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7.1 INTRODUCTION

Squeezed vacuum is a state of the electromagnetic field with very special
properties: There are strong correlations between the field amplitudes at fre-
quencies placed symmetrically with respect to a certain carrier frequency ws,
and the evolution of an atom subjected to such a field exhibits a number of
unique features related to quantum properties of the squeezed vacuum. Many
such features are well known and described in review articles {1, 2]. In this
chapter we are not going to repeat the material that can be found elsewhere,
but simply present an overview of two different approaches to the interac-
tion of an atomic system with the squeezed light of finite bandwidth. One
approach deals with the squeezed vacuum of finite but sufficiently broad band-
width, which is much broader than the atomic linewidth, and the squeezed
vacuum can be treated as a Markovian reservoir to the atom. This allows
for derivation of the Markovian master equation describing the evolution of
the atomic system. The other approach is based on the coupled systems ap-
proach [3, 4], which allows for description of the interaction between the atom
and the squeezed light with the bandwidth, which is comparable and even
narrower than the atomic linewidth. Interaction of such light with the atom
leads to some unexpected features in the optical spectra of the atom which
will be discussed here.

Since the first paper published by Gardiner on spectroscopy with a broad-
band squeezed vacuum field (5], much work has been done to find new fea-
tures in the resonance fluorescence and probe absorption spectra of two- and
three-level atoms in a squeezed vacuum [1]. Gardiner {5] has shown that in
a squeezed vacuum the atomic dipole moment can decay with two different
rates, one much longer and the other much shorter than that in the normal
vacuum. In consequence, a subnatural linewidth has been predicted in the
spontaneous emission spectrum. The addition of a coherent driving field to
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the problem introduces a strong dependence of the atom dynamics and the
fluorescence spectrum on the relative phase between the coherent field and
the squeezed field. Carmichael et al. [6] have shown that depending on the
phase, the central peak of the Mollow triplet [7] can either be much narrower
or much broader than the natural linewidth of the atom. The narrowing of
the central peak relative to its normal vacuum width is possible for a squeezed
vacuum with an arbitrary photon number N. However, the sidebands could
be narrowed only for a sufficiently low photon number (N < 0.125) [8, 9] and
for N > 0.125 are always broadened compared to their normal vacuum width.
Thus, the spectrum can be modified quantitatively from the spectrum asso-
ciated with the normal vacuum. Apart from the quantitative modifications,
the qualitative changes in the fluorescence spectrum have also been predicted.
Courty and Reynaud [10] have found that for a certain detuning of the driving
field from the atomic resonance, the central peak and one of the sidebands
can be suppressed due to population trapping in the dressed state. Smart and
Swain [11, 12, 13] have found unusual features in the resonance fuorescence
spectra, such as hole burning and dispersive profiles. These features, how-
ever, appear for Rabi frequencies comparable to the atomic linewidth and are
very sensitive to the various parameters involved.

Another spectroscopic feature accessible to experimental verification is the
probe absorption spectrum. Mollow [14] has predicted that the absorption
spectrum of a weak field probing a system of two-level atoms driven by an
off-resonant laser field consists of one absorption and one emission component
at the Rabi sidebands and a small dispersion-like component at the center
of the spectrum. The emission component indicates that in one sideband,
stimulated emission outweighs absorption, so that the probe beam is ampli-
fied at the expense of the driving field. The probe field can be amplified
due to the population inversion between the dressed states, despite the fact
that there is no population inversion between the bare atomic states. Apart
from the amplification at one of the Rabi sidebands, the absorption spectrum
also exhibits amplification on one side of a small dispersion-like structure cen-
tered at laser frequency [15], the physical origin of which comes from the
interference between absorption and emission processes and is not associated
with any population inversion because the transition occurs between equally
populated states on both the bare and dressed atom bases [16]. This ampli-
fication, however, vanishes when the atom is driven by a resonant laser field.
Amplification without population inversion has become a subject of intensive
research in recent years [17]. For a resonant driving field, however, the probe
absorption spectrum exhibits dispersion-like profiles at the Rabi sidebands of
a relatively small amplitude. The features have been interpreted in terms of
the dressed-atom description of the field-atom interaction [18].

The asymmetry of the absorption spectrum is not only crucial in obtaining
lasing without inversion but, for example, is also important in laser cooling
[19]. Cirac and Zoller [20] have shown that the spectrum of fluctuations of
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the dipole force, which is proportional to the absorption spectrum, can be
asymmetric, even for a resonant cooling laser field, when the two quadratures
of the atomic dipole decay at different rates. This is exactly the situation
that occurs when a two-level atom is damped by a squeezed vacuum [21].
Apart from the asymmetry, the absorption spectrum can exhibit a strong
emission peak (amplification) at the central frequency which is not attributed
to population inversion in either the bare-atom or dressed-atom picture [22].

Most of the studies dealing with the problem of a two-level atom in a
squeezed vacuum assume that the squeezed vacuum is broadband; i.e., the
bandwidth of the squeezed vacuum is much larger than the atomic linewidth
and the Rabi frequency of the driving field. Experimental realizations of
squeezed states [23-26], however, indicate that the bandwidth of the squeezed
light is typically on the order of the atomic linewidth. The most popular
schemes for generating squeezed light are those using a parametric oscillator
operating below threshold, the output of which is a squeezed beam with a
bandwidth on the order of the cavity bandwidth [27, 28]. There are two types
of squeezed field that can be generated by such a parametric oscillator. If the
oscillator works in a degenerate regime, the squeezed field has the profile with
the maximum of squeezing at the central frequency and a small squeezing far
from the center. In the nondegenerate regime, the profile has two peaks at
frequencies symmetrically displaced from the central frequency. For strong
driving fields and finite bandwidth of squeezing, this means that the Rabi
sidebands can feel quite different squeezing than the central line. A realistic
description of radiative properties of the two-level atom in such a squeezed
field must thus take into account the finite bandwidth of the squeezed field.

First studies of the finite-bandwidth effects have been performed by Gar-
diner et al. [27], Parkins and Gardiner [29], and Ritsch and Zoller [30]. The
approaches were based on stochastic methods and numerical calculations and
were applied to analyze the narrowing of the spontaneous emission and ab-
sorption lines. The fundamental effect of narrowing has been confirmed, but
the effect of finite bandwidth was to degrade the narrowing of the spectral
lines rather than enhance it. Later, however, numerical simulations done by
Parkins [31, 32] demonstrated that for strong driving fields a finite bandwidth
of squeezing can have positive effect on the narrowing of the Rabi sidebands.
He has found that there is a difference between the two types of squeezed light
generated in either the degenerate or nondegenerate regime of the parametric
oscillator. In the former case it is possible to narrow either both of the Rabi
sidebands or the central peak of the fluorescent spectrum, while in the latter
case simultaneous narrowing of all three spectral peaks is possible.

Recently, Yeoman and Barnett [33] have proposed an analytical technique
for investigating the behavior of a coherently driven atom damped by a
squeezed vacuum with finite bandwidth. In their approach, they have de-
rived a master equation and analytic expressions for the fluorescent spectrum
for the simple case of a two-level atom exactly resonant with the frequencies
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of both the squeezed field and the driving field. Their analytical results agree
with that of Parkins [31, 32] and show explicitly that the width of the central
peak of the fluorescent spectrum depends solely on the squeezing present at
the Rabi sideband frequencies. They have assumed that the atom is classi-
cally driven by a resonant laser field for which the Rabi frequency is much
larger than the bandwidth of the squeezed vacuum, although this is still large
compared to the natural linewidth. Unlike the conventional theory, based on
uncoupled states, it is possible to obtain a master equation consistent with
the Born-Markov approximation by first including the interaction of the atom
with the driving field exactly, and then considering the coupling of this com-
bined dressed atom system with the finite-bandwidth squeezed vacuum. The
advantage of this dressed atom method over the more complex treatments
based on adjoint equation or stochastic methods [31, 32, 34] is that simple
analytical expressions for the spectra can be obtained, thus displaying ex-
plicitly the factors that determine the intensities of the spectral features and
their widths. Recently, the idea of Yeoman and Barnett has been extended
by Ficek et al. [35] to the case of a fully quantized dressed-atom model cou-
pled to a finite-bandwidth squeezed field inside an optical cavity. They have
studied the fluorescence spectrum under the secular approximation [18] and
have found that in the presence of a single-mode cavity, the effect of squeezing
on the fluorescence spectrum is more evident in the linewidths of the Rabi
sidebands than in the linewidth of the central component. In the presence of a
two-mode cavity and a two-mode squeezed vacuum, the signature of squeezing
is evident in the linewidths of all spectral lines. They have also established
that the narrowing of the spectral lines is very sensitive to the detuning of the
driving field from the atomic resonance. The dressed-atom method, including
a detuning of the driving field from the atomic rescnance, has also been ap-
plied to calculate the probe absorption spectra of a driven two-level atom in a
narrow-bandwidth squeezed vacuum [36]. This method could also be applied
to calculate the fluorescence spectrum.

Tanas et al. [37] have adopted the Yeoman and Barnett [33] idea but with-
out using the Laplace transforms and the pole approximation, and they have
derived the master equation for a two-level atom driven by a classical laser field
and damped by a finite-bandwidth squeezed vacuum, including a nonzero de-
tuning of the driving field from the atomic resonance. Despite the complexity
of the problem, they have obtained a quite simple master equation that is valid
for arbitrary values of the Rabi frequency and the detuning but for squeez-
ing bandwidths much greater than the natural linewidth. The corresponding
optical Bloch equations for the atomic operators has been derived in a stan-
dard way from the master equation. The Bloch equations have been applied
to calculate the fluorescence spectrum and the quadrature-noise (squeezing)
spectrum of the scattered field. It has been found that the detuning changes
considerably the shape of the resonance fluorescence spectrum and leads to
novel spectral features. The squeezing spectrum allows for a simple expla-
nation of the linewidth narrowing, hole burning, and disappearance of the
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spectral lines. It turned out that for a strong resonant driving field the flu-
orescence field does not exhibit any squeezing, but the spectral lines can be
significantly narrowed. When the atom is driven by a weak laser field, the
fluorescence field exhibits a large squeezing which leads to further narrowing
of the spectral lines and a hole burning. Moreover, it has been found that
for some detunings the number of lines in the fluorescence spectrum does not
correspond to the number of lines in the noise spectrum, in contrast to what
one could expect that the fluorescence spectrum should reveal to the noise
spectrum.

An alternative approach to the problem of the interaction of squeezed light
with a squeezed vacuum, called the coupled-systems approach, has been pro-
posed by Gardiner [3] and Carmichael [4]. This approach treats the parametric
oscillator producing squeezed light as a part of the dynamical system, and the
master equation is obtained that describes parallel evolution of the atom and
the cavity field. Since the squeezed vacuum is not treated as the reservoir to
the atom, but rather as a driving field, there is no requirement for the squeezed
vacuum bandwidth to be broad. This makes it possible to study effects as-
sociated with the narrow-bandwidth squeezed vacuum. A disadvantage of
this approach, however, is the fact that the master equation describing the
evolution of the coupled systems does not allow for analytical solutions and
one has to rely on numerical solutions only. The coupled-systems approach
has been applied by Gardiner and Parkins [38], Smyth et al. [39, 40], and
Messikh et al. [41] to study the effect of squeezing bandwidth on the inhibi-
tion of atomic phase decays, spectral linewidth narrowing, and the anomalous
features of the optical spectra of the atom driven by a squeezed vacuum. We
present some of the unusual features of such spectra in this chapter.

7.2 SOURCES OF SQUEEZED LIGHT

7.2.1 Degenerate parametric oscillator

Light with squeezed vacuum fluctuations can be obtained in many nonlinear
optical processes [42], but the most effective scheme to produce squeezed light
turned out to be the degenerate/nondegenerate parametric oscillator or para-
metric down converter (see, for example, [43] and papers cited therein). In the
parametric oscillator a laser pump field at frequency 2w; is split by a nonlinear
crystal into two photons at frequencies w; and w, such that wy + wy = 2wy,
where w; is the squeezing carrier frequency. If w; # ws, the parametric os-
illator is said to be nondegenerate (NDPQ), and when the two frequencies
are equal, the parametric oscillator is referred to as degenerate (DPO). The
1onlinear crystal is placed in a cavity with one mirror which is almost per-
ectly reflecting for the photons at w; and ws, but transparent to the pump
dhotons at 2w;, and the other mirror with finite transmissivity for the down-
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converted photons. For the parametric oscillator working below the threshold
for oscillation, the outgoing light is in a squeezed vacuum state which exhibits
unique quantum properties. The properties of such light have been calculated
by Collett and Gardiner [44] for DPO and extended by Collett, Loudon, and
Gardiner [28] for NDPO. The output field from DPO is characterized by the
following correlation functions:

Nw)d(w —w'), (7.1)
(GoutW)aout(W')) = MW)é(2ws; —w —w'). (7.2)
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For a degenerate parametric oscillator, the squeezing properties are de-
scribed by [44]

_ A2 — pu? 1 1

Nw) = 4 [(w - ws)? + p? - (W—ws)? + )‘2] ’ (73)
e AT 1 1 )

Mw) = e 4 [(w—ws)2+u2 * (w — wy)? +)\2] (T4

A and p are related to the cavity damping rate «, and the amplitude of the
pump field € of the parametric oscillator according to

A=< +e, p==—¢, (7.5)

and ¢ is the phase of the pump field.

From (7.1) it is clear that N(w) is related to the mean number of photons
at frequency w, while M (w) is characteristic of the squeezed vacuum field
and describes the correlation between the two photons created in the down-
conversion process. The frequency dependence of the two parameters N(w)
and M (w) is governed by two Lorentzian functions with widths A and p defined
by the cavity damping rate and the amplitude of the pump field. Below
threshold, € < x/2, both A and u are positive, and A > p. In the case of the
parametric oscillator, we have

|M(w)| = VNW)[N(w) +1], (7.6)

which means that the output field is an ideal squeezed vacuum. Generally,
however, |M (w)| < /N (w)[N(w) + 1], and only when |M(w)| > N(w) is the
field strictly quantum, w1thout classmal analogue. For |M(w)| < N(w) the
field can be considered as a classically squeezed field. The most interesting
phenomena are those which appear only m the region of quantum squeezing,
where N(w) < |[M(w)| < /N

In many cases the frequency dependence of N(w) and M (w) can be omitted
and the squeezed vacuum becomes the broadband squeezed vacuum. This
happens when A and p are much larger than all other relaxation rates in
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Fig. 7.1  Plots of | M (w)| for DPO (solid line) and NDPO (dashed line) for o = 10.
The parameters are: k/v = 10 and €/ = 0.125. For reference we plot the Mollow
triplet for the Rabi frequency Q) = a = 10 (dotted line). All frequencies are scaled in
units of the atomic linewidth ~.

the problem. In such situations the squeezed vacuum is parametrized by two
constants N and M.

7.2.2 Nondegenerate parametric oscillator

When the parametric oscillator works in the nondegenerate regime (NDPO)
the frequency dependence of N(w) and M(w) is given by [28]

Nw) = )\2gu2 [(w_ws_la)u;ﬂ+(w—ws+1a)2+u2
_(wmws_la)2+)\2_(w_ws:a)2+/\2}, (7.7)

Mw) = e* /\2;;& [(w*ws—la)”‘ﬂ + (w_ws:a)2+u2
+(w—ws—la)2+A2+(w—ws+1a)2+,\2J' (7.8)

The parameter a = (w; ~ wy)/2 is characteristic of a two-mode squeezed
field generated by the nondegenerate parametric oscillator and represents the
displacement from the central frequency of the squeezing at which the two-
mode squeezed vacuum is maximally squeezed.

Similarly to the DPO, the squeezed vacuum generated by NDPO satisfies

the relation |M(w)| = \/N(w)[N(w) +1J; i.e., the field is the ideal squeezed

vacuum. If the broadband approximation is made, there is no difference be-



296 ATOMS IN A SQUEEZED VACUUM

tween the field from DPO and NDPO; both can be described by the param-
eters N and M, which are constants (Fig. 7.1). However, if A and p are
finite, the two fields differ dramatically: DPO produces a field with one peak
centered at the squeezing carrier frequency, while NDPO produces light with
two spectral peaks symmetrically shifted by a with respect to the carrier
frequency w,. This fact can have important consequences when, for exam-
ple, an atom interacts with the squeezed vacuum. If p is much greater than
the atomic linewidth +, the broadband approximation can be used, and the
squeezed vacuum can be treated as a reservoir to the atom. In Fig. 7.1 we
have plotted examples of the squeezing parameters |M(w)] as a function of
w for DPO and NDPO assuming that /vy = 10 and ¢/ = 0.125. The fre-
quency is scaled in units of the atomic linewidth y. For NDPO we assume
that a/y = 10, which means that NDPO produces two lines shifted with
respect to the squeezing carrier frequency w, by a. To visualize better the
effect that a squeezed vacuum of given type can have on the atom driven by
a strong classical field, we have added for reference the standard fluorescence
spectrum, i.e., the Mollow triplet with the Rabi frequency Q = a. Clearly, the
central line and the sidebands can feel quite different squeezing, depending on
the regime in which the parametric oscillator is operating. Some consequences
of this fact are discussed later in this chapter.

7.3 SQUEEZED VACUUM AS A RESERVOIR: MARKOVIAN
MASTER EQUATION

Let us consider a two-level atom driven by a detuned monochromatic laser
field and damped by a squeezed vacuum with finite bandwidth. Adopting the
idea of Yeoman and Barnett [33], which is based on the model proposed earlier
by Carmichael and Walls [45] and Cresser [46], Tana$ et al. [37] have derived a
master equation for the system, which includes squeezing bandwidth effects.
In this approach, the dressing transformation is performed first, to include
the interaction of the atom with the driving field, and next, the resulting
dressed atom is coupled to the narrow-bandwidth squeezed vacuum field. We
introduce here this approach in a systematic way.

We derive the master equation under the Markov approximation which re-
quires the squeezing bandwidth to be much greater than the atomic linewidth,
but not necessarily greater than the Rabi frequency of the driving field and
the detuning. For simplicity, we assume that the squeezing properties are
symmetric about the central frequency of the squeezed field, which, in turn, is
exactly equal to the laser frequency. Our model differs from that of Yeoman
and Barnett in adding a nonzero detuning which, as has been shown in [37],
leads to new and interesting effects. Contrary to Yeoman and Barnett [33],
who used the Laplace transform method and the pole approximation, we
perform all calculations in the time domain. There are some discrepancies be-
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tween the two approaches which have been discussed in [37]. Here, we present
and apply our version of the master equation.

We start from the Hamiltonian of the system which, in the rotating-wave
and electric-dipole approximations, is given by

H=H4+Hr+H;+Hy, (7.9)
where
1 1 1
HA = ‘2-h(.UA g, = —ihAaz + Eth (2% (710)

is the Hamiltonian of the atom,
o0
Hp = h/ w bt (W) b(w) dw (7.11)
0
is the Hamiltonian of the vacuum field,
1
Hp = §hQ [0+ exp(—iwrt) + o_ exp(iwrt)] (7.12)

is the interaction Hamiltonian between the atom and the classical laser field,
and

Hy= ih/ooo K(w) [o4b(w) = b+(Q) o_] dw (7.13)

is the interaction Hamiltonian of the atom with the vacuum field. In (7.10)-
(7.13), K(w) is the coupling of the atom to the vacuum modes, A = wy — w4
is the detuning of the driving laser field frequency wy, from the atomic reso-
nance wy, and o4, o_, and o, are the Pauli pseudo-spin operators describing
the two-level atom. The laser driving field strength is given by the Rabi
frequency 2, while the operators b(w) and b*(w) are the annihilation and
creation operators for the vacuum modes satisfying the commutation relation

[B(w), b ()] = 6(w — w'). (7.14)

For simplicity, we assume that the laser field phase is equal to zero (¢, = 0).

In order to derive the master equation we perform the two-step unitary
transformation. In the first step we use the second part of the atomic Hamil-
tonian (7.10) and the free field Hamiltonian (7.11) to transform to the frame
rotating with the laser frequency wy and to the interaction picture with re-
spect to the vacuum modes. After this transformation our system is described
by the Hamiltonian

Ho+H"(t), (7.15)
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where
1 1
Hy = —EhAUz + 5hQ(O’+ + 0'_) (716)
and
(o0}
HO(t) = ih/ K(w){a+ b(w) expli(wr — w) ]
0
- bt (w) o_ exp[—i(wr — w) t]} dw. (7.17)

The second step is the unitary dressing transformation performed with the
Hamiltonian Hy, given by (7.16). The transformation

o4+(t) = exp (—%Hmt) O+ €xp (%Hﬁ) (7.18)

leads to the following time-dependent atomic raising and lowering operators

ou(t) = % [+ 8)6_ exp(~ift) & (15 A)o, exp(i't) + 15.), (7.19)
where
5. = % [(1 ~A)o_ —(1+A)o_ — Qaz] ,
5, = % [—(1 +A)o_ + (1~ Aoy — Qaz] , (7.20)
5. = Qo_ +0y)— Ao,

are the “dressed” operators oscillating at frequencies —§’, ', and 0, respec-
tively, and

=2 A2 g-ymiar (7.21)

Q’ o’

We assume that ' > 0, so for weak fields, Q ~ 0, the dressed operators
6+ 04,6, 20, for A<0,and 64+ - —05, 6, & —0o, for A > 0.
Under the transformation (7.19) the interaction Hamiltonian takes the form

Hi(t) = ih /0 ” K(w){a+(t)b(w) expli(wr, — w) ]
— b+ (W)o_(t) exp|—i(wr — w) t]} dw. (7.22)

The master equation for the reduced density operator p of the system can be
derived using standard methods [47]. In the Born approximation the equation
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of motion for the reduced density operator is given by [47]

(a) t
8gt = h12 / Trg {[Hl(t)y[HI(t — 1), pr(0)p' ¥ (t '—T)]]} dr, (7.23)

where the superscript d stands for the dressed picture, pr(0) is the density
operator for the field reservoir, Trg is the trace over the reservoir states, and
the Hamiltonian H/(t) is given by (7.22). We next make the Markov ap-
proximation [47] by replacing p(® (¢ — 7) in (7.23) by p(4)(¢), substitute the
Hamiltonian (7.22), and take the trace over the reservoir variables. Since
the squeezed vacuum plays the role of the reservoir to the atom, the reser-
voir operators b(w) and b%(w) are the operators ayy:(w) and aout( ) from
equation (7.1), and we have

Tr[b(w ) ')pR(O)] = (W) = [Nw) + 1] 6w - '),
Trg[b* (W)b(W)pr(0)] = (BT (W)b(W)) = N(w) 6w - w'), (7.24)
Tralb(w) w')pR 0] = BW)bW)) =Mw)é2wr —w-uw'),

where N(w) and M(w) are the squeezing parameters given by (7.3) and (7.4)
for the squeezed vacuum produced by DPO, and by (7.7) and (7.8) for the
squeezed vacuum produced by NDPO with the carrier frequency of the squeez-
ed field wy being equal to the laser frequency wr,.

In the Markov approximation we can extend the upper limit of the inte-
gration over 7 to infinity and next perform necessary integrations using the
formula

o
/ exp(ier)dr = mwd(e) iiP%, (7.25)
0

where P means the Cauchy principal value. After performing all the integra-
tions and transforming back from the dressed picture to the original density
operator, in the frame rotating with the laser frequency wy, we finally arrive
at the master equation of the form [37]

1 1
p = §i5[0z,l’]“ 51004 +0-,0]

1 -
+57N(204p0- —0-04p—po_oy)
1 .
+ 51N 41) Qo_pos — osa_p—poso.)
~yMoypo, —yM*o_po_
1. «
+ ZZ (A[G-H[UZHO]] - A [0_,[0z,p]]) ) (726)
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where 7 is the natural atomic linewidth,

N = N(wL+Q’)+-;—(1—Az)DT, (7.27)
M = M(wL+Q’)—%(1—AQ)D+iA<SM, (7.28)
5 = A+7[A<SN——;—(1—A2)Di], (7.29)
A = 7()[5N+6M—iAD], (7.30)

D = N(wy)-Nwp+9) - [M(wz) - M(wy + )], (7.31)

1 ® N(z) :

v o= P e (7.32)
1 *© M(zx)

o= P g (7.33)

where z = w~ws = w—wy, and we have to remember that M (w) is a complex
quantity [M(w) = |M(w)|exp(i¢)] with ¢ being the phase of squeezing. To
simplify notation, we use the convention that for any complex number @,

RQ=0Qr+iQi (7.34)

with the real part @, and the imaginary part Q;.

In the derivation of equation (7.26) we have assumed that the phase ¢
does not depend on frequency [48], and we have included the divergent fre-
quency shifts (the Lamb shift) to the redefinition of the atomic transition
frequency [47]. Moreover, we have assumed that the squeezed vacuum is sym-
metric about the central frequency wy,, so that N(wy — Q') = N(wp + @),
and a similar relation holds for M(w).

The master equation (7.26) has the standard form known from the broad-
band squeezing approaches with the new effective squeezing parameters N and
M given by (7.27) and (7.28). There are also new terms, proportional to A,
which are essentially narrow-bandwidth modifications to the master equation.
All the narrow-bandwidth modifications are determined by the parameter D,
defined in (7.31) and describing the difference between the squeezing at the
center and that at the sideband, and the shifts 65 and s defined in (7.32)
and (7.33). These parameters become zero when the squeezing bandwidth
goes to infinity and the master equation (7.26) goes over into the correspond-
ing master equation for the broadband squeezed vacuum [6].

The squeezing-induced shifts dy and &y depend on the explicit form of
N(w) and M({w). Since there are two types of squeezed field that can be
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generated by the parametric oscillator, N(w) and M(w) are given by (7.3)
and (7.4) for DPO, or by (7.7) and (7.8) for NDPO.

The Cauchy principal values of the integrals (7.33) and (7.32) can be eval-

uated using the contour integration, which gives [33]
oOn = Op— 6)\ )
g (7.35)
oy = e“”(&u + 6,\) R

where the form of §,, and J, depends on the type of squeezing being considered
and is explicitly given by:

(i) for DPO
A% — 2 1
8, = T i (7.36)
A2 — p? 1
b = RS VGEISOR (7.37)
and (ii) for NDPO with o = Q'
A2 —pu? 1
b = ¥ AT (7.38)
2 _ 2
5 = QK L (7.39)

1 XAz

The shifts coming from the principal value terms (7.32) and (7.33) are different
for the squeezed vacuum from DPQO and NDPO, but they become negligible
both for very small and very large Q' as compared to A and p. For moderate
values of (', the shifts are important and have to be taken into account when
calculating atomic radiative properties.

7.3.1 Bloch equations

From the master equation (7.26) we easily derive the optical Bloch equations
for the mean values of the atomic operators, which can be written in matrix

form as
a () @)\ (0
G| o) |=al @) |- 0], (7.40)
(02) (02) v
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where the matrix A has the form

-I'+is  —yM iq
A= —yM* -T-is -iq |, (7.41)
i(Q+A*) —i(Q+A) -2T
where
I = %(1 +21). (7.42)

Defining the Hermitian operators o, and g, as

1 1
0s = 5(0-+0y), oy = 5 (0= = 04), (7.43)

we get from (7.40) the following equations of motion for the atomic Bloch
vector components

()30
a4\ (o) (o) v ) ’

-T—9yM, —6-4M; 0
B = d—yM; -T+~M, 10 |. (7.45)

2A;  —2(Q+4A,) -2T

where

From the form of the matrix B it is evident that the two quadrature compo-
nents of the Bloch vector (o,) and (o) have two different decay rates

3 1 - .
Y= = P+’7Mr:7<§+N+Mr>,
(7.46)

- 1 . -
Yy = F~7Mr=7<§+N—MT>,

the effect known already from the Gardiner paper [5], but now the modified
parameters N, given by (7.27), and M, given by (7.28), take into account the
fact that the squeezed vacuum has finite bandwidth. On resonance, A = 0,
the two rates take the following form:

1
Yo = 7{§+N(wL+Q’)+Mr(wL+Q’)} ,
(7.47)

w = {3+ N - M}
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Fig. 7.2 Plots of (0)ss as a function of A for Q/y = 10, ¢ = 7/2, €¢/x = 0.25,
/v = 20 for DPO (solid line) and NDPO (dashed line). Dotted line marks broadband
squeezing (k/v = 105) result.

which shows that the damping rate of (o) is defined by the squeezing proper-
ties at the sidebands while the damping rate of (o) is defined by the squeezing
properties at the center of the spectrum. For the finite-bandwidth squeezed
vacuum this fact has very important consequences. For broadband squeezing
the Bloch equations (7.44) reproduce the results of Lane et al. [6].

7.3.2 Steady-state solutions

The Bloch equations (7.44) can easily be solved for the steady-state values of
the atomic variables, and the result is given by

3 1 Q6+ ~M;)
<0z)ss = 27—T—,
1 QT ++M,)
(Oy)ss = YT (7.48)
2+ 6%~ |[yM|?
<0'z>ss = -7 d I’Y ' 3
where
d = QQ+ AT +~vM,) + QA; (5 + vM)
+2I(T2 + 6% — |yM|?). (7.49)

In Fig. 7.2 we plot (0.)ss as a function of A for finite-bandwidth DPO and
NDPO squeezing in comparison to the broadband squeezing result. The quan-
tity 7(A) = (0.)ss + 1 expresses the steady-state fluorescence light intensity.
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The expression is also known as the absorption spectrum of the driving field
or stationary lineshape [49]. For both broad- and narrow-bandwidth squeezed
vacuum, the absorption spectrum is a Lorentzian whose bandwidth depends
on the bandwidth of the squeezed vacuum as well as on the type of squeezing
that atom is subjected to, i.e., the squeezing from DPO or NDPO. More-
over, for ¢ = /2 and a narrow-bandwidth squeezed vacuum of DPO, the
maximum of the Lorentzian is shifted toward negative detunings. The shift
is definitely a narrow-bandwidth feature in the absorption spectrum, which
cannot be observed in broadband squeezing (37].

The steady-state solutions (7.48) exhibit even more interesting features.
For a resonant driving field (A = 0), we find from (7.28) and (7.29) that

8+ M; = |M(wa)|sing, (7.50)

indicating that even for A = 0 the (0)ss component of the Bloch vector can
have a nonzero steady-state solution provided that the phase ¢ is different
from 0 or 7 and there is a nonzero squeezing at the atomic resonance. This
effect can lead to unequal populations of the dressed states of the system [50],
which has interesting consequences. This point becomes more transparent
when the dressed atom picture is invoked.

7.3.3 Dressed atom picture

The transformation (7.20) between the dressed atomic operators and the bare
operators can be rewritten in matrix form as

o o_
6'+ =T o4 y (751)
0, o,

where the transformation matrix T has the form

(7.52)

The inverse transformation T!, from the dressed operators to the bare op-
erators, can be performed with the matrix of exactly the same form as (7.52)
but with  replaced by —€). From the transformation (7.51), in particular by
looking at the last row of the transformation matrix (7.52), it is clear that the
Hamiltonian (7.16) in the dressed operators takes the diagonal form

1
Ho = 5h9V'5, (7.53)

with Q' given by (7.21).
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Fig. 7.3 Population inversion p; . — p__ of the dressed states for the DPQ squeez-
ing with €/k = 0.25, ¢ = 7/2, and (a) /v = 20, (b) A = 0.

An alternative way to look at the dressed atom is to introduce the dressed
states (see, for example, [51]). The dressed states that diagonalize the Hamil-
tonian (7.16) can easily be found, and they take the following form:

9 = 2R+ 2,
(7.54)
b= e

with the energies E+ = £hQ'/2, and the states |g) and |e) being the ground
and excited states of the atom, respectively. In terms of the dressed states
the dressed operators can be expressed as

G- =|=)H, G =14l G =R (H = )= (7.55)

The populations of the dressed states are related to the expectation values
of the atomic dipole moment, or the Bloch vector, by the relations

P++ = %(1‘4‘(5:)) = ';‘ (1_A<Uz)sS> +Q(UZ)ss’ (7.56)
poe = G000 =3 (1+A(0) Do

For a resonant driving field we have A = 0, and the stationary populations of
the dressed states depend solely on (o, )ss, which, on the other hand, can be
nonzero only when the phase ¢ is different from 0 or 7 and, simultaneously,
there is a nonzero squeezing at the atomic resonance. This suggests that the
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best candidate to observe the unequal populations of the dressed states would
be a squeezed vacuum produced by a degenerate rather than nondegenerate
parametric amplifier. In Fig. 7.3(a) we have plotted the population inversion,
0; = p++ — p——, of the dressed states as a function of 2/ and A/y for ¢ =
7/2, k/y = 20, and €/k = 0.25, such that N(wa) = 1.78 and M(w,4) = 2.22.
In Fig. 7.3(b) the dependence of the population inversion on Q/v and &/~ is
illustrated for A = 0 and the other parameters as in figure (a). It is clearly
seen that the population inversion can take both positive and negative values.
For small values of the Rabi frequency, Q ~ 0, a jump is observed in the
population difference of the dressed states when the detuning A changes its
sign, which is a consequence of the fact that for the Rabi frequency going to
zero the dressed states (7.54) become the bare atomic states |g) and e), but
they are interchanged when A changes its sign. A clear maximum appears
for small Rabi frequencies. The positive values of the population difference
mean actual population inversion of the dressed states, which is evident from
Fig. 7.3(a). This effect is an example of a nonsecular effect, which appears
only for small Rabi frequencies and/or detunings. The peak vanishes for large
Rabi frequencies and/or detunings. The peak in the population inversion is
due to squeezing.

We note from Fig. 7.3(b) that for small values of x/ the population in-
version G, strongly depends on the squeezing bandwidth. However, the study
of this behavior in the regime /v < 10 is forbidden by the Markov approxi-
mation made in the derivation of the master equation (7.26), which requires
the squeezing bandwidth to be much greater than the atomic linewidth. We
believe, however, that for sufficiently large values of the DPO bandwidth,
/v > 10, which are still consistent with actual experiments on spectroscopy
with squeezed light [26], our master equation leads to reasonable results al-
lowing for studies of squeezing bandwidth effects.

Having available the steady-state populations of the dressed states, we
can easily check whether the population trapping effect, predicted by Courty
and Reynaud [10] (see also [52]) for a broadband squeezed vacuum, can be
observed for a narrow-bandwidth squeezed vacuum. In Fig. 7.4(a) we plot
the population p__ as a function of 2/ and A/y for ¢ = =, and the DPO
output with /v = 10° and €¢/k = 0.25. In this case the squeezed vacuum
is very broad and, as is seen from Fig. 7.4(a), there is a population trapping
(p—— = 1). Interestingly, the population trapping appears for very large
detunings and Rabi frequencies, indicating that this is essentially a secular
effect. Figure 7.4(b) shows the population p__ for the same parameters as
in Fig. 7.4 (a) but for a narrow-bandwidth squeezed vacuum with x/y = 20.
There is no population trapping for the narrow-bandwidth squeezed vacuum.
This shows that some effects known from broadband squeezing do not appear
for narrow-bandwidth squeezing.
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Fig. 7.4 Population p.... as a function of the detuning A and the Rabi frequency
€, for DPO squeezing with €/k = 0.25, ¢ = 7, and (a) /v = 10%, (b) k/v =20 .

Applying the matrix T to equations (7.40) we arrive at the following evo-
lution equations for the dressed atom quantities

d Eai A goi 7 3 (7.57)
- g = o + — , .
N\ G G ) 2\ 24

where the matrix A = TAT ™! has the following matrix elements:

- ~ - 1 - o

All = ASQ = —1 <QI + % Ar> - {F + 5 [(1 - A2)(F han ’)’Mr) - AQA,] } ,
. . - 1- 1 ) .

A = Apy =i (90 + 500, —5[(1—A)(P+7MT)—AQAZ],

_ » 1r-

Ay = A= %li - = [A (T — v M,) + (1 - AQ)Al] , (7.58)

In the secular approximation, when Q' is much larger than all the damping
rates, the nondiagonal matrix elements of the matrix A can be omitted and
on neglecting also the vector of the free terms, equations (7.57) are decoupled
and have simple exponential solutions
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Go(t)) = (5.(0))exp {:I:z' (Q + %QA) t
- [F + % [(1 — A% —~M,) — AQA,-H t} , (7.59)

G.(0) = wxmnm{—zﬁ—gkl—A%w—an—AﬁmHt}
(7.60)

The solutions (7.59) and (7.60), describing the evolution of the dressed coher-
ences and dressed population inversion, give us immediately some interesting
features of the atomic evolution in the secular limit. In particular, it is seen
that the Rabi frequency € is shifted by QA,/2 if the squeezed vacuum has
finite bandwidth. The shift is determined by A,, given in (7.30). For reso-
nant fields with A = 0, the shift is negligible in the secular limit in which
dn and éps are negligible. However, for nonresonant excitation, A # 0, the
shift is equal to QA[M (wr) — M(wr, + Q')]sin¢ /2. It is nonzero when the
squeezing properties are different at the center and at the sidebands and
¢ # 0 or w. This feature is evidently associated with the finite bandwidth of
the squeezed vacuum and disappears for broadband squeezing. From equa-
tions (7.59) and (7.60), it is also easy to identify two damping rates:

|
>

Ton = T4 [(1= AN~ iE,) - A0 (7.61)

Tpop = 2 {r - % [(1 ~ R%)(T — 4T,) — AQAi] } . (7.62)

which describe the relaxation of the dressed coherences and populations. For
ordinary vacuum, for which T' = v/2 and M, = A; = 0, the two rates are
the well-known expressions [51]. For the broadband squeezed vacuum, for
which M (w) does not depend on w and A = 0, the two damping rates are
modified with respect to the damping rates for the ordinary vacuum [5, 6].
Since [¢on is known to determine the width of the sidebands and Iy, defines
the width of the central line of the Mollow triplet, it is seen that the important
narrowing of the central line can be observed. This is the well-known effect
of the broadband squeezed vacuum [6].

On resonance, A = 0, the expressions (7.61) and (7.62) take much simpler
form:

1
Peon = 5 (Y= +27)
(7.63)
I‘pop = Yz,

where v, and v, are given by (7.47). This is the result obtained by Yeoman
and Barnett [33] showing that the width of the central line is defined by the
squeezing present at the sidebands only. The widths of the sidebands depend
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Fig. 7.5 Plots of I'con /7 (solid line) and I'pop /7y (dashed line) against A for £/y =

20, ¢/k = 0.25, /v = 10, and ¢ = m: (a) DPO and (b} NDPO. Dotted curves
present corresponding results for broadband squeezing.

on the squeezing at both the center and the sidebands. Yeoman and Barnett
[33] have also shown that for squeezing produced by NDPO, for sufficiently
large Rabi frequency, the narrowing of all three spectral components of the
Mollow triplet is possible.

Formulas (7.61) and (7.62) are analytical formulas indicating explicitly the
modifications of the two damping rates due to squeezed vacuum with finite
bandwidth. In Fig. 7.5 we have plotted I'yop, and T'eop, in units of v as
functions of the detuning A for the squeezed vacuum with the bandwidth
k/v = 20, and for ¢/k = 0.25, /vy = 10, and ¢ = w. Figure 7.5(a) shows
the results for DPO and Fig. 7.5(b) for NDPO. The values of I'pop that fall
below 0.5 indicate narrowing of the central line of the Mollow triplet. Dotted
lines are used to mark the results for broadband squeezing. As it is seen, the
narrowing of the central line can be observed for squeezing with ¢ = 7 in both
DPO and NDPO squeezing. The narrowing is most effective for A = 0, and
there is no big difference between DPO and NDPO squeezing, at least for the
parameters used in Fig. 7.5. It is also seen that the broadband squeezing is
more effective in narrowing of the central line than the squeezing with finite
bandwidth. The differences between DPO and NDPO are more dramatic for
I'con- The sidebands in the squeezing from NDPO are much narrower than
those in the squeezing from DPO, and narrower than those in the broadband
squeezing, but they do not fall below 0.75, which is the value for the ordinary
vacuum. In Fig. 7.6 we illustrate the crucial difference between DPO and
NDPO squeezing in narrowing the spectral lines. Figure 7.6(a) shows [eon
and T'pop for DPO squeezing. The narrowing of the central line and broad-
ening of the sidebands are quite evident. In contrast to DPO squeezing, in
Fig. 7.6(b) we see the simultaneous narrowing of both the central line and
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Fig. 7.6 Plots of Lcon/7 (solid line) and Ipop /7 (dashed line) against A for k/y =
10, ¢/k = 0.25, ¢ = m, and /y = 20: (a) DPO and (b) NDPO. Dotted curves

mark the results for ordinary vacuum.

the sidebands, in agreement with the Yeoman and Barnett results [33]. The
narrowing is most effective for zero detuning.

Of course, formulas (7.61) and (7.62), which give us direct insight into
the physical factors defining the widths of the spectral lines, are valid only
in the secular limit, when the Rabi frequency is very large in comparison
to the atomic linewidth. In this case the dressed atom picture has clear
advantage over the standard approach, and equations (7.57) can be decoupled
and solved. When the Rabi frequency in not very large, the nonsecular terms
can be important, and the dressed atom picture is no longer advantageous over
the bare atom picture. However, the master equation (7.26) leading to the
Bloch equations (7.44) allows for calculations of the fluorescence spectrum in a
general case, without making the secular approximation. The only restriction
is the bandwidth of the squeezed vacuum, which must be much larger than
the atomic linewidth to justify the Markov approximation.

7.3.4 TFluorescence spectrum

The stationary spectrum of the resonance fluorescence from a two-level atom
is given by the Fourier transform of the two-time atomic correlation function
as [7, 47

F(w) = v2Re { /0 oo<a+(o)o—_ (7)) g5 €Wl dr} , (7.64)

where Re denotes the real part of the integral. The two-time correlation
function appearing in (7.64) can be found from the Bloch equations (7.40) by
applying the quantum regression theorem [53]. The equations of motion for
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the two-time correlation functions can be written as

o [ (0+(0)o_(7))ss (04+(0)0—(7))ss
8_T (0+(0)o4(T))ss | = A (04(0)04(7))ss
(04(0)02(7))ss (04(0)a.(7))

0
+<U+>ss< 0 ) ) (765)
-

where A is the 3 x 3 matrix given by (7.41), and the initial values for the
correlation functions are

88

(04000 = 51+,
(04+04+)ss = 0, (7.66)
(U+Uz)ss = _<U+>ss

Taking the Laplace transform of (7.65) we obtain a system of algebraic
equations for the transformed variables which can easily be solved. The solu-
tion gives us the following formula for the Laplace transform of the correlation
function (o4 (0)o—(7))ss:

F(z) = (1){—i<a+)ss-g-7':2(r+7M+z5+z)
%(1 +{0.)ss) [%(SH—A) + (2 + 2) (F+15+z)”, (7.67)
where

d(z) =d + 2 [z(4r +2)+ Q4+ A,) + 502 + 62 — WW] (7.68)

with d given by (7.49), and

<U+>ss = (Uz>ss 1 <Uy>ss =1 2?1 (F + ’YM* — 1(5) . (769)

The Laplace transform (7.67) contains both the coherent and incoherent con-
tributions to the spectrum [7]. The coherent part of the spectrum is the delta
function 6(w —wy) centered on the laser frequency, the amplitude of which is
defined by the residuum for z = 0:

Fean = lim 2F(2) = I’y (I‘ N+ zé)l . (7.70)

4d2

The incoherent part of the spectrum is then given by

Finc(w) = 72Re {Finc(z)lz=—i(w—wz,)} ) (771)
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where
Fine(z) = F(2) - Fcoh d(l) {_i<a+>ss%(7+r+’yM+i5+Z>
-;-(1+( 2)ss) {§Q(Q+A)+(2F+z)(f‘+i5+z)]
toh d(z)z_ d} : (7.72)

We can relate the incoherent part of the resonance fluorescence spectrum
to the quadrature noise spectrum (squeezing spectrum) as [54]

Finc(w +wr) = Sx(w) + Sy (w) + Sa(w), (7.73)

where

Sx(w) = 7Re / ™ cos(wr) [(04.(0), 0— (7)es + (04(0), 04 (7)) s dr, (7.74)
Svw) = 1Re | ™ cos(wr) [(040), 0—(7))es — (04(0), 04 ())ss] dr, (7.75)

are, respectively, in-phase and out-of-phase quadrature components of the
noise spectrum, and

Sa(w) = —2v /0 ” sin(wr)Im (o4 (0), 0 ())ss dr (7.76)

is the asymmetric contribution to the spectrum. In (7.74)-(7.76), (a,b) =
(ab) — (a)(b) denotes the covariance.

In order to calculate the spectra of the normally ordered quadrature com-
ponents of the fluorescent light [55], we need to evaluate the correlation func-
tion (04 (0),0.+(7)}ss, which, on the other hand, can be found from the equa-
tions (7.65) and (7.48). The Laplace transform for the function (o4 (0)o 1 (7))ss
has the form

S(z) = (1) {'( +>ss%7:’z (r+ i —i6+z)
1 Q . -
5(1 +{0;)ss) [5(9 +A") - (2T + 2)vM ] } . (7.

The components of the squeezing spectra (7.74)—(7.76) are related to the
functions F(z) and S(z), given by (7.67) and (7.77), in the following way
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Fig. 7.7 Fluorescence spectrum for /7y = 20, €/k =0.25 Q/y =20, A =0,
and ¢ = m: (a) DPO and (b) NDPO; Mollow spectrum (dotted line).

(a) (b)

Fig. 7.8 Same as Fig. 7.7 but for ¢ = 0.

1

Sx(w) = 1 Re {F(~iw) + F(iw) + S(—iw) + S(iw)} ,
Sy(w) = %Re {F(=iw) + F(iw) - S(—iw) - Siw)},  (7.78)
Saw) = % Re {F(—iw) — F(iw)} .

In Fig. 7.7 we plot the fluorescence spectrum for A = 0, /v = 10, and
the squeezed vacuum produced by (a) DPO and (b) NDPO with k/y = 20,
e/k = 0.25 [N(wa) = 1.78, |M(w4)| = 2.22], and ¢ = m. The spectrum in
the squeezed vacuum is symmetric and contains three peaks, just as does the
Mollow spectrum in the normal vacuum [7]. The linewidths of the spectral
features, however, are different and can be narrower than those in the normal
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vacuum. The narrowing of the central line is clearly visible for both the
DPO and NDPO squeezing. The sidebands are broader with respect to the
standard Mollow spectrum, but the broadening is less effective for NDPO
than for DPO. This confirms our earlier predictions based on the damping
rates I'pop and I'con of the dressed atomic populations and coherences (see
Section 7.3.3). In Fig. 7.8 the resonance fluorescence spectra are shown for
¢ = 0 and other parameters as for Fig. 7.7. In this case, we see that the
intensities of the spectral lines are different and we observe a shift of the Rabi
sidebands from their resonant positions, which is clearly visible in Fig. 7.8(a).
The shift is due to the presence of the parameters dy and dps -which are
different from zero only in a narrow-bandwidth squeezed vacuum. The shift
vanishes when the bandwidth goes to infinity. Therefore, the shift of the
Rabi sidebands, seen in Fig. 7.8(a), is a signature of the narrow-bandwidth
squeezed vacuum. :

To find the positions and widths of the spectral lines of the fluorescence
spectrum given by (7.72), it is enough to find eigenvalues of the matrix A given
by (7.41) or, equivalently, find the roots of the third-order polynomial d(z)
given by (7.68). It is easy to show that for A = 0 and ¢ = 0 the eigenvalues
are

2 = "(F+’Y|Mrl)y
(7.79)

Il

2y -% (3r - 7|M,,|) +i \/<Q + %Ar)2 - i [(r + M, )2 + Ag] .

The eigenvalues for ¢ = 7 are obtained by changing [M,| = —|M,]. It is
seen from (7.79) that the spectral linewidths can be narrower than those in
the normal vacuum, and for a strong driving field the Rabi sidebands are
shifted from £Q positions to +(Q + £A,). According to (7.30), the shift A,
depends on the parameters éy and dp. In the secular limit we can forget
the second term under the square root, and the real parts of the roots (7.79)
reproduce the damping rates T'con and I'pop, given by (7.61) and (7.62) for
A =0 and ¢ = 0. For strong driving fields there are three lines, as expected,
and the incoherent part of the resonance fluorescence spectrum has the simple
analytical form [56]

Ve (%7&0 +7y)Fa+(w“wL+QR)Fd
(W—wr)?+ 72 (w=wr +Qr)2+ 3y +7,)°
+ (37 + %) Fa — (w—wr — Qr) Fy
(w—wp —OQgr)2 + (%’71 'f")’y)z

Flw)/v = Fo

, (7.80)



SQUEEZED VACUUM AS A RESERVOIR 315

where the amplitudes are

- Lo
Fo = 2(1 R2)’
1 y20?
F, = Z(1—3%— R4), (7.81)
_ 1y (7 02
Fy = 4QR(27FG+R2FO ,
and
1,.\? 1
= <Q+-2—A,> - 102 +AY), (7.82)
1 2
R = Q?ﬁ(pﬁ%) ) (7.83)

where v, and v, are given by (7.47). The spectrum (7.80) exhibits the
Lorentzian line with the amplitude Fy and the width Yz at the laser fre-
quency wy, and the Lorentzian lines with the width Y2/2 + 7, and the am-
plitude F, as well as the dispersion features with the amplitude Fy at the
sidebands w = wy, + Qg. In the secular limit O > v we have Qg ~ R ~ (),
which gives Fy = 1/2, F, = 1/4, and F; ~ 0. This leads to the sym-
metric three-peak spectrum, but with the widths modified by the squeezed
vacuum [6]. Formula (7.80) is valid for strong fields above the threshold
(4 A,/2)? - (v2 + A2)/4 > 0. Below the threshold there is no splitting into
three lines and the spectrum is composed of three Lorentzian contributions
with different widths centered at laser frequency [56]. For moderate fields,
above threshold, the amplitudes of the lines are modified and the dispersion
feature starts to play a role. For nonzero detuning and ¢ # 0 the general
formulas (7.71) and (7.72) can be applied, and we have used them to plot the
spectra.

Another interesting feature appears for a weak driving field. In Fig. 7.9 we
plot the fluorescence spectrum for Q/y=0.2,A =0, 5/y = 20, and different
€/v. In this case we fix the bandwidth of the DPO cavity and change the
pumping rate € which determines the intensity of the squeezed vacuum. Here
we see that the spectrum is composed of a single peak which exhibits a hole for
small e. The hole burning in the spectrum was first predicted by Swain [57] for
a broadband squeezed vacuum and interpreted as arising from the presence
of squeezing in the fluorescence field [54]. Figure 7.9 shows that the effect
also appears for a narrow-bandwidth squeezed vacuum, as shown in [37]. The
origin of the hole is the squeezing in the fluorescence field. In Fig. 7.10 we
plot the noise quadratures Sx (w) and Sy (w) together with the asymmetric
part Sq(w). The Sy(w) component is negative, indicating squeezing in the
emitted fluorescence field. Thus, the hole in the spectrum results from the
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Fig. 7.9 Fluorescence spectrum for DPO with /vy = 20, Q/y = 0.2, A =0, and
¢ =0.

-0.051 ~. s q

-1

Fig. 7.10 Squeezing spectra for DPO with €/x = 0.05 and other parameters as in
Fig. 7.9. The dotted line is the fluorescence spectrum.

presence of squeezing in the fluorescence field. It is well known that in this
regime of the parameters, a two-level atom produces squeezed light even in
the absence of the squeezed vacuum [58], and there is no hole in the spectrum.
However, the squeezing produced in this way is too weak to burn a hole in
the spectrum. The presence of the external squeezed vacuum field leads to an
enhancement of the squeezing in the fluorescence field.

Apart from the narrowing of the spectral lines and the hole burning, the
fluorescence spectrum can exhibit asymmetries in the intensities of the spec-
tral lines. In Fig. 7.11(a) we plot the fluorescence spectrum for Q/y = 3,
A =0, ¢ = n/2 and the DPO parameters x/vy = 20, €/, = 0.125. In this
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Fig. 7.11 (a) Fluorescence spectrum for DPO with /v = 20, ¢/k = 0.125,
Q/y = 3, A =0, and ¢ = 7/2; Mollow spectrum (dotted line). (b) Squeezing
spectra Sx (w) (dashed line), Sy (w) (dashed-dotted line) and the asymmetric part
Sa(w) (solid line); fluorescence spectrum (dotted line).

case the spectrum is not symmetric despite the fact that the atom is driven
by a resonant laser field. The asymmetry arises from the unequal popula-
tions of the dressed states, discussed in Section 7.3.3. In Fig. 7.11(b) we plot
the noise components Sx (w) and Sy (w) together with the asymmetric part
S4(w). Now, the noise components are both positive and symmetric. The
asymmetric part, however, is different from zero and exhibits a negative peak
at the lower-frequency Rabi sideband. The negative peak in S4(w) can be
interpreted as arising from a stimulated emission between the dressed states
induced by the squeezed vacuum.

The role of the asymmetric part is more dramatic when one considers the
fluorescence spectrum for an off-resonant driving field. In Fig. 7.12 we plot
the fluorescence spectrum as a function of (w —wyg)/v and €/k for /v =5,
A/y = =5, ¢ = 7 and a fixed bandwidth x/y = 20 of (a) DPO and (b)
NDPO. For small € the high-frequency Rabi sideband and the central peak
can be suppressed. As € increases the central peak and the high-frequency
Rabi sideband emerge and simultaneously the low-frequency Rabi sideband
disappears. In general, the spectrum is asymmetric for a large range of e.
Inspection of the noise spectrum Sx(w) + Sy(w) indicates that there are
positive peaks at the frequencies at which there are no fluorescence peaks.
Therefore, according to (7.73), the asymmetry is produced by the S4(w) part.
This is shown in Fig. 7.13, where we plot the noise spectra. Here, there is no
squeezing in the fluorescence field and the suppression of the lower-frequency
Rabi sideband comes from the asymmetric term, Sa(w). The noise peaks
and the asymmetric part reveal processes which are averaged to zero in the
fluorescence spectrum. At this frequency we have absorption of photons by
the squeezed vacuum followed by spontaneous emission. Thus, although there
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Fig. 7.12  Fluorescence spectrum for k/y = 20, Q/y =5, A/y = =5, and ¢ = 7
{a) DPO squeezing, (b) NDPO squeezing.
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Fig. 7.13 Squeezing spectra Sx (w) (dashed line), Sy (w) (dashed-dotted line) and
the asymmetric part S4(w) (solid line) for (a) DPO squeezing and (b) NDPO squeez-
ing with €/ = 0.25 and other parameters as in Fig. 7.12; fluorescence spectrum
(dotted line).

is no lower Rabi sideband in the fluorescence spectrum, there is a significant
amount of noise at this frequency, as shown in the noise spectrum. It therefore
follows that at frequencies of zero fluorescence, the absorption and emission
cancel each other. The changes are less dramatic in case of NDPO, but they
appear for both DPO and NDPO.

7.3.5 Absorption spectrum

Another spectroscopic feature accessible to experimental verification is the
probe absorption spectrum. The probe absorption spectrum of a two-level
atom is given by the Fourier transform of the two-time atomic correlation
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Fig. 7.14 Absorption spectrum for ¢/k = 0.25, A/y =0, /vy = 10, and ¢ = 0:
finite bandwidth (solid line), broadband squeezing (dashed line), and no squeezing
(dotted line). (a) DPO and (b) NDPO.

functions as [14]

Aw) =726 { [0 1), 01 O 0 arf. sy

where Re denotes the real part of the integral. The absorption spectrum is
defined by the difference of two atomic correlation functions [coming from the
commutator in (7.84)]. The evolution of such a difference can be found from
the Bloch equations (7.40) by applying the quantum regression theorem [53].
The equations of motion for the difference of two-time correlation functions
can be written as

(lo—(7),04(0)])ss ([o-(1); 04 (0)])ss
5| Uo+(m),04 (D | = AL (lo4(r),0+(O)ss |, (7.85)
(l0:(1),04(0)])ss +(0)])ss

where A is the 3 x 3 matrix given by (7.41), and the initial values for the
correlation functions are

_—
Q
n
—~
\"
ouet
Q

<J—U+>ss - <U+U—>ss = _(Uz>s.9a
(0’+0’+>ss 0, (786)
(0204)ss = (0402)ss 2(04)ss -

1l

Taking the Laplace transform of (7.85) we obtain the system of algebraic
equations for the transformed variables, which can easily be solved. The solu-
tion gives us the following formula for the Laplace transform of the difference
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Fig. 7.15 Same as Fig. 7.14 but for ¢ = 7.
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Fig. 7.16 Same as Fig. 7.14 but for ¢ = 7/2.

(0-(1)04(0)ss = (04 (0)0—(7))ss:
A(z) = d—(t—) {i404)ss 0 (T 401 48 + 2)
—{0,)ss [%(Q +A)+ (20 + 2)(T + 146 + z)] } , (7.87)

where d(z) is the same as (7.68) with d given by (7.49), and (o ),s is given
by (7.69).

From the Laplace transform (7.87), the probe absorption spectrum defined
by (7.84) is obtained as

Alw) = 72Re{‘4(z)lz=—i(u—w1,)}' (7.88)
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Formulas (7.87) and (7.88) give pretty simple analytical expressions that
describe the probe absorption spectrum of the atom driven by the external
field with the Rabi frequency 2, detuned by A from the atomic resonance,
and damped to the finite bandwidth squeezed vacuum. In the case of a strong
field, for A = 0 and ¢ = 0 or ¢ = m, the roots (7.79) can be used to find
simple analytical formulas for the probe absorption spectra [59]. The analyt-
ical form of the probe absorption spectrum A(w)/7y has the same structure as
the resonance fluorescence spectrum given by equation (7.80), but with the
amplitudes Fy, F,, and Fy replaced by Ao, As, and A4 given by the formulas

_ M _1 1y (09 (et
Ap = B2’ A, = 2Ao, Ag = 105, (2R2 —m ) (7.89)

For large Rabi frequency €, the amplitudes Ag and A, are of the order of
0~2, and the amplitude Ay ~ Q7! is the dominant term in the spectrum.
This means that the absorption spectrum shows dispersion features at the
sidebands.

In general, formulas (7.87) and (7.88) should be used to calculate absorption
spectra. Examples of the probe absorption spectra, in units of 7y, for the DPO
and NDPO squeezing into which the atom is coupled are shown in Figs. 7.14
to 7.16. It is seen that the absorption spectra depend strongly on the phase of
squeezing. The negative values of the absorption spectrum mean amplification
of the probe signal. For a strong field, /v = 10, there are two dispersion
profiles at the sidebands, which are modified strongly by the squeezed vacuum,
but generally the finite bandwidth of the squeezed vacuum reservoir leads to
smoother profiles than those for broadband squeezing.

7.4 ATOM DRIVEN BY A SQUEEZED VACUUM:
COUPLED-SYSTEMS APPROACH

When the squeezed vacuum is treated as a reservoir to the atom, as in Sec. 7.3,
the bandwidth of the squeezed vacuum must be much broader than the atomic
linewidth to satisfy conditions for the Markov approximation made to derive
the master equation (7.26). Another possibility that allows for calculations of
the effects of finite squeezing bandwidth is provided by the coupled-systems
approach [38]. In this approach one considers a quantum system consisting
of two subsystems. A field biy(1,t) drives the first system and give rise to an
output bout(1,t) which, after a propagation delay 7, becomes the input field
bin(2,t) to the second system. In our case the first system is a degenerate
parametric oscillator (DPO) the output of which drives a two-level atom, as
shown in Fig. 7.17. In the coupled-systems approach it is assumed that the
output from the first system drives the second system without there being
any coupling back from the second system to the first, which experimentally
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Fig. 7.17 Schematic diagram of the coupled systems

can be achieved by appropriate isolation techniques. Such a one-way coupling
can be described in terms of an appropriately chosen Hamiltonian [3].

In our case of driving the atom by a squeezed field generated by DPO, the
Hamiltonian can be written in the form [38]

H = Hyys + Hp + Hine (7.90)
where
3, . .
Hsys — hwsaTa + wh <€aT2e—-z2w,t _ 6*a2612w,t)
2
1 1 . ‘
+ §hw,40z + Ehﬂ (ope™ ™t 4 g_ert) (7.91)
Hg = h / |w| bt (w) b(w) dw, (7.92)

Hint = ih /Oo K1(w) [bt(w) a— aT b(w)] dw
+ih /-00 Ky (w) [a_bT(w)e ™™ — g, b(w)e™™] dw. (7.93)

The system Hamiltonian (7.91) describes the cavity mode at frequency wsy,
which is pumped nonlinearly by a classical field with amplitude ¢ and fre-
quency 2w;, which consists of the degenerate parametric oscillator (the first
system of the two coupled systems), and the two-level atom with the transi-
tion frequency w4 (the second system). The atom is additionally pumped by
a classical driving field with the Rabi frequency . In equations (7.92) and
(7.93), the operators b(w) and b'(w) are the boson annihilation and creation
operators for the bath, Kj(w) describes the coupling of the cavity mode to
the bath, and K»(w) describes the coupling of the atom to the bath.

The Hamiltonian (7.90) leads to the following equation of motion for the
bath operator b(w):

b(w,t) = —i |w| b(w, t) + K1 (w)a + Ky(w)o_ (t)e™™7, (7.94)
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For any system operator A, i.e., any operator in the Hilbert space of either
the DPO or the two-level atom, one gets the equation of motion

A= —%[A,Hsys]+/K1(w) [0 (w, 1), A] - [at, 4] b(w, 8)} dw
+ / Ko(w) {6} (w, )0, A] — [o4, Al b(w, )} d. (7.95)

After formally integrating equation (7.94) and substituting the result to equa-
tion (7.95), we arrive at the quantum Langevin equation

A= 4, Hyd - 14,0 { D a0t ()
+{%a*+ﬁbfn(t)}[f4,a]
_[A’g_‘_]{lzl—g'_—}—\/Wa(t—T)_‘*‘\/:Y_ibin(t—T)}
+{Los+ vamalt—1) + Aabult -} 4,01, (7.9)

where v; = 2rK?(w,) and vy, = 2rK2(w;). The input-output relations give

bour(1,8) = bin(L,8) + VAT alt), (7.97)
bin(2,t) = bouw(l,t —7)+ /M alt —7), (7.98)

with 1
ba(t) = ia(1,1) = = / eIt =0) b (1Y s (7.99)

The quantum Langevin equation (7.96) shows that the evolution of the
atomic operators is shifted in time by 7 with respect to evolution of the DPO
operators. The one-way character of the coupling allows for the separation
of the two evolutions, and because 7 represents only the shift of the origin
of the time for the second system (atom), it can be chosen arbitrarily, and it
is convenient to chose 7 = 0. This is, however, possible only because of the
one-way nature of the coupling.

Assuming that the input field b, is in the vacuum state, we can derive the
Ito white noise quantum stochastic differential equation [38, 60]

dA = -% (4, Hoal 0t = {2 (14,"]a - of [4,0])

+ [4,04] (%a_ +\/71—7;a)

- (% o+ yamal ) (4,01} dt
—[4,a']dB(t) + dB!(t) [4, q]
- [4,04]dB(t) + dB'(t)[4,0.], (7.100)
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with

dBf(t)dB(t) [dB®)]> =0,

(7.101)
dB(t)dB(t) = dt.
The Ito quantum stochastic differential equation (7.100) is equivalent to the
following master equation, which in the frame rotating with the squeezed field
frequency w, has the form

p = %[iAoz + (ea!” = €*a?) + oy + o-), 0]
+ g {2apat — pa'a—alap}
+ % {20_poy —pojo_—or0-p}
- ViFy{[ow,apl +[pal,0-1} (7.102)

where A = w, — wa = wp — w4 is the detuning of the squeezing carrier fre-
quency (we assume that ws; = wy) from the atomic resonance, y; = & is the
DPO cavity bandwidth and ~» = - is the natural atomic linewidth. The
parameter 1 (0 < 1 < 1) describes the matching of the incident squeezed
vacuum to the modes surrounding the atom. For perfect matching n = 1,
whereas 7 < 1 for an imperfect matching, which is always the case in experi-
mental situations [25, 26, 61]. In order to observe the effects of the squeezed
vacuum on the atom, the parameter 1 should be as close to unity as possible.
This requirement could be difficult to achieve in experiments, although some
schemes involving optical cavities have been proposed [35, 62]. On the other
hand, if the fluorescent field radiated by the atom to the nonsqueezed modes
is to be observed, 1 cannot be exactly unity because the radiation rate to
the nonsqueezed modes, which is (1 — n)v, would be zero and no fluorescence
would be observed. In the coupled-systems approach one has a choice of de-
tecting either transmitted light or the fluorescent light radiated by the atom
to the modes of the ordinary vacuum. The transmitted light is a superposition
of the squeezed vacuum coming from the DPO and the field radiated by the
atom to the modes occupied by the squeezed vacuum.

7.4.1 Optical spectra for transmitted and fluorescent fields

Effective numerical solutions of the master equation (7.102) are possible when
the mean number of photons (ata) in the cavity is small ((ata) < 1) [38, 63]. In
this case it is sufficient to take about ten lowest photon states as a basis of the
photon Hilbert space and the two atomic states that form the atomic Hilbert
space. Steady-state solutions of the master equation (7.102) together with
the quantum regression theorem have been used [41] to find optical spectra
for the transmitted and fluorescent fields as well as atomic quadrature noise
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spectra for the atom driven by the squeezed vacuum only, when squeezing
bandwidth is smaller or comparable to the natural atomic linewidth. In this
section we assume that there is no coherent field driving the atom (Q = 0).

The transmitted field can be described by the (collapse) operator {4, 64]

C=vVra+ /yo_, (7.103)

which is a superposition of the incident squeezed vacuum field and the field
radiated by the atom into the squeezed field modes. The rate of the atomic
radiation that goes to the squeezed modes is equal to 7y, and the fraction
(1—n)~y of the radiation that goes to the remaining (ordinary vacuum) modes
constitutes the resonance fluorescence. The photon flux of the transmitted
light is given by

(C10)ss = wla'a)ss +17(040-)ss + VIRY(aTo- + 01a)ss,  (7.104)

and the flux of fluorescent photons that goes to the ordinary vacuum modes
is (1 = n)y(040_)ss, where (---)5s denotes the steady-state mean value. The
total flux is thus

(Cf0>ss + (1 - "7)7<J+U—>ss = ’i(afO’)ss + ’Y<U+U~'>ss
+ ynry(alo_ +oya)e .  (7.105)

Since the photon flux incident on the atom is k{a'a)s,, the last two terms
in (7.105) must cancel each other to conserve the energy. This means that the
steady-state correlations between the cavity field and atomic operators play
an important role in the process.

The steady-state spectrum of the transmitted field can be defined as the
Fourier transform of the correlation function

T (w) = 2Re { / OO(C+(0) ,C’(T))ssei(“’_“”)TdT} , (7.106)
0

where Re denotes the real part of the integral, w; is the carrier frequency of the
squeezed vacuum field, and we use the notation in which (a, b) = (ab) — {(a)(b)
denotes the covariance, as before.

The incoherent part of the stationary spectrum of resonance fluorescence
from a two-level atom is given by the Fourier transform of the two-time atomic
correlation function, as defined by (7.64), except for the fact that the rate
v should be replaced by the rate (1 — 1)y because only a fraction (1 — n)
of the total rate is radiated to the ordinary vacuum modes contributing to
the resonance fluorescence. Similarly to (7.73), we can relate the incoherent
part of the resonance fluorescence spectrum to the quadrature noise spectrum
(squeezing spectrum) [54, 65].
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The squeezing spectra for the transmitted field can be defined in a similar
way by replacing o_ and oy operators by C and C' operators and omitting
the factor (1 — n).

Integrating the squeezing spectrum components over all frequencies gives
the variances of the total fluorescence field:

Fx = (1=n)y [(040-)ss = {o4)ss® = (04)3,] (7.107)
Fy = (1-n)y [(040-)ss — (o4 )ss|® + <U+>§s] . (7.108)

Squeezing in the total fluorescence field is defined by the requirement that
either F'y or Fy is negative, which can happen only if the stationary atomic
dipole moment (o4 )., is different from zero. For a two-level atom driven by
the output of a DPO the atomic dipole moment (o)ss = 0 is independent of
the parameters used, indicating that the total field variances Fx and Fy are
always positive. It follows that the total fluorescence field does not exhibit
squeezing. Nevertheless, it has been shown [37] that even in this case there is
a strong squeezing possible in the squeezing spectrum.

Gardiner and Parkins [38] have solved numerically the master equation
(7.102) and have found that the squeezing-induced line narrowing in the flu-
orescence spectrum appears only for the cavity linewidths « sufficiently large
with respect to the atomic natural linewidth . The narrowing decreases with
decreasing x and disappears for k &~ . Here, we present optical spectra of
the transmitted and fluorescent fields for the case when the cavity damping
rate « is smaller than the atomic natural linewidth [41]. In Fig. 7.18(a) we
present the optical spectra of the fluorescent field and the transmitted field for
the resonant case A = 0, x/y = 0.35, the pump field ¢/k = 1/6 and 5 = 0.9.
We see that the resonance fluorescence spectrum exhibits a three-peak struc-
ture and there is a hole at the center of the transmitted light spectrum. For
reference, we plot the Lorentzian with the atomic linewidth v = 1 (broader)
and the Lorentzian with the linewidth x (narrower). One can see that the
fluorescence spectrum has two components: the broad background with the
natural linewidth at the wings and the narrow peak with the width narrower
than k at the center. The appearance of the unusual features in the spectra
can be explained as arising from the squeezing produced by the atom. This
is seen from Fig. 7.18(b), where we plot the squeezing spectra for the fluo-
rescent field defined by (7.74) and (7.75). The Sy (w) quadrature is negative
for frequencies near the carrier frequency wy; i.e., it shows squeezing near the
center of the spectrum [55, 66]. This squeezing is responsible for the unusual
shape of the resonance fluorescence spectrum.

The Sx (w) quadrature is positive, and the adding of two squeezing spectra
gives the fluorescence spectrum. Clearly, the hole burning arises from squeez-
ing in the fluorescence field and an experimental observation of the effect could
be a manifestation of the quantum nature of squeezed light.
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Fig. 7.18 (a) Resonance fluorescence (solid line) and transmitted field (dashed line)
spectrum; the dotted lines are two Lorentzians with linewidths v and k. (b) Squeezing
spectra Sx (w) (solid line) and Sy (w) (dashed line); the dotted line is the resonance
fluorescence. The values of the parameters are: /v = 0.35, ¢/k = 1/6, 1 =0.9.

Fig. 7.19 (a) Resonance fluorescence and (b) transmitted field spectra for DPO
with ¢/k =0.1,7 = 0.9, and /vy = 0.25 (sohd line), k/v = 0.5 (dashed line), and
K/~ = 1 (dashed-dotted line).

In Fig. 7.19 we present both the resonance fluorescence and transmitted
field spectra for €/x = 1/10, n = 0.9, and different x. The spectrum changes
its structure as s increases. The features discussed here depend crucially
on the value of 1, which should be as close to unity as possible to have the
coupling between the two subsystems as high as possible. On the other hand,
there is only a fraction (1 — n)y of the radiation that goes to the modes
different from the squeezed vacuum modes, and this rate must be nonzero to
observe resonance fluorescence to the nonsqueezed modes. In our calculations
presented in Figs. 7.18 and 7.19 we have assumed that n = 0.9. The features,
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Fig. 7.20 {a) Resonance fluorescence and (b) transmitted field spectra for DPO with
e/k = 0.1, k/y = 0.25, and = 0.9 (solid line), n = 0.7 (dashed line), n = 0.5
(dashed-dotted line).

however, degrade quickly as n decreases and disappear for n =~ 0.5. This is
shown in Fig. 7.20, where we plot the fluorescent and transmitted field spectra
for different values of 7.

7.5 COMPARISON OF THE TWO APPROACHES

In Section 7.4.1 we have presented some unusual features of the resonance
fluorescence spectra as well as transmitted spectra that can be observed when
the atom is driven by a squeezed vacuum produced by DPO without any
coherent driving field. The two approaches presented so far have been applied
in the nonoverlapping ranges of the parameters: the master equation (7.26)
requires the bandwidth of the squeezed vacuum to be broad enough to justify
the Markov approximation, and the bandwidth of the squeezed vacuum has
been assumed sufficiently large (x/v > 10), while the results in Section 7.4
have been obtained for the squeezing bandwidth, which is comparable or even
smaller than the atomic linewidth. It would be, of course, interesting to
compare the two approaches in the same range of the squeezing bandwidths.
It is possible to make such a comparison, and it has been done in [67]. Since the
coupled-systems approach is valid for any value of &, numerical solutions for
the resonance fluorescence spectra obtained from the master equation (7.102)
can serve as a reference for the spectra obtained by solving equations (7.65).
It is particularly interesting to check how large « must be to get a reasonable
agreement between the two approaches. In Fig. 7.21 we have plotted examples
of the spectra for (a) weak and (b) strong fields. Figure (a) shows an example
of the spectrum for a special value of the Rabi frequency /vy = 0.35 for
which the spectrum shows a dip at the center. As is seen for the squeezing
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Fig. 7.21 Resonance fluorescence spectra plotted according to the coupled-systems
approach (solid line) and the master equation (7.26) (dashed-dotted line). The param-
eters are: (a) k/v = 40, ¢/k = 1/8, /v = 0.35, and (b) £/7 = 10, ¢/ = 0.125,
/vy =10.

bandwidth k/v = 40, the master equation (7.26) reproduces the dip and it
is in quite a good agreement with the spectrum obtained from the coupled-
systems approach. Figure (b) shows an example of the spectrum for /v = 10,
and in this case /v = 10, which means that the squeezing bandwidth covers
one-third of the range of frequencies shown in the figure. This example shows
convincingly that the bandwidth of squeezed light should be greater than
the atomic linewidth but not necessarily greater than the Rabi frequency
to justify the Markovian approximation. The sidebands are shifted slightly
with respect to the coupled-systems result, but the central line fits almost
perfectly for a squeezing bandwidth as small as x/v = 10. For the examples
above, we have assumed that n = 0.98 in the master equation (7.102), and
for better comparison the spectra are normalized to the same rate. Of course,
as the values of the squeezing bandwidth s/ become larger and larger the
Markovian approximation works better and the analytical results based on
the master equation (7.26) are more reliable.
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