the ‘squeezing-like’ terms
proportional to M, in the first approximation, are zero. This is
not true, however, if the density of modes of the reservoir differs
considerably from the free space density, i.e. n(w) appreciably
depends on frequency, or the mean number of photons N (w)
is not zero and essentially depends on frequency. In this case
the full form of the coefficients (51) and (52) should be used
in the master equation (50). For the structured vacuum, when
the mean number of photons is zero (N, = N_ = Ny = 0)
and n(w) is given by (53), we have N = 0, but M is non-zero
and it is given by the following simple formula:

M = %(1 — AV)[a_ +a, —2ag —i(b_ +by —2by)] (58)

with a and b defined in (52). If the maximum of the density
of modes given by the Lorentzian (53) is tuned to a particular
frequency (the central line at w; or one of the sidebands at
w, £ Q) M take values significantly different from zero,
which has an important effect on the evolution of the atomic
dipole. The real part of M affects the damping rates for the
two quadrature components of the atomic dipole, the imaginary
part of M modifies the detuning. This is better seen from the
Bloch equations.

3.2. Bloch equations

As before, from the master equation (50) one can derive the
generalized Bloch equations describing the time evolution of
the expectation values of the atomic operators, which take the
form

A0 (o- (1)) 3(L—L*—b")
O ( (o, () ) =-A ( (04 (1)) ) —| Y@ —L-»)
(o2(1)) {o2(1)) a
(59
4+ N—is M —1
A= M 4+ N +id 39)
—iQ—-b—L—L* iQ—b*—L—L" a+2N
(60)

Introducing the Hermitian operators (35), we get from (59)
the following equations of motion for the atomic polarization
quadratures:

FVACA0) (0. (1)) —3 7
T ((oy(r») =-B <<oy(r>>) - i
(o (1)) (o (1))

with the matrix B of the form given by (37), but now with the
parameters constituting the matrix that are defined as follows:

(61)

yx:%+1§7+ReI\7I yy:%+N—ReM (62)
8, =8—ImM Sy =8+ImM (63)

Q. =Re(b+2L) Q, =Q+Imb (64)

r. =Reb ry=Im(b+2L). (65)

The generalized Bloch equations (59) and (61) are
different from the standard Bloch equations. The relaxation
rates have been obtained by coupling the dressed atom rather
than the bare atom to the reservoir, so they take into account
the dependence of the relaxation rates on the strength of the
laser field and the structure of the reservoir modes including
the shifts which are non-zero when the density of modes is not
flat. If we ignore the shift terms coming from the principal
value contributions, our Bloch equations are equivalent to the
Bloch equations obtained earlier by Kocharovskaya et al [12].

It is interesting to notice in the generalized Bloch
equations (61) the presence of different damping rates y,
and y, for the two quadratures of the atomic dipole and the
modified detunings 8, and 8, given by (63). They contain the
M terms which play a similar role to the M terms in the case
of the squeezed vacuum reservoir, as seen from (38) and (39).
These terms introduce coupling between (o, ) and (o_) in the
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Bloch equations (59), and according to (37) and (62) the two
quadrature components of the atomic dipole have different
damping rates similarly to the squeezed vacuum reservoir, for
which the rates are given by (38). The physical origin of this
effect, however, is quite different in both cases. Assuming that
the reservoir is the structured vacuum (Ng = N_ = N, =0
and n(w) given by (53)) and using (58), we find

Ve = %[(1 +ANa_ + (1 — A)a,] (66)

Yy = %[A(l +A)a_ — A = Aa, +2(1 = ADag] (67)

and, on resonance, we have very simple formulae

Yy = %(a_ +a,) (68)
Yy = gao- (69)

It is interesting to compare (66)—(69) with the corresponding
formulae (41)—(44) for the case of the squeezed vacuum
reservoir. Similarly as before, on resonance, the rate y, is
determined by the properties of the reservoir at the sidebands
while the rate y, is determined by the properties at the central
line. In contrast to the squeezed vacuum, the rates do not
depend on phase, but similarly to the squeezed vacuum there
are two different rates for the two quadrature components of
the atomic dipole if the properties of the reservoir are different
at the sidebands and at the central line.

To make the physical interpretation of the asymmetry
in the damping rates (68) and (69) more transparent it is
essential to realize that yay = yy, ya— = y— and ya, = y,
are the damping rates for the transitions between the dressed
states of the atom with frequencies w;, w; — 2 and w; + €2,
respectively. These rates are different because the transition
frequencies w; and w; £ 2 are different and the density of
modes is different at these frequencies. The differences are
important, however, when Q2 > y,., i.e. the Rabi frequency
is sufficiently large and the width of the density of modes
is sufficiently narrow as to make the three damping rates
noticeably different. The asymmetry of the damping rates
for the two components of the bare atomic dipole appears
because of the splitting of the atomic levels in the strong
field. Thus, in contrast to the squeezed vacuum reservoir for
which the squeezing terms come from the non-zero value of
the two-photon correlation function of the reservoir, the origin
of squeezing-like terms is related to the change of atomic level
structure when the atom is subjected to a resonant laser field.
It is also important to realize that despite the asymmetry in
the two damping rates the fluorescence spectrum from such
an atom can still be symmetric [14, 15, 37] if the fluorescence
goes to the structured reservoir modes. Asymmetry can be
observed for the fluorescence that goes to the flat background
modes [11].

Another interesting feature of the Bloch equations (61)
is the presence of the free terms r, and r,, which give, for
example, a non-zero steady state solution for (o,). The
differences are important in the atomic spectra [37], which we
are not going to discuss here. One more important feature of the
Bloch equations (61) is their dependence on by and b, which
are additional parameters arising from the principal value
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contributions. They should manifest themselves in situations
of moderately intense laser fields and atoms in reservoirs with
frequency-dependent density of modes.

The steady state solutions to equations (61) are the
following:

1
<0x>ss = ﬁ{(agz(s» +rx [Vy(yx + Vy) + QQ}]
+ry5y(yx + yy)}

1
(O'y>” = _ﬁ{(agyx —Ix [Sy(yx + Vy) + Q€] (70)

+ryyx(yx + yy)}

1
<Gz>s.r = _E{a(axay + nyy) + rx(any - nyx)
—ry (Ve 2y +6,Q4)}

where the denominator d has the form given by (46), but
with the values of the parameters defined by (51)—(52) and
(62)—(65).

In the strong field limit when Q' is much greater than
all the damping rates, the steady-state solutions (70) take a
much simpler, approximate form (we keep only the lowest
non-vanishing terms)

ASQa + (1 — Adr,

1
(ar>ss = 5 = ~= =
(1 - AZ)Vx + A[A(VX + yy) + QQX]

1 Qyia—[A(ys +yy) + Q11
2 (1 — Ay, + A[A(yy + ) + Q8]

(71)

<Uy)ss =

A(Aa + er)
(1 — Ay, + A[A(y, + ) + Q21

(02)ss =

For thermal reservoirs for which the mean number of photons
does not depend appreciably on frequency, N (w) = Ny = Ny,
equations (71) go over into

Q 1+ A)?a_ — (1 — A)?a,

<Ux>ss = = =
2(1+2No) (1+ A)2a_ + (1 — A)2a,

Q 2(1—=AYa_a,+[(1+A)2a_+(1—A)%a,]ag
4 (14A)2a_+(1—A)2a,
A (A+A)2a_—1-A)%a,
T 14+2N0 (1+ Aa+ (1 — A)a,

(Uy>ss =

<UZ>.9s =

(72)
From equations (72) it is evident that (o), is of the order
of 1/ and becomes zero in the secular limit. It is
also clear that the steady-state values of (o) and (o)
depend on the density of photon modes at the sidebands only.
Moreover, upon making an appropriate choice of the detuning
A and choosing different mode densities at the two sidebands
(a_ # a.), steady-state atomic inversion can be realized. This
effect, called vacuum-field dressed-state pumping, has been
predicted by Lewenstein and Mossberg [9] and observed by
Zhu et al [10]. On resonance, A= 0, Q= 1, the steady-state
solutions simplify even further, and the steady state value of
(0)ss becomes zero meaning an equal population of the two
atomic levels.
Another important feature of the solutions (72) is that the
dispersion component of the atomic dipole (o, ), is non-zero
if a_ # a,. This can happen because of the difference in
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the mode density at the two sidebands and/or the dependence
of the damping rate on the field intensity through the ((@w £
Q')/wy)? factor. The non-zero solution for (o,),, means
the non-zero steady-state atomic dipole moment which has
dramatic effect on the resonance fluorescence spectrum [9]
in the frequency-dependent photon reservoirs. Similarly to
the squeezed vacuum reservoir discussed in section 2.2 we
can rewrite equation (48) for the population inversion of the
dressed atom

<&z>ss = 29(()')()” - A<UZ>JA' (73)
and now the steady-state solutions for (o,)ss and (o;),s are
given by (70) or for strong fields by (72). Again, on resonance,
the dressed atom population inversion is determined by (o ).
For strong field and structured vacuum, according to (72), we
have

a_—a, _ n(ws — Q) —nlw, + Q)
a_ +a, N(wa — Q) +n(wa + Q)

<6z>ss = (74)

which shows that (7, ), can be close to unity when the reservoir
density of modes has its peak at one of the Rabi sidebands and is
close to zero at the other sideband. This means that only one of
the dressed atomic states could be populated by appropriately
tailoring the reservoir [9]. Populations of the dressed states
determine the weights of the spectral components of the
Mollow triplet in the strong-field resonance fluorescence.
Details of the resonance fluorescence and absorption spectra
for such a model have been discussed in [37].

The non-zero values of the dispersion component of the
atomic dipole moment (o, ), is a common feature of both
models considered in this paper. The physical origin of this
feature, however, is quite different. In the case of the squeezed
reservoir it is squeezing at the atomic frequency with the phase
which s different from O or 77, while in the case of the structured
vacuum reservoir it is a difference of the density of modes at
the Rabi sidebands. Despite the physical origin, nevertheless,
the physical consequences are very similar.

4. Conclusion

This paper has been devoted to comparison of two different
models describing the interaction of a two-level atom that
is driven by a strong classical field and is damped to two
different reservoirs: one—the squeezed vacuum with finite
bandwidth, and the other—the structured but non-squeezed
reservoir. The comparison has become easy since both models
have been treated in the same way. The master equation has
been obtained by applying the two-step procedure in which the
first step is the dressing transformation that couples the atom
to the strong laser field and the second step is the coupling of
the dressed atom to the reservoir. All calculations have been
performed on the operator level leading to the operator form of
the master equations for both cases. The operator form of the
master equations allows for easy comparison of the resulting
master equations to each other and to the standard form of
the master equation. We have shown that for reservoirs with
finite bandwidth there are ‘squeezing-like’ terms appearing
in the master equation even for reservoirs with zero phase-
dependent two-photon correlation functions. In this respect

both reservoirs considered here are similar—they both have
finite bandwidth. When the bandwidth of the reservoir goes to
infinity, the ‘squeezing-like’ terms disappear, and in the case
of the squeezed vacuum reservoir the real squeezing terms
remain.

Optical Bloch equations generated by the master equations
reveal some physical consequences of the non-standard terms
that occurred in the master equations. For example, it has been
shown that the two quadrature components of the atomic dipole
moment have different damping rates, the effect well known
for the broadband squeezed vacuum reservoirs. A common
feature of the two models appears to be the non-zero value of
the steady-state solution for the dispersion component of the
atomic dipole moment, although the origin of this feature is
different in each model. This feature, in turn, leads to the non-
zero population inversion of the atomic dressed states, which
has important influence on the atomic spectra.

The master equations discussed in this paper have been
obtained under the Born—-Markov approximation. The Markov
approximation made for the reservoir with finite bandwidth
may, of course, be questionable because, strictly speaking,
such a reservoir is non-Markovian. However, when the
reservoir bandwidth is much larger than the atomic linewidth
it is safe to assume that the Markov approximation gives
reasonable results. The dressing transformation performed
before coupling of the atom to the reservoir has the advantage
that it lifts the requirement, otherwise necessary, that the
reservoir bandwidth must also be larger than the Rabi
frequency. This is important for strong fields. The master
equation obtained in this way has broader applicability.
However, one has to remember that the master equation is
only valid for sufficiently broad bandwidth of the reservoir,
and analytical results derived from it that explicitly depend
on the reservoir bandwidth must be treated with care. Taking
too small values for the reservoir bandwidth can even lead to
unphysical results, but this is the price we pay for the simplicity
of the master equation.
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