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Abstract
We discuss the influence of the spontaneous decay rate of the excited state
on teleportation of the atomic state via cavity decay in the scheme of Bose
et al (Bose S, Knight P L, Plenio M B and Vedral V 1999 Phys. Rev. Lett. 83
5158). We show that even a small but non-zero decay rate of the excited
state leads to significant effects such as lowering the probability of
successful teleportation if the product of the saturation parameter and the
spontaneous decay rate is not negligible in comparison with the cavity mode
decay rate. We compare analytical results obtained using adiabatic
elimination with the results calculated numerically.

Keywords: Quantum teleportation, quantum information processing

1. Introduction

Spontaneous decay can play a destructive role in quantum
information processing. The decay is responsible for
decoherence and loss of information stored in a quantum
system. However, spontaneous decay can also be helpful
in quantum information processing. Detection of the decay
allows entanglement, which is essential for many quantum
applications. Researchers usually consider decays from
cavities in this way, but many systems consist of optical cavities
containing one atom [1–3] or two atoms [4]. Research is
motivated by the fact that atomic states are ideal for storing
quantum information. Spontaneous emission by the atoms,
which is in effect unwanted decay leading to decoherence, has
to be dealt with. One can avoid the problem by using a three-
level atom in the � configuration. There are two stable ground
states and one excited state of the atom, as shown in figure 1.
The whole information processing procedure can be performed
in such a way that the excited state will always have a small
population. Under this condition, the excited atomic states can
be eliminated adiabatically. If the population of the excited
state is small enough, we can also neglect the spontaneous
decay rate from this state. A teleportation scheme working
in this way has recently been proposed [1]. However, one
has to be very careful, because even a very small population
can produce significant effects. This is because of the fact
that the probability for an emission during the whole quantum
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Figure 1. Atomic levels scheme. The |a0〉–|b〉 transition is driven by
a classical laser field of frequency ωlas and the |a1〉–|b〉 transition is
driven by the quantized cavity mode of frequency ωlas . The laser and
quantized fields are both detuned from the upper atomic state by �.

teleportation process is proportional to the product of the mean
population of the excited state, the spontaneous decay rate and
the total operation time. In the scheme of teleportation via
cavity decay, discussed here, the process time has to be long
compared with the inverse of the cavity decay rate κ−1. If the
time turns out to also be long compared with the inverse of
the product of the atomic decay rate γ multiplied by the mean
population in the upper level, the probability for the emission
can take significant values and cannot be neglected even if the
population of the excited state is very small.
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Figure 2. Schematic representation of the system. The atoms are
coupled to cavities and are manipulated by lasers. The beamsplitter
S, the atom–cavity system A and the detectors D+ and D− are at
Alice’s site. At Bob’s site there is only the atom–cavity system B.

In this paper we study the effect of a non-zero
spontaneous decay rate γ on the teleportation process. For
this purpose we calculate analytically the evolution of the
system determined by the adiabatically eliminated effective
Hamiltonian. Moreover, we compare analytical results with
the numerically calculated results for evolution of the system
without applying adiabatic elimination. In the calculations we
use a conditional time evolution approach [5, 6].

2. Model

We examine a model of a teleportation device proposed by
Bose et al [1]. The device consists of two atom–cavity systems,
a 50–50 beamsplitter and two detectors D+ and D−, as depicted
in figure 2. One of the atom–cavity systems belongs to Bob.
The other elements are at Alice’s site. Either of the atom–
cavity systems is a three-level � atom trapped in an optical
cavity. The atom has two ground states |a0〉, |a1〉 and an
excited state |b〉. Initially, Alice’s atom is prepared in an
unknown quantum superposition of the two ground states.
Alice can teleport the unknown state to Bob. To perform this
process, three stages are necessary. First, Alice and Bob need
to prepare their atom–cavity systems. Next, Alice waits for a
finite time detecting decays from the cavities. Alice informs
Bob about her measurement result. Finally Bob performs a
unitary operation on his atom–cavity system depending on
the result obtained by Alice to recover Alice’s unknown state.
A preparatory stage is necessary because the device uses an
atomic state for storage and photonic states to transfer quantum
information. Therefore, Alice has to map her atomic state
to her cavity state [7] to enable the transfer and Bob has to
create a maximally entangled state of his atom and his cavity
to store the transferred qubit in his atom. The most important
parts of the device in the preparatory stage are the atom–cavity
systems. Therefore, we now describe the model system in
detail. There are two transitions in the � atom. The first,
the |a0〉–|b〉 transition, is driven by a classical laser field with
frequency ωlas . The coupling between the atom and the field
for this transition is denoted by �. The second, the |a1〉–|b〉

transition, is coupled to the quantized mode with frequency
ωcav and coupling strength g. We assume that the couplings
� and g are constants. This can be achieved by trapping
the atom in a specific position in the cavity. Moreover, we
assume that the laser and the cavity modes are detuned from
the corresponding transitions by �. In the present context
there are two decay mechanisms: spontaneous emission from
the excited state |b〉 with rate γ and photons leaking out of the
cavity at a rate κ . During the time intervals when no count is
detected, the evolution of the quantum system is determined
by the effective non-Hermitian Hamiltonian [2]

He f f = H0 + Hint (1)

where
H0 = −(� + iγ )|b〉〈b| − iκc+c, (2)

Hint = �|b〉〈a0| + gc|b〉〈a1| + �∗|a0〉〈b| + g∗c+|a1〉〈b|. (3)

The annihilation and creation operators of the cavity-mode
are denoted, respectively, by c and c+. The detuning is given
by � = ωlas − ω0. The Hamiltonian is written in a frame
rotating at the laser frequency. The evolution generated by (1)
is interrupted by collapses with the collapse operator

S = √
2κc. (4)

We want only the dark states of the atom to be effective. Thus,
we choose such parameters that the population of the excited
state is very small. Then the upper level can be eliminated
adiabatically [8]. The Hamiltonian takes the new form, which
makes analytical calculations possible [2]

Hef f = H0 + H1 + Hint , (5)

where
H0 = (� − iγ )s00|a0〉〈a0|, (6)

H1 = (� − iγ )s11c+c|a1〉〈a1| − iκc+c, (7)

Hint = (� − iγ )s01c|a0〉〈a1| + (� − iγ )s10c+|a1〉〈a0|. (8)

s00, s01, s10 and s11 are the saturation parameters:

s00 = |�|2
�2 + γ 2

, (9)

s11 = |g|2
�2 + γ 2

, (10)

s01 = s∗
10 = �∗g

�2 + γ 2
. (11)

To apply adiabatic elimination the saturation parameters have
to be much smaller than unity

sii � 1, i = 0, 1. (12)

The Hamiltonian (5) can take an even simpler form. First,
we can avoid atom dissipative terms if we assume that the
spontaneous emission rate γ is much smaller than the detuning
�

γ � �. (13)
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Thus, γ is set to zero in the following part of this section. Next,
we assume that g = � (g is taken to be real), obtaining the
simplest form of the Hamiltonian

Hef f = E |a0〉〈a0| + Ec+c|a1〉〈a1|
+ E(c|a0〉〈a1| + c+|a1〉〈a0|) − iκc+c, (14)

where

E = g2

�
. (15)

Note the presence of the operator c+c in the second term
of (14) which has been omitted in [1]. The detection stage is
responsible for quantum information transfer. Alice performs
joint detection of Bob’s and her own cavity fields. This time,
the detectors and beamsplitter are the most important parts
of the device. Photon decay detected by D+ corresponds to
action of the operator J+ on the joint state vector of the two
atom–cavity systems [9]

J+ = 1√
2
(SA + SB) = √

κ(cA + cB). (16)

A click registered by D− corresponds to action of the operator
J−

J− = 1√
2
(SA − SB) = √

κ(cA − cB). (17)

Detection takes Alice a finite time tD . Teleportation will be
successful if Alice registers only one click during the time.
Otherwise, when Alice does not register any click or registers
two clicks, information is lost. Thus, the teleportation protocol
is probabilistic. However, it can be converted to a reliable
protocol [1, 10, 11]. Even if the transfer is successful, Bob’s
atom will not be in Alice’s atom’s initial state. Therefore the
post-detection stage is necessary. In the last stage Bob uses
the second local operation—Zeeman evolution to give |a1〉 an
extra phaseshift with respect to |a0〉. We show in the next
section how this phaseshift should be chosen.

3. Teleportation without a spontaneous decay rate of
the excited state

In this section we show how to perform the whole teleportation
process using the simplest form of the Hamiltonian (14). At
the beginning of the teleportation protocol, both cavity fields
are empty. The initial state of the Alice’s atom–cavity system
is

|�〉A = a|a0〉A|0〉A + b|a1〉A|0〉A, (18)

where a and b are complex amplitudes that describe an
unknown state Alice wants to teleport. Bob’s atom is prepared
in the ground state |a0〉B . Thus, the initial state of Bob’s atom–
cavity system is given by

|�〉B = |a0〉B |0〉B . (19)

First, Alice and Bob perform the preparatory stage. In this
stage Alice has to map her atomic state to her cavity state and
Bob has to create a maximally entangled state of his atom and
his cavity system. They can realize their objectives by turning
the lasers on for a definite period of time. The laser field
driven atom–cavity system starts its evolution governed by the

operator e−iH t . The effect of this operator on the initial states
of Alice’s and Bob’s atom–cavity systems is

e−iH t |�〉A = aα(t)|a1〉A|1〉A + b|a1〉A|0〉A

+ aθ(t)|a0〉A|0〉A, (20)

e−iH t |�〉B = α(t)|a1〉B |1〉B + θ(t)|a0〉B |0〉B, (21)

where

α(t) = −2i
E

�κ

e−iEt e− κt
2 sin

(
�κ t

2

)
, (22)

θ(t) = e−iEt e− κt
2

[
cos

(
�κ t

2

)
+

κ

�κ

sin

(
�κ t

2

)]
. (23)

Alice turns off the laser after time tA, where tA is defined by:

e−iH tA |�〉A = aα|a1〉A|1〉A + b|a1〉A|0〉A. (24)

This implies that the values of tA and α are given by:

tA = 2

�κ

[
arctan

(
−�κ

κ

)
+ kπ

]
, (25)

α = α(tA), (26)

where
�κ =

√
4E2 − κ2 (27)

and k is an arbitrary integer. To achieve this state of Alice’s
atom–cavity system defined by (24), the evolution cannot be
interrupted by collapses. Since the Hamiltonian (14) is non-
Hermitian, the norm of the state vector (24) decreases with
time. The probability that no collapse occurs during time tA is
given by the squared norm of the state vector:

PN D(A) = |aα|2 + |b|2. (28)

We want the fidelity of the teleportation to be close to unity
and we want PN D(A) ≈ 1. Thus, we want |α|2 ≈ 1, which
leads to another condition

�κ � κ. (29)

Bob switches off the evolution after shorter time tB defined by

e−iH tB |�〉B = β(|a0〉B |0〉B + i|a1〉B |1〉B), (30)

where β is a complex number. From (30) we find that

tB = 2

�κ

[
arctan

(
− �κ

2E + κ

)
+ kπ

]
, (31)

β = −iα(tB). (32)

The probability of no collapse during the time interval tB is
given by:

PN D(B) = 2|β|2 (33)

Naturally, we want PN D(B) ≈ 1. This can be done provided
that �κ � κ . The probability that the whole preparation stage
is successful is

PN D(prep) = PN D(A)PN D(B). (34)

This is the end of the preparatory stage and the beginning of
the detection stage. In this stage Alice waits for a finite time
tD registering decays from the cavities. The quantum transfer
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will be successful if Alice registers only one collapse at time
t j � tD . In the absence of a laser field (� = 0), the evolution
of the atom–cavity systems is governed by

Hef f = Ec+c|a1〉〈a1| − iκc+c. (35)

Before time t j , the states of Alice’s and Bob’s systems are
given by the following unnormalized states

|�̃(t)〉A = 1√|aα|2 + |b|2 (aαe−iEt e−κt |1〉A + b|0〉A), (36)

|�̃(t)〉B = 1√
2
(|a0〉B |0〉B + ie−iEt e−κt |a1〉B |1〉B). (37)

The evolution is interrupted by a collapse at time t j , which
corresponds to the action of jump operator J+ or J− on the
joint state of Alice’s and Bob’s systems

|�(t)〉 = |�(t)〉A ⊗ |�(t)〉B . (38)

After that the joint state becomes

|�̃(t)〉J± = N(t j )[(aα|a0〉B ± ib|a1〉B) ⊗ |0〉A|0〉B

+ iaαe−iEt e−κt |a1〉B ⊗ (|0〉A|1〉B ± |1〉A|0〉B)], (39)

where
N(t) = [|b|2 + |aα|2(1 + 2e−2κt )]−

1
2 . (40)

From t j until tD the evolution is governed by (35). Finally, the
joint state is given by

|�(tD)〉J± = N(tD)[(aα|a0〉B ± ib|a1〉B) ⊗ |0〉A|0〉B

+ iaαe−iEtD e−κtD |a1〉B ⊗ (|0〉A|1〉B ± |1〉A|0〉B)]. (41)

We now can see that the joint state is close to Alice’s initial
state for tD � κ−1. Those states will be almost the same if Bob
gives |a1〉 an extra phaseshift with respect to |a0〉 in the post-
detection stage. Taking into account the above assumptions,
we have

α ≈ −1. (42)

Thus, the phaseshift must be i if D+ had clicked and −i if D−
had clicked. This is the end of the whole teleportation process.

In the next step, we want to estimate the fidelity of the
teleported state and the probability of success for teleportation.
The average density matrix of Bob’s atom is given by

ρ = N 2(tD)(|aα|2|a0〉B B〈a0| + |b|2|a1〉B B〈a1|
− aαb∗|a0〉B B〈a1| − a∗α∗b|a1〉B B〈a0|
+ 2|aα|2e−2κtD |a1〉B B〈a1|), (43)

and the fidelity is

F(tD, a, b) = N 2(tD)[|aα|2(|a|2 + 2|b|2e−2κtD )

+ |b|4 − 2Re(α)|a|2|b|2]. (44)

The fidelity (44) depends on the moduli of the amplitudes a and
b of the initial state which are in general unknown. Therefore,
we estimate the average fidelity of teleportation which is taken
over all possible input states. This average fidelity takes the
form

F(tD) = 1

C

[
A

3
+ B − A

C
+

(
C − B +

A

C

)

× 1√
C

arctan(
√

C)

]
, (45)

where
A = |α|2 + 1 + 2Re(α) − 2|α|2e−2κtD , (46)

B = 2|α|2e−2κtD − 2Re(α) − 2, (47)

C = |α|2 − 1 + 2|α|2e−2κtD . (48)

The probability of a successful teleportation process is then
given by

P(tD, a, b) = PN D(prep)P1D(detec), (49)

where P1D(detec) is the probability of observing only
one detection during the detection time. The probability
P1D(detec) is equal to

P1D(detec) =
∫ tD

0
PN D(0, t j )P1D(t j )PN D(t j , tD) dt j , (50)

where the probability for a photon emission to occur in the
interval (t j , t j + dt j ) is given by the formula

P1D(t j ) dt j = 〈�(t j )|J +
+ J+|�(t j )〉 dt j

+ 〈�(t j )|J +
− J−|�(t j)〉 dt j . (51)

The probability for no photon emission to occur in the interval
(0, t j ) is then

PN D(0, t j ) = 〈�̃(t j )|�̃(t j )〉 (52)

and the probability for no photon emission to occur in the
interval (t j , tD) takes the form

PN D(t j , tD) = J±〈�̃(tD)|�̃(tD)〉J± . (53)

Using the above relations, we obtain

P(tD, a, b) = 1
2 PN D(B)(1−e−2κtD )(PN D(A)+2|aα|2e−2κtD ).

(54)
One can see that the probability (54) also depends on the input
state. Thus, we again take the average over all input states of
the probability of success and arrive at the formula

P(tD) = 1
6 PN D(B)(1 − e−2κtD )(|α|2 + 2|α|2e−2κtD + 2). (55)

In order to obtain the results given by (45) and (55), we have
assumed γ = 0. In the next section we will show that this
simplification leads to essential differences in the results.

4. Teleportation with a spontaneous decay rate of
the excited state

Let us plot the average fidelity of teleportation (45) and
the average probability (55) as functions of the detection
time tD . We choose the parameters in such a way that all
assumptions (12), (13) and (29) are satisfied [1]

(g:�:κ:γ :�)/2π = (10:10:0.01:1:100) MHz. (56)

Figure 3 shows that the fidelity increases with the length of the
detection stage and it does not differ significantly from unity
for tD = 50 µs. For reference, we also calculate numerically
the fidelity of teleportation using the fourth-order Runge–
Kutta integration of the non-unitary Schrödinger equation with
the non-Hermitian Hamiltonian (1). Moreover, we use the
Monte Carlo technique to estimate the average fidelity taken
over all possible input states. As one can see from figure 3,
the numerical results (points) differ significantly from the
analytical results (solid curve). The average fidelity calculated
numerically increases faster than the analytical one.
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Figure 3. The average fidelity of teleportation given by (45) (solid
line) as a function of the detection time tD for (g:�:κ :γ :�)/2π
= (10:10:0.01:1:100) MHz. The points show the average fidelity
over 10 000 random initial states calculated numerically using the
most general Hamiltonian (1).

Likewise, the average probability, as given by (55),
increases with the length of the detection period as shown
in figure 4. We find that the probability is about 0.48
for tD = 50 µs. Thus, the probability is lower than the
success probability for the ideal teleportation which is 0.5.
This is related to the fact that the average probability of
success in the preparatory stage is only 0.97. Nevertheless,
the results are close to the ideal teleportation case. In
order to verify the results obtained analytically we compute
the average probability numerically using the non-Hermitian
Hamiltonian (1). We estimate the integral in formula (50) by
the sum, rewriting the dt j as a finite step �t j . We compute
the average probability using the trapezoidal rule. As can be
seen from figure 4, the more general Hamiltonian gives the
average probability (points) about two times smaller than the
Hamiltonian (14) (solid curve). In order to find the reason
for this behaviour we generalize the procedure to the case of
a non-zero spontaneous decay rate using Hamiltonian (5) in
our derivations. To simplify the following, we assume that
g = � (g is assumed to be real). Thus, we can introduce
only one saturation parameter s. Performing the teleportation
process in the same way as in the previous section, we find
more general forms for all the results. Now, Alice’s state after
time t is given by

e−iH t |�〉A = aα(t)|a1〉A|1〉A + b|a1〉A|0〉A + aθ(t)|a0〉A|0〉A,

(57)
where

α(t) = − (� − iγ )s

�κ,γ

e−i�st e−( 1
2 κ+γ s)t (e

1
2 i�κ,γ t − e− 1

2 i�κ,γ t ),
(58)

θ(t) = e−i�st e−( 1
2 κ+γ s)t

2

×
[

e
1
2 i�κ,γ t + e− 1

2 i�κ,γ t − iκ

�κ,γ

(
e

1
2 i�κ,γ t − e− 1

2 i�κ,γ t
)]

,

(59)

and
�κ,γ =

√
4(� − iγ )2s2 − κ2. (60)

The probability that no collapse takes place during time tA is
given by

PN D(A) = |aα|2 + |b|2 + |aθ |2. (61)
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Figure 4. The average probability of success as a function of the
detection time tD for (g:�:κ :γ :�)/2π = (10:10:0.01:1:100) MHz
given by (55) (solid curve) and calculated numerically using
Hamiltonian (1).

The mapping efficiency of the atomic state onto the light state
is close to unity if θ vanishes, therefore we need such tA and the
parameters which make θ as small as possible. The modulus
squared of θ is given by

|θ |2 = 1

2(r 2 + u2)
e−(κ+2γ s)tA [2κr sin(r tA) + 2κu sinh(utA)

+ (−κ2 + r 2 + u2) cos(r tA) + (κ2 + r 2 + u2) cosh(utA)],

(62)

where r and u are the real and imaginary parts respectively of
�κ,γ . One can see that the following conditions are required
to make |θ |2 ≈ 0

r tA ≈ π, utA � 1, κ2 � r 2 + u2. (63)

The conditions (63) are equivalent to the condition

�s � γ s + κ. (64)

In the above limits, r and u can be well approximated by the
zeroth-order expansion in γ /� and κ/�s

r = 2�s, (65)

u = −2γ s. (66)

Since we want the probability and the fidelity of teleportation
to be close to unity, |α|2 has to be close to unity. The expression
for |α|2 is given by

|α|2 = 2(�2 + γ 2)s2

r 2 + u2
e−(κ+2γ s)tA (cosh(utA)−cos(r tA)). (67)

One can see that the conditions (63), if satisfied, give the value
of the modulus squared of α close to unity, as expected. In
order to estimate tA we can use the following relations

d

dt
|θ |2 = 0, (68)

d2

dt2
|θ |2 > 0. (69)

Taking into account the limits (64), we get for tA the
following expression
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tA = �(8�g2κ + 8g4π + �2κ2π)

16g6

+
γ 2κ(5�κπ + g2(π2 − 4))

8g6

+
γ 3(16�g2κπ + 4g4π2 + �2κ2(π2 + 16))

16g6�2
. (70)

Bob switches on his laser for time tB obtaining the
quantum state given by

e−iH t |�〉B = β1(t)|a0〉B |0〉B + iβ2(t)|a1〉B |1〉B), (71)

where
β1(t) = θ(t), (72)

β2(t) = −iα(t). (73)

Bob has to create a maximally entangled state, thus tB should
be calculated under the conditions

d

dt
|β1 − β2|2 = 0, (74)

d2

dt2
|β1 − β2|2 > 0. (75)

The probability for no collapse during the time tB is then given
by

PN D(B) = |β1|2 + |β2|2. (76)

In order to simplify the expressions for |β1 − β2|2 and
PN D(B), we use approximate forms (65) and (66) for r and u
respectively. The expressions are given by

|β1 − β2|2 = 1

δ
e−(κ+2γ s)tB [κ2 cosh(2γ stB)

+ (4�sκ + δ) (sin(2�stB) + cosh(2γ stB))

− κ(κ + 4�s) cos(2�stB ) + 4γ sκ sinh(2γ stB)], (77)

|β1|2 + |β2|2 = 1

δ
e−(κ+2γ s)tB [4γ sκ sinh(2γ stB)

− κ2 cos(2�stB ) + (κ2 + δ) cosh(2γ stB)

+ 4�sκ sin(2�stB)], (78)

where δ = 8(�2 + γ 2)s2. We want |β1 − β2|2 ≈ 0 and
PN D(B) ≈ 1, therefore the following conditions are necessary:

2�stA ≈ 3
2π 2γ stA � 1 κ2 � (�2 + γ 2)s2.

(79)
The conditions (79) are consistent with the assumptions (64),
which we use to solve equation (74). The final result for tB is
then given by

tB = �(8�g2κ + 24g4π + 3�2κ2π)

32g6

+
γ 2κ(�κ(9π + 2) + g2(9π2 − 8))

32g6

+
γ 3(96�g2κπ + 72g4π2 + �2κ2(45π2 + 32))

128�2g6
. (80)

The average probability of success at the preparation stage is
given by

PN D(prep) = PN D(B) 1
3 (|α|2 + |θ |2 + 2). (81)

Propagation without the laser field (� = 0) in the detection
stage is governed by

He f f = (� − iγ )sc+c|a1〉〈a1| − iκc+c, (82)

hence the evolution of Alice’s and Bob’s states takes the form

|�̃(t)〉A

= aαe−i�st e−(κ+γ s)t |a1〉A|1〉A + b|a1〉A|0〉A + aθ |a0〉A|0〉A√|aα|2 + |b|2 + |aθ |2 ,

(83)

|�̃(t)〉B = β1|a0〉B |0〉B + ie−i�st e−(κ+γ s)tβ2|a1〉B |1〉B√|β1|2 + |β2|2
. (84)

After collapse detection at time t j , the joint state of Alice’s and
Bob’s systems becomes

|�̃(t)〉J± = N ′(t j )[(aαβ1|a0〉B ± ibβ2|a1〉B) ⊗ |a1〉A|0〉A|0〉B

+ iaαβ2e−i�st e−(κ+γ s)t |a1〉A|a1〉B

⊗ (|0〉A |1〉B ± |1〉A|0〉B)

± iaθβ2|a0〉A|a1〉B |0〉A|0〉B ], (85)

where

N ′(t) = (|aα|2|β1|2 + |b|2|β2|2 + |aθ |2|β2|2
+ 2|aα|2|β2|2e−2(κ+γ s)t )−

1
2 . (86)

Finally, the joint state is given by |�(tD )〉J± . After the detection
stage Bob has to give |a1〉 an extra phaseshift with respect
to |a0〉. We find that α ≈ −1, hence this phaseshift is i
if D+ had clicked and −i if D− had clicked. Now, we are
ready for estimation of the fidelity of the teleported state and
estimation of the probability of success for teleportation. In
order to estimate the fidelity we have to derive the average
density matrix of Bob’s atom. The density matrix in this more
general case takes the form

ρ = N ′2(tD)[|aα|2|β1|2|a0〉B B〈a0| + |b|2|β2|2|a1〉B B〈a1|
− aαβ1b∗β∗

2 |a0〉B B〈a1| − a∗α∗β∗
1 bβ2|a1〉B B〈a0|

+ 2|aα|2|β2|2e−2(κ+γ s)tD |a1〉B B〈a1|
+ |aθ |2|β2|2|a1〉B B〈a1|]. (87)

Thus, the fidelity is given by

F(tD, a, b) = N ′2(tD)|β2|2[|a|4|α|2|β12|2 + |b|4
+ |a|2|b|2(|θ |2 − 2Re (αβ12) + 2|α|2e−2(κ+γ s)tD )], (88)

where β12 = β1/β2. As pointed out earlier, we should plot the
average fidelity, taken over all possible input states, instead of
the state-dependent fidelity. The average fidelity is now given
by

F(tD) = 1

C

[
A

3
+ B − A

C
+

(
C − B +

A

C

)

× 1√
C

arctan(
√

C)

]
, (89)

where

A = |α|2|β12|2 + 1 + 2Re(αβ12) − 2|α|2e−2(κ+γ s)tD − |θ |2,
(90)

B = 2|α|2e−2(κ+γ s)tD − 2Re(αβ12) − 2 + |θ |2, (91)

C = |α|2|β12|2 − 1 + 2|α|2e−2(κ+γ s)tD + |θ |2. (92)
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Figure 5. The average fidelity of teleportation for
(g:�:κ :γ :�)/2π = (10:10:0.01:1:100) MHz using Hamiltonian (5)
(solid curve) and Hamiltonian (14) (dashed curve). The points
correspond to the average fidelity over 10 000 random initial states
calculated numerically for the same choice of parameters.

The probability of a successful teleportation process is given
by

P(tD, a, b) = κ(1 − e−2(κ+γ s)tD )|β2|2
κ + γ s

× (|aα|2(|β12|2 + 2e−2(κ+γ s)tD ) + |b|2 + |aθ |2). (93)

We also need the average probability taken over all possible
input states, which is now given by

P(tD) = κ(1 − e−2(κ+γ s)tD )|β2|2
3(κ + γ s)

(|α|2|β12|2

+ |θ |2 + 2|α|2e−2(κ+γ s)tD + 2). (94)

Now, we choose the same parameters (56) as in the previous
section. It is easy to prove that all the assumptions (12),
(13) and (64) are satisfied. Figure 5 presents the situation
when Hamiltonian (5) is used in calculations (solid curve)
and compares this with the situation when we take the
simplest form of Hamiltonian (14) (dashed curve), and when
we compute the fidelity numerically using the most general
Hamiltonian (1) (points). As can be seen, in contrast to the
analytical results from the last section, the results given by
the Hamiltonian (5) are in a remarkable agreement with the
numerical solution. This confirms that the atomic decay rate
cannot be generally neglected.

It is interesting to know the importance of the effect of
a non-zero spontaneous decay rate on the average probability
for successful teleportation. In order to illustrate the difference
between the probability with zero and with non-zero γ , we plot
in figure 6 the probability given by (55) and the probability
given by (94) as functions of the detection time tD . As is
evident from the figure, a non-zero spontaneous decay rate
leads to a lower probability of successful teleportation. We
see that it does not exceed 0.25.

It is reasonable, then, to ask: how large should γ be to
make the probability close to 0.5? The answer comes from
the ratio of the average probability with zero γ to the average
probability with non-zero γ . Considering the limit tD → ∞,
the ratio is given by

Psuc(γ = 0)

Psuc(γ )
≈ κ

κ + γ s
. (95)
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Figure 6. Comparison between the cases when the spontaneous
decay rate of the excited state is neglected and when it is not. The
solid line shows the average probability of success obtained using
Hamiltonian (5) with non-zero γ . The dashed line corresponds to
the average probability of success obtained using Hamiltonian (14)
without γ . The points refer to numerical results obtained using
Hamiltonian (1). The parameters regime is (g:�:κ :γ :�)/2π
= (10:10:0.01:1:100) MHz.
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Figure 7. The average fidelity of teleportation given by (94) (solid
curve), given by (55) (dashed curve) and computed numerically
using the most general Hamiltonian (1) (points) for parameters
satisfying assumption (96) (g:�:κ :γ :�)/2π =
(10:10:0.01:0.05:100) MHz.

It is about 0.5 for the parameters which we use. To bring the
teleportation probability closer to the ideal success probability,
the ratio has to be close to unity. This can be done provided
that

κ � γ s. (96)

Let us choose another parameters which satisfy all the above
assumptions (sii � 1, �s � γ s + κ , κ � γ s) :

(g:�:κ:γ :�)/2π = (10:10:0.01:0.05:100) MHz. (97)

We expect that the teleportation will be close to the ideal
teleportation case for parameters (97). In order to check
this expectation we plot in figure 7 the average fidelity
of teleportation as a function of the detection time tD for
Hamiltonian (1) (points), Hamiltonian (5) (solid curve) and
Hamiltonian (14) (dashed curve). As can be seen, it is hard
to distinguish the points, showing the most general result
calculated numerically, from the solid and dashed curves. A
comparison between the average probability of teleportation
with γ neglected (dashed curve) and with γ included (solid
curve) shown in figure 8 is a final proof that the parameters (97)
are chosen properly. Additionally, we plot the results obtained
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Figure 8. The average probability of success given by (94) (solid
curve), given by (55) (dashed curve) and computed numerically
using the Hamiltonian (1) (points) for parameters satisfying
assumption (96) (g:�:κ :γ :�)/2π = (10:10:0.01:0.05:100) MHz.

numerically for Hamiltonian (1) (points). As is evident,
the average probability of teleportation is close to 0.5 in all
cases. Thus, we see that assumption (96) is necessary for the
teleportation scheme to be effective. Note that we can make
the undesired effect of non-zero γ even smaller by decreasing
γ s with respect to κ .

5. Conclusions

In this paper we have generalized the results implicit in the
work of Bose et al [1]. We have proved that the effect of
spontaneous atomic decay on the teleportation process cannot
be neglected if the product of the saturation parameter s and
the spontaneous decay rate γ is not much smaller than the
decay rate κ of the cavity mode. Otherwise, the probability
of successful teleportation is drastically lowered. This means

that the teleportation scheme does not work properly for the
parameter regime suggested by Bose et al [1], and more
restrictive conditions must be satisfied. On the other hand for
sufficiently long detection times the fidelity of the teleported
state can still be very good. Taking the spontaneous decay rate
into account leads to a faster increase in the fidelity. Therefore,
if higher fidelity is required at shorter detection times, this can
be achieved by accepting lower success rates.
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