CORRELATED SUPERPOSITION STATES IN
TWO-ATOM SYSTEMS

ZBIGNIEW FICEK

Department of Physics and Centre for Laser Science, The University of
Queensland, Brisbane, Australia

RYSZARD TANAS

Nonlinear Optics Division, Institute of Physics, Adam Mickiewicz
University, Pozna#n, Poland

CONTENTS

I. Introduction
II. Master Equation of Two Coupled Atoms
A. Atomic System and Hamiltonian
B. Master Equation
III. Collective Atomic States
A. Collective States of Two Identical Atoms
B. Collective States of Two Nonidentical Atoms
C. Maximally Entangled States of Two Nonidentical Atoms
IV. Selective Excitation of the Collective Atomic States
A. Preparation of the Symmetric State by a Pulse Laser
B. Preparation of the Antisymmetric State
L. Pulse Laser
2. Indirect Driving through the Symmetric State
3. Atom-Cavity-Field Interaction
C. Preparation of a Superposition of Antisymmetric and Ground States
V. Detection of the Entangled States
A. Fluorescence Intensity
B. Interference Pattern
V1. Two-Photon Entangled States

Modern Nonlinear Optics, Part 1, Second Edition, Advances in Chemical Physics, Volume 119,
Edited by Myron W. Evans. Series Editors 1. Prigogine and Stuart A. Rice.
ISBN 0-471-38930-7 © 2001 John Wiley & Sons, Inc.

215



216 ZBIGNIEW FICEK AND RYSZARD TANAS

Two Atoms in a Squeezed Vacuum

Steady-State Populations

Effect of the Antisymmetric State on the Purity of the System
Two-Photon Entangied States for Two Nonidentical Atoms
Mapping of the Entanglement of Light on Atoms
Acknowledgments

References

monw»

I. INTRODUCTION

The subject of correlated or collective spontaneous emission by a system of a
large number of atoms was first proposed by Dicke [1], who introduced the
concept of superradiance that the influence on each atomic dipole of the
electromagnetic field produced by the other atomic dipoles could, in certain
circumstances, cause each atom to decay with an enhanced spontaneous emis-
sion rate. The shortening of the atomic lifetime resulting from the interaction
between N atoms could involve an enhancement of the intensity of radiation up
to N2.

The earliest investigations into correlated spontaneous emission from mul-
tiatom systems were motivated by attempts to detect coherent effects in the
interaction of light with resonant atomic systems [2—4]. Another intrinsic
feature of correlated spontaneous emission is that the emitted field exhibits
strong nonlinear and directional behavior [5]. Moreover, the interest in cor-
related spontaneous emission lies in its close connection with the quantum and
classical as well as with the spontaneous and stimulated aspects of atomic
emission [6].

The phenomenon of collective emission is, in general, characteristic of
macroscopic systems with a large number of emitting atoms confined a region
much smaller than the optical wavelength. However, to understand collective
effects from a macroscopic system of atoms, it is necessary to have a micro-
scopic formulation of the interaction between the atoms and the electromagnetic
field. Therefore, some previous work has been devoted to study collective
effects in the case of few atoms [7-10]. Although a system of two or three atoms
is admittedly an elementary model, it offers some advantages over the
multiatom problem. Because of its simplicity, one obtains detailed and almost
exact dynamical solutions with a variety of initial conditions. Many of the results
predicted for the system of two or three atoms are analogous to phenomena that
one could expect in multiatom systems. Early treatments of two or three-atom
systems assumed a constant interatomic separation during the radiation process.
When averaged over all such possible interatomic separations the collective
effects average out, which made them difficult to observe experimentally.

In the 1990s, advances in trapping and cooling of small number of ions and
neutral atoms greatly renewed the interest in collective effects in the interaction
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of atoms with the electromagnetic field [11-13]. The trapped atoms are
essentially motionless and lie at a known and controllable distance from one
another, permitting qualitatively new studies of interatomic interactions not
accessible in a gas cell or an atomic beam. The advantage of the trapped atoms
is that it allows separation of collective effects, arising from the correlations
between the atoms, from the single-atom effects. The question of to what extent
the interatomic interactions can alter the dynamics of a multiatom system has
become of interest as it contains information about the internal structure of the
collective system.

A central topic in the current studies of collective effects is the theoretical
and experimental investigation of the concept of correlated superposition states
(entangled states) of a multiatom system [14]. The entangled states are linear
superpositions of the internal states of the system that cannot be separated into
product states of the individual atoms. This property is recognized as an entirely
quantum-mechanical effect and has played a crucial role in many discussions of
the nature of quantum measurements and, in particular, in the development of
quantum communications. It has been realized that entangled states can have
many practical applications, ranging from quantum computation [15,16], infor-
mation processing [17,18], and cryptography [19] to atomic spectroscopy [20].

An example of entangled states in a two-atom system are the symmetric and
antisymmetric states, which correspond to the symmetric and antisymmetric
combinations of the atomic dipole moments, respectively [1,7,21]. These states
are created by the dipole—dipole interaction between the atoms and are charac-
terized by different spontaneous decay rates that the symmetric state decays
with an enhanced, whereas the antisymmetric state decays with a reduced
spontaneous emission rate [7]. For the case of two atoms confined into the
region much smaller than the optical wavelength, the antisymmetric state does
not decay at all, and therefore can be regarded as a decoherence-free state.

Another particularly interesting entangled states of the two-atom system are
two-photon entangled states that are superpositions of only those states of the
two-atom system in which both or neither of the atoms are excited. These states
have been known for a long time as pairwise atomic states [22] or multiatom
squeezed states [23]. The two-photon entangled states cannot be generated by a
coherent laser field coupled to the atomic dipole moments. The states can be
created by a two-photon excitation process with nonclassical correlations that
can transfer the population from the two-atom ground state to the upper state
without populating the intermediate one-photon states. An obvious candidate
for the creation of the two-photon entangled states is a broadband squeezed
vacuum field that is characterized by strong nonclassical two-photon correla-
tions [24,25].

A number of theoretical methods have been proposed to prepare a two-atom
system in an entangled state [26-29,31-34], and two-atom entangled states have
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already been demonstrated experimentally using ultracold trap ions [35] and
cavity quantum electrodynamic (QED) schemes [36]. The preparation of
correlated superposition states in multiatom system has been performed using
a quantum nondemolition (QND) measurement technique [37]. A mapping of
entangled states of light on atoms has also been proposed [38,39] and
experimentally demonstrated [40].

In this chapter, we review schemes proposed for the preparation of two 2-
level atoms in an entangled state. Since we focus here on basis aspects of the
atom--atom entanglement, we begin in Section Il with a derivation of the master
equation for two nonidentical two-level atoms interacting with the quantized
three-dimensional vacuum field and driven by a single-mode coherent laser
field. Sections III and IV are concerned mainly with techniques proposed for the
preparation of a two-atom system in entangled states. The cases of maximally
and nonmaximally entangled states are discussed. In Section V, we discuss
methods of detecting of a particular entangled state. In Section VI, we describe
the method of preparation of a two-atom system in two-photon entangled states.
We also present a method of mapping of the entanglement of light on atoms.

II. MASTER EQUATION OF TWO COUPLED ATOMS

There are several theoretical approaches that can be used to calculate the
dynamics and correlation properties of two atoms interacting with the quantized
electromagnetic field. One of the methods is the wavefunction approach in
which the dynamics are given in terms of the probability amplitudes [9].
Another approach is the Heisenberg equation method, in which equations of
motion for the atomic and field operators are found from the Hamiltonian of a
given system [10]. The most popular approach is the master equation method, in
which the equation of motion is found for the density operator of an atomic
system weakly coupled to a system regarded as a reservoir [7,8,41]. There are
many possible realizations of reservoirs. The typical reservoir to which atomic
systems are coupled is the quantized three-dimensional multimode vacuum
field. The major advantage of the master equation is that it allows us to consider
the evolution of the atoms plus field system entirely in terms of atomic
operators.

A. Atomic System and Hamiltonian

We consider a system of two nonidentical and nonoverlapping atoms at
positions ry and r, coupled to the quantized three-dimensional electromagnetic
field. The initial state of the field is the product of a single-mode coherent state
of a driving laser field, and the vacuum state of the rest of the modes. Each atom
is assumed to have only two levels: the ground level |g;) and the excited level
le;)(i = 1,2), separated by an energy hew; = E,, — E,,, and connected by an
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electric dipole transition with the dipole matrix elements p; and p,. The dipole
transitions are represented by the dipole raising S;” and lowering S operators
defined as

S7 = le(ail, 87 = lgi){eil (1)
and satisfying the relations
[SF 857 =288, S7S;+S7sf=1 2)

where S5 = 1 (|e;) (il — |g:)(g:]) is the energy operator of the ith atom. If the ith
atom is in its ground state |g;), then (S%) = — 1, whereas (§?) = § if the atom is in
its excited state.

The atoms interact with the quantized three-dimensional vacuum field and
are also driven by a single-mode coherent laser field. We express the quantlzed
multimode field in terms of the annihilation and creation operators d; and & akx of
field mode ks, which has wavevector k, frequency ey, and polarization e;.
Thus, we write the electric field operator at position r in the form

1/2
D=nY (5] et -l 0

where V is the normalization volume.
The total Hamiltonian of the interacting systems in the electric dipole and
RWA approximations [42] is given by -

H=H,+ Hr +H, (4)

where
HA = hm,Szl + hﬂ)zsg (5)

is the Hamiltonian of the atoms
At a 1
HF = kgs h(,l)k (aLYka -+ 5) (6)

is the Hamiltonian of the field, and H; = H, + H; is the interaction Hamiltonian
composed of two terms:

H, = —in Z{[ul (TS + 1y 'gks(r2)SEL]&kseimkt —He}
ks

1 .
H = — 5ih[(QlS,+ + 0,85 )efert+e) _He)) (7)
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The first term in Eq. (7) represents the interaction of the atoms with the quantized
multimode vacuum field, while the second term is the interaction of the atoms
with a classical driving laser field (H.c. denotes Hermitian conjugation). Here, oy
and ¢; are the frequency and the phase of the driving field, respectively

o 1/2 )
gks(ri) = ( > éks' elk'l'i (8)

2eghV

is the mode function of the three-dimensional vacuum field, evaluated at the
position r; of the ith atom, and

i E eik[_-l‘,'
==t 9)

is the Rabi frequency of the ith atom with E; and k; denoting the amplitude and
the wave vector of the driving field, respectively.

If the dipole moments of the atoms are parallel, the Rabi frequencies €2, and
), are related by

Q= '"—”e"“mz (10)
[y |

where ri» =r,; —r; is the vector in the direction of the interatomic axis and
[ri2| = ri2 is the distance between the atoms. Thus, for two atoms with equal
magnitudes of the dipole moments (|p;} = |p,|), the Rabi frequencies differ only
by the phase factor exp(ik; - ry;) arising from different positions of the atoms.
However, the phase factor exp(ik;, - r12) also depends on the orientation of the
interatomic axis in respect to the direction of propagation of the driving field, and
exp(ikz - r(2) can be equal to one even for large interatomic separations 7j,. This
happens when the direction of propagation of the driving field is perpendicular to
the interatomic axis, k; - 12 = 0. When Kk, - rj» # 0, the atoms are subject to
different Rabi frequencies () # ).

B. Master Equation

Starting from the Hamiltonian (4), we can write the Schrédinger equation for
the density operator py of the total system, two atoms plus the electromagnetic
fields, as

o 1
&pT:%[HapT] (11)

We are interested in the interaction of two atoms with the vacuum field, and
therefore we transform Eq. (11) into the interaction picture with

=~ i(HA+HF+HL)t/h

pr(ty=e ~i(Hp+Hp+Hy)t/h (12)

pre
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and find that the transformed density operator satisfies the equation

0 |
=3 - 13
5, Pr(t) = (1), pr (1) (13)
where
flv(t) — ei(HA+HI-‘+HL)t/Fle e—i(HA+Hp+HL)t/h (14)

The master equation involves the so-called reduced density operator p
describing the system of two atoms, which is obtained from the total density
operator py by tracing over vacuum field (reservoir) states

p(t) = Trrpr(2) (15)

We will assume that the interaction is turned on at ¢ = 0, and no correlations exist
between the atoms and the vacuum field at this initial time. Hence, we can write
the density operator p7(0) as a product of the density operator of the atoms p(0)
and the density operator of the reservoir pg(0):

pr(0) = p(0)px(0) (16)

The properties of the vacuum field are specified by the density operator pr(0),
from which correlation functions of the field operators can be determined as

(aks) = Trr|pp(0)axs] = 0, <aka> TrF[pF(O)aks] 0

) )
(Aitlyy) = Trr[pp(0)aksyyy] = 8 (k — KBy
(@ awy) = TrF[pF(O)&I(s&k’s’] =0
(alal,y) = Tep[pr(0)alal,] = 0
(Gksly ) = Trp[pp(o)&ks&kfsl] =0 (17)

We now integrate Eq. (13), substitute the solution for pr(t) inside the
commutator on the right-hand side (rh.s.) of Eq. (13), and after taking the
trace over the reservoir states, we find that the reduced density operator p(f)
satisfies the integrodifferential equation

6~ 1

—%ﬂmnammxmm—wmm—wm 1)
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In the derivation of Eq. (18), we have assumed that the total density operator
pr(r) factorizes at r = 0. At later times correlations between the atoms and the
field may arise as a result of the coupling through the Hamiltonian H,. Here, we
assume that the interaction between the atoms and the field is weak, which
allows us to make the so-called Born approximation that ignores the back-
reaction effects of the atoms on the field. Thus, py(f — 1) = p(r — 1) pp(t — 1) =
p(t — 1)pp(0) for all times ¢#—1 > 0. Moreover, we make the Markov
approximation in which we assume that the correlation time of the field is
much shorter than the timescale of radiation processes in the atoms. This allows
us to replace p(t — 1) by p(r).

Substituting Eq. (17) into Eq. (18) and after the Born—-Markov approxima-
tion, the master equation takes the form

1< o s
=52 TulS/ S p() + pSSS; —257p()ST)  (19)
ij=1
where

H, = h8,STST + k&S5 S5 + ha(S1S5 + S5S)) (20)

represents the vacuum-induced shifts of the atomic transition frequencies and the
coherent interaction between the atoms. The parameter

Ti=Ti=n) b @) k-k) (i=12) (21)
ks

describes the spontaneous emission rate of the ith atom resulting from the
interaction of the individual atoms with the vacuum field, and

Ly=Ti=1) [ gl gum)8k-k), (i#j)  (22)
ks

are collective spontaneous emission rates arising from the coupling between the
atoms through the vacuum field, and ko = (k| + k»)/2.
The parameters

(4

P — . 1 2 1 - 1
51 = P; l"z gks(rz)l <(Dk + w; g — (D) (23)
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represent a part of the Lamb shift, induced by the first-order coupling in the
Hamiltonian H,, of the ground and excited states of the atoms, while

Q2 =P [ - g (r)l; - gy (r2)] <mk Jlr p—— i mo) (24)
ks

represents the vacuum-induced coherent interaction between the atoms, P refers
to the Cauchy principal value, and mg = (®| + ©,)/2 is the average frequency of
the atomic transitions.

The parameters 8; are usually considered to be absorbed into the atomic
frequencies ®; and ®,, by redefining the frequencies ®; = ®; + §; and are not
explicitly included in the master equations. However, we are interested in the
qualitative effects of the interactions between the atoms, and the role played by
Q; in their dynamics. It is evident from Eq. (20) that the parameter €2;> does
not appear as a shift of the energies, but rather as a coherent coupling between
the atoms. Thus, the interaction with the vacuum field not only gives rise to the
dissipative spontaneous emission but also leads to a coherent coupling between
the atoms.

We may find the explicit form of the collective parameters I'j> and {2 by
using the spherical representation of the unit orthogonal polarization vectors
[41]

€k = (—cosBcos ¢, —cos Osin ¢, sin 0),

€ = (Sin (I), —Cos d), O) (25)

and changing the sum over k into an integral

where (k, 0, &) denote spherical coordinates.
Substituting Eq. (26) into Egs. (22) and (24), we obtain the following explicit
expressions for the collective spontaneous emission rate

NP ‘—“Z‘\/ LI {[1 - (B f‘12)2]M

kori2

_ = 2 ’VCOS (korlz) _ sin (korlz)
+[1 =3(pn-F2) ]|_ (k0r12)2 (k0r12)3 ]} (27)
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and the collective coupling between the atoms
3 o cos (kor
Q2 == /T4 —[1 = (ji- m)Z]___(.E_‘}_)
4 koriz

sin (kor12)  cos (kori2)
(kori2)” i (kor12)’ ]} 2

+H1-3(n- )’ l

where ji is the unit vector along the dipole moments of the atoms, which we have
assumed to be parallel (i =i, = p,), and Ty is the unit vector along the
interatomic axis.

The collective parameters (27) and (28), which both depend on the intera-
tomic separation, determine the collective properties of the two-atom system.
The parameter (28) is the familiar retarded dipole—dipole interaction between
the atoms [7,9,10,21], while I'|; gives rise to the collective spontaneous
emission. In Fig. 1, we plot T'p/+/T I, and Q;,/+/T' 1Tz as a function of
ri2/Xo, where X is the resonant wavelength. For large separations (r2 > i)
the parameters are very small (', = 9 = 0). By contrast, for atomic separa-
tions much smaller than the resonant wavelength (the small sample model), the

parameters reduce to
'y = v, (29)

12 Q12

ry z/lo

Figure 1. Collective parameters "2 /+/T Tz (solid line) and €y,/+/T T, (dashed line) as a
function of rlz/)\.() for j L ryp.
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and
31N,

Q]z ~
4(/(0]‘12)3

(1-3(m- 1)’ (30)

For this case €2, corresponds to the quasistatic dipole—dipole interaction
potential.

On transforming Eq. (19) into the Schrédinger picture, the master equation of
the two-atom system takes the form

0 i
Zp=——[H
5P h[ , P]

1< - _ _
- EZI Ty(S;S p+pS'S; —257p8)) (1)
ij=
where
H/:H5+HL+F1912(STS2_ +S;—Sl-) (32)

Equation (31) is the final form of the master equation that gives us an elegant
description of the physics involved in the dynamics of two interacting atoms.
The collective parameters I'j; and €25, which arise from the mutual interaction
between the atoms, significantly modify the master equation of a two-atom
system. The parameter T'|; introduces a coupling between the atoms through the
vacuum field that the spontaneous emission from one of the atoms influences
the spontaneous emission from the other. The dipole—dipole interaction Qin
introduces a coherent coupling between the atoms. Owing to the dipole-dipole
interaction, the population is coherently transferred back and forth from one
atom to the other. Here, the dipole—dipole interaction parameter £}, plays a role
similar to that of the Rabi frequency in the atom-field interaction.

III. COLLECTIVE ATOMIC STATES

The presence of the collective parameters I';; and €2 introduces off-diagonal
terms in the Hamiltonian H’ and in the dissipative part of the master equation.
This suggests that in the presence of the interaction between the atoms the bare
atomic states are no longer the eigenstates of the two-atom system. We can
diagonalize the Hamiltonian (32) with respect to the dipole—dipole interaction
and find collective states of the two-atom system.

In the absence of the driving laser field and the dipole—dipole interaction, the
basis states of the two-atom system are the four direct products states

lg1)lg2), len)lga), lei)le), lei)le2) (33)
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In the basis of these states the matrix representation of the Hamiltonian H’, with
Q) =, =0, is given by

0 0 0 0

H 0 —iA Q 0
2 @0 =2 2 (34)
h 0 Q]z () +§A 0

0 0 0 2w

where 09 = % () + ®;) and A = o, — o.

Evidently, in the presence of the dipole-dipole interaction the matrix (34) is
not diagonal, which indicates that the product states (33) are not the eigenstates
of the two-atom system. We will diagonalize the matrix (34) for the case of
identical (A = 0) as well as nonidentical {A # 0) atoms to find eigenstates of
the system and their energies.

A. Collective States of Two Identical Atoms

We begin by studying the collective properties of the system of two identical
atoms (A = 0). In order to find eigenstates and corresponding energies of the
system, we diagonalize the matrix (34), and find that in the case of two identical
atoms the eigenstates are given by [1,7]

&) = ler)le2)

) = 71‘§(|el>|gz> + len)les))
16 = —=(lex)g2) — [g1)lea))

V2
le) = ler)]e2) (35)
with corresponding energies
E, =0

E; = k(oo + y2)
Ea = ﬁ((l)() — le)
E, = 2y (36)

The eigenstates (35) are the collective states of two interacting atoms and are
known in quantum optics as the Dicke states of the two-atom system [1]. We note
here that the collective states |s) and |a) are an example of maximally entangled
states of the two-atom system that the eigenstates of the system are linear
superpositions which cannot be separated into product states of the individual
atoms.
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|e>

Wo

|s>

€« -~ >

|la>

®g

€ - - - - — - - - >

lg>

Figure 2. Collective states of two identical atoms. The dipole—dipole interaction Q)5 shifts the
energies of the symmeiric and antisymmetric states in the opposite directions.

The collective states are shown in Fig. 2. It is seen that in the collective states
representation, the two-atom system behaves as a single four-level system with
the ground state |g), the upper state |e), and two intermediate states: the sym-
metric state |s) and the antisymmetric state |a). The energies of the intermediate
states depend on the dipole—dipole interaction and these states suffer a large
shift when the interatomic separation is small.

From Egs. (1) and (35), we find the following relations between the atomic
and collective operators

1
ST = '_(Aes — A +Asg +Aag)

V2

1
St = 75 (Aps +Apy + Agy — Agg) (37)
where A; = |i)(j|, (i,j =e,a,s,g) are the collective operators that represent
the energies (i = j) of the collective states and transition dipole moments (i # J)-
Substituting the relations (37) into Eq. (31), we find that in terms of the
collective operators, the master equation is given by
0 i 1
5 p=- ﬁ [Hcs» P] - 5 (F + FIZ){(Aee + Ass)p + p(Aee + A.\'s)
1
- Z(Ase +Ags)p(Aes +Asg)} - E(F - FIZ){(Aee +Aaa)p

+ p(Ace + Aaa) — 2(Age + Aga)P(Aca +Adg) } (38)
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where the Hamiltonian H,, reads

Hcs - h[szAee + ((’)O + QIZ)Axs + ((’30 - Q12)Aaa]

h )
- m{ml + D) [(Aes + Agg )T 4 Hec ]
+ (U — D) [(Aey + Agg)e @4 L Hoc]} (39)

The master equation (38) provides the simplest example of the effects
introduced by the coherent interaction of atoms with the radiation field. These
effects include the shifts of the energy levels of the system, produced by the
dipole—dipole interaction, and the phenomena of enhanced (superradiant) and
reduced (subradiant) spontaneous emission, which appear in the changed
damping rates to %(F +TI'y2) and %(F —TI'j2), respectively.

B. Collective States of Two Nonidentical Atoms

The collective states (35) are eigenstates of the system of two identical atoms. If
the atoms are not identical, the situation becomes more complicated and we will
discuss here some consequences of the fact that the atoms could have different
transition frequencies and/or different spontaneous emission rates. When the
atoms are nonidentical with different transition frequencies, the states (35) are
no longer the eigenstates of the Hamiltonian (32). The diagonalization of the
matrix (34) with A # 0 leads to the following eigenstates [43]

lg) = lg1)g2)
sy = Ble1)|g2) + alg1)le2)

)
la') = aler)|g2) — Blgi)le2)
e} = ler)e2) (40)

!
!

with energies

where

__fe (42)

w
R
NG A
andw=3A+ /0 +1A2
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The energy system of two nonidentical atoms is similar to that of the
identical atoms, with the ground state |g), the upper state |e), and two
intermediate states |s') and |a'). It is apparent that the effect of the frequency
difference A on the collective atomic states is to increase the splitting between
the intermediate levels, which now is equal to 4/ Q%z + %AZ. However, the most
dramatic effect of the detuning A is on the degree of entanglement of the states
|s’) and |a’) that in the case of nonidentical atoms the states |s') and |a’) are not
maximally entangled states. For A = 0 the states |s') and |a’) reduce to the
maximally entangled states |s) and |a), whereas for A > (25 the entangled
states |s') and |a') reduce to the product states lei)|g2) and —|g1dle2),
respectively.

We follow exactly the same route as in the preceding section, and rewrite the
master equation (31) in terms of the collective operators A; = |i)(j|, where now
the collective states are given in Eq. (40). First, we find that in the case of
nonidentical atoms the atomic and collective operators are related by

ST = BAey — 0Acw + tAgg + PAuyg
S+ = O(Aes’ + BAea' + BAs’g - CXAa’g (43)

In terms of the collective operators A;; the master equation can be written as

0 i
L = L Hpp) ~ Lap — Zn 44
5P h[ p] ap — Lnap (44)

/ 1
H,, = h{zﬂ)ere + (0)() + Q%Z + ZA2>AS1_\./
, 1
+ (l)() - 912 + ZA2 Aa’a’

h .
=5 {(08h + BeL){(Aer + Agg)e @) + Hel.
T (09 — BY)[(Aewr + Aug)e @) + Hoel} (45)

where

is the Hamiltonian of the system in the collective states basis. The diagonal
dissipative part of the master equation reads

Lap = —Tog(Acep + PAce — 2AgcPAcs)
— Fsrg(As:s/p + pAgg — 2A,5 pAs’g)
—Tug(Agap + pAga — 2Ag PAyg)
— Tea(Acep + PAce — 2A0ePAca) (46)
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while the off-diagonal is given by
Lnap = —Tag{(Aay +Ava)p + plAay + Aywr)
— 2800 PAvy — 2Agr pAug}
=[BTy + )+ FIZ](A‘Y’epAs’g + Agy PAey)
+ (0BT +T2) = T12)(AwePAug + Agar PAcwr)
+ Loy = 2(B* — )T 1] (AsePAcar + AuePAey)
+ (o) — BT2) (AgepAvg + Agy pAcar)

~ (BTt — o°T)(AgepAag + Age PAey) (47)
with the coefficients

I,y = % (B°T'y + 2T + 20pT';5)

I%Z%WD+WD+MWM

P =5 (2T + BT, - 29B)

Fye = % (B°T1 + o’ — 2afT;,)

e =5 BB = Ta) + (B — 2®)L] 48)

In the absence of the driving field, the Hamiltonian (45) has a simple
diagonal form, where the different terms represent energies of the collective
states. In contrast, the dissipative part of the master equation is very extensive
and complicated and unlike the case of identical atoms, is not diagonal. The
diagonal dissipative part of the master equation, Eq. (46), contains the familiar
relaxation terms corresponding to spontaneous transitions between the collec-
tive states, and the coefficients Ty, Iyg, I'ey, and Iy, are the spontaneous
emission rates of the transitions. The off-diagonal part, Eq. (47), contains
spontaneously induced coherences between the transitions. They are of im-
portance only in systems of atoms with different transition frequencies (A £0).

Similar to the case of identical atoms, there are two channels of transitions
le) — |s') — |g) and |e) — |a’} — |g) which decay with the rates T, Iy, and
Lew, g, respectively. However, in contrast to the case of identical atoms, these
two channels of transitions are not independent and their decays are correlated
through various off-diagonal terms. The decay rates I, and 'y, are much
smaller than the decay rates I',y, I'y, involving the symmetric state and can be
reduced to zero. This happens only for atomic separations much smaller than the
optical wavelenght (the small sample model). In particular, the decay rate I'y,
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Figure 3. The spontaneous emission damping rate Ty, as a function of A for Q;, = 5"}, and

different I'y: T'» = I'; (solid line), I, = 2I"; (dashed line), I'; = 5I"; (dashed-dotted line).

of the antisymmetric state to the ground state, shown in Fig. 3, vanishes when
[43]

-2 (49)

The first condition, I'j; = /' 1Ty, is satisfied when the atoms are separated by

Flz =/ Flrz and

Q™

distances much smaller than the optical wavelength. The second condition is
satisfied when

Q2T = T)
A=l 2) 50
2:/1T41T, ( )

Thus, with the condition (49) the antisymmetric state does not decay to the
ground state. Moreover, at the condition (49) the interference term vanishes,
T'wy = 0. Since in the trapping condition (49) the state |a’) is also decoupled
from the interaction with the laser field, the only way to populate this state is by
spontaneous emission from the upper state |e).
The decoupling of the antisymmetric state |a’) from the coherent field
prevents the state from the external coherent interactions. This is not, however,
a useful property in terms of quantum computation, where it is required to

231
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prepare entangled states which are decoupled from the external environment
and simultaneously should be accessible by coherent processes.

C. Maximally Entangled States of Two Nonidentical Atoms

The choice of the collective states (40) as a basis leads to a complicated master
equation whose physical properties are tractable only for very specific values of
the parameters involved. A different choice of basis collective states is proposed
here, which allows us to obtain a simple master equation of the system of two
nonidentical atoms. Moreover, we will show that it is possible to create a
maximally entangled state in the system of two nonidentical atoms that can be
decoupled from the external environment and, at the same time, the state
exhibits a strong coherent coupling with the remaining states.

In order to show this, we introduce superposition operators S* and S%, which
are linear combinations of the atomic operators S]*L and S:}t, as

S =uSf +uS5, ST =u'S; +u'S;

s

St =uS —uSf, S;=v'S;—u'S; (51)

a
where the parameters « and v are in general complex numbers such that
|u*+]v)*= 1 (52)

The operators S* and S* represent, respectively, symmetric and antisymmetric
superpositions of the atomic dipole operators. In terms of the operators (51), we
can rewrite the dissipative part #p of the master equation as

Lp=-Tu(S S p+ pSyS; 25,pS;)
—Ta(S7S, p+pSSS, — 25, pST)
~TwWlSS S, p+ pStS, — 25, pS))
—Tas(S7 S, P+ pSSS; —25;pS;) (53)

where the coefficients I',,, are

Ty = |u’T) + |[v’T, + (wv* + w*v)Typ

Lo = [vf'Ty + [uf’Ts — (wv* + o)l

Ty = wv'Ty — wvly — (Juf*—[v]*)T2

Iy = uol'y — uv*Ty — (]u]z—lvlz)Flz (54)
The first two terms in Eq. (53) are familiar spontaneous transitions terms and the

parameters Iy, and I'y, are spontaneous emission rates of the symmetric and
antisymmetric superpositions, respectively. The last two terms are due to
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coherence between the superposition states and the parameters ', and I'y,
appear as cross-damping rates between the superpositions.
If we make the identification

55
F] + Fz F] + Fz ( )
then the parameters (54) simplify to
VT (T — /T4 T
I, — (Fl +Ty) + (T2 1I2)
2 ry+1m;
r - (VDI = T)vIils
daa F] + Fz
1(Ty =) (VI =T
Fsa = Fas = ‘( : 2)( L2 12) (56)
2 T +I»

Clearly, the cross-damping terms I's; and I, vanish when the damping rates of
the atoms are equal (I'y =TI,). Furthermore, if I'; = /I'(I';, then the
spontaneous emission rates 'z, T, and 'y, vanish regardless of the ratio
between the T'; and T'. In this limit, which corresponds to the case of the atoms
confined to the region much smaller than the optical wavelength, the
antisymmetric superposition does not decay and also decouples from the
symmetric superposition.

An interesting question arises as to whether the nondecaying antisymmetric
superposition can still be coupled to the symmetric superposition through the
coherent terms contained in the Hamiltonian H’. To check it, we first transform
the Hamiltonian (32) into the interaction picture and next rewrite the trans-
formed Hamiltonian in terms of the S* and S operators as

H = —h{ [AL —%(u2 —v )A]S*S + [AL+;(u —})A|SES; .
—Auv(STS; +55S7) )+ hQu [2uv(SSS; — S5 S,)

+ (W =) (STS, +5587)] - g {uQ + v80)S;

+ (’UQ[ - qu)Sj + H.C.} (57)

where A; = @y — ©f.

In Eq. (57), the first term arises from the Hamiltonian H, and shows that the
energies of the symmetric and antisymmetric superpositions depend on the
energy difference A between the atomic transition frequencies and the sponta-
neous emission rates T';. It is interesting to note that the energy difference A
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introduces a coherent coupling between the superpositions. If the atoms are
identical, A =0 Iy =T, and then the superpositions have the same
energies and there is no contribution to the coherent interaction from the
Hamiltonian H,.

The second term in Eq. (57), proportional to the dipole—dipole interaction
between the atoms, has two effects on the dynamics of the symmetric and
antisymmetric superpositions. The first is a shift of the energies, and the second
is the coherent interaction between the superpositions. It is seen from Eq. (57)
that the contribution of €2;, to the coherent interaction between the super-
positions vanishes for I'y = I, and then the effect of (2, is only the shift of the
energies from their unperturbed values. Note that the dipole—dipole interaction
{2y, shifts the energies in the opposite directions.

The third term in Eq. (57) represents the interaction of the superpositions
with the driving laser field. We see that the symmetric superposition couples to
the laser field with an enhanced Rabi frequency proportional to u$); + vQ,
whereas the Rabi frequency of the antisymmetric superposition is proportional
to v€); — uf); and vanishes for v, = ul,.

We may rewrite the Hamiltonian (57) in a physically transparent form that
shows explicitly the presence of the coherent coupling between the super-
positions :

1
H = —h{ (AL - EA,) STST + <AL + %A’) ST
f
FAL(SEST + s;s;)} {02,
+ (v — us)S! + Hee.} (58)

where A’ and A, are given by

A = [(W? - v*)A 4 49 u)
Ac = [ — ) — Aur (59)

The parameters A’ and A, allow us to gain physical insight into how the
dipole—dipole interaction €2, and the frequency difference A can modify the
dynamics of the two-atom system. The parameter A’ appears as a shift of the
energies of the superposition systems, while A, determines the magnitude of the
coherent interaction between the superpositions. For 2, # 0 and identical
atoms the shift A’ # 0, but can vanish for nonidentical atoms. This occurs for

(T, —
le-_*——(l L2)A

4 I, (60)
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In contrast to the shift A’, which is different from zero for identical atoms, the
coherent coupling A, can be different from zero only for nonidentical atoms.
However, even in this case the coupling can vanish, which happens for

_ Q) = Th)
VI,

Obviously, with the condition (61) and I';, = +/T"|T; the antisymmetric super-
position of two nonidentical atoms completely decouples from the interactions.

Thus, the condition ['}; = /T"|I'; for suppression of spontaneous emission
from the antisymmetric state is valid for identical as well as nonidentical atoms,
whereas the coherent interaction between the superpositions appears only for
nonidentical atoms with different transition frequencies and/or spontaneous
damping rates.

The symmetric and antisymmetric superpositions (51) can be represented by
collective states of the system

e} = le1)]e2)

[+) = uler)|g2) + vigi)le2)

|=) = vlei)|g2) — ulgi)|e2)

1g) = lg1)lg2) (62)

A (61)

In the general case of Ty # T', the superposition states |+) and |—) are non-
maximally entangled states. However, the states |+) and |—) can be represented
by linear superpositions of the maximally entangled states of two identical atoms
as

[+) = (u+0)ls) + (u = v)la)
|=) = (u+v)la) — (u—v)ls) (63)

The entangled states |+) and |—) are independent of A, but depend on the
damping rates T’y and T,. For T') =T, (u=wv) the states are maximally
entangled, whereas for either I'} < T'; or Iy > I, the entangled states reduce to
the product states.

IV. SELECTIVE EXCITATION OF THE COLLECTIVE
ATOMIC STATES

We now consider excitation and population transfer processes that can lead to a
preparation of the two-atom system in one of the collective states. In particular,
we will focus on processes that can prepare the two-atom system in the
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entangled symmetric state |s). Our main interest, however, is in the preparation
of the system in the maximally entangled antisymmetric state |a), which, under
the condition I'j; = +/I'|I'5, is a decoherence-free state.

A. Preparation of the Symmetric State by a Pulse Laser

It has been shown [31] that a system of two identical two-level atoms may be
prepared in the symmetric state |s) by a short laser pulse. The conditions for a
selective excitation of the collective atomic states can be analyzed from the
interaction Hamiltonian of the laser field with the two-atom system. We make
the unitary transformation

HL — eiH()t/hH/efiH()t/h (64)
where

Hy = B{2AL|e){e| + (AL + Qp2)ls)(s| + (AL — Qu2)|a)(al} (65)

and find that in the case of identical atoms, I'; = I'; and A = 0, the transformed
interaction Hamiltonian H; is given by

I:]L - _ 2?/5{(91 + Qz)(S:sei(A"_QlZ)t + S;ei(AL+52'2)t)
+ (0 — Q)(S,, /B M) g1 Aty | ¢ ) (66)

where Hamiltonian represents the interaction of the laser field with the collective
two-atom system, and in the transformed form contains terms oscillating at
frequencies (A, =+ 3), which correspond to the two separate groups of
transitions between the collective atomic states at frequencies w; = wg + €22
and o, = w9 — Q2. The Ay + Q) frequencies are separated from A; —Q,
frequencies by 22;5, and hence the two groups of the transitions evolve
separately when ), > I'. Depending on the frequency, the laser can be
selectively tuned to one of the two groups of the transitions. When ®; = wg+
Q12 (AL + Q> = 0), the laser is tuned to exact resonance with the |e) — |a) and
|g) — |s) transitions, and then the terms appearing in the Hamiltonian (66) and
corresponding to these transitions have no explicit time dependence. In contrast,
the |g) — |a) and |e) — |s) transitions are off-resonance and the terms correspond-
ing to these transitions have an explicit time dependence exp(Z2iQy¢t). If
Oy > I, the off-resonance terms rapidly oscillate with the frequency 2€2,, and
then we can make a secular approximation in which we neglect all those rapidly
oscillating terms. The interaction Hamiltonian can then be written in the
simplified form:
h

I:IL = —m [(Q[ -+ QZ)S;:, + (Ql — QQ)SZI + H.C.] (67)
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It is seen that the laser field couples to the transitions with significantly different
Rabi frequencies. The coupling strength of the laser to the |g) — |s) transition is
proportional to the sum of the Rabi frequencies €2 + (2, whereas the coupling
strength of the laser to the |a) — |e) transition is proportional to the difference of
the Rabi frequencies §2; — €2,. According to Eq. (10), the Rabi frequencies
and Q, of two identical atoms differ only by the phase factor exp(ik;, - ry2). Thus,
in order to selectively excite the |g) — |s) transition, the driving laser field should
be in phase with both atoms: Q; = §,. This can be achieved by choosing the
propagation vector k;, of the laser orthogonal to the line joining the atoms. Under
this condition we can make a further simplification and truncate the state vector
of the system into two states |g) and |s). In this two-state approximation we find
from the Schrodinger equation the time evolution of the population Pg(¢) of the
state |s) as

|
Py(1) = sin2<—Qt> 68
() 7 (68)
where 2 = Q] = Qz.

The population oscillates with the Rabi frequency of the |g) — |s) transition
and at certain times Py(t) = |, indicating that all the population is in the
symmetric state. This happens at times

T

T, (2n+1)\/§Q, n=01,... (69)
Hence, the system can be prepared in the state |s) by simply applying a laser
pulse, for example, with the duration Ty, that is a standard 1 pulse.

The two-state approximation is of course an idealization, and a possibility
that all the transitions can be driven by the laser imposes significant limits on
the Rabi frequency and the duration of the pulse. Namely, the Rabi frequency
cannot be too strong in order to avoid the coupling of the laser to the |s) — )
transition, which could lead to a slight pumping of the population to the state
|e). On the other hand, the Rabi frequency cannot be too small as for a small {2
the duration of the pulse, required for the complete transfer of the population
into the state |s), becomes longer and then spontaneous emission can occur
during the excitation process. Therefore, the transfer of the population to the
state |s) cannot be made arbitrarily fast and, in addition, requires a careful
estimation of the optimal Rabi frequency, which could be difficult to achieve in
a real experimental situation.

B. Preparation of the Antisymmetric State
1. Pulse Laser

If we choose the laser frequency such that A, — Q> = 0, the laser field is then
resonant to the |a) —|g) and |e) —|s) transitions and, after the secular
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approximation, the Hamiltonian (66) reduces to

N h
io=—
Tl

Clearly, for () = —(2, the laser couples only to the |a) — |g) transition. Thus, in
order to selectively excite the |g) — |a) transition, the atoms should experience
opposite phases of the laser field. This can be achieved by choosing the
propagation vector k; of the laser along the interatomic axis, and the atomic
separations such that

(1 — Q)S}, + (1 + Q)ST, + Hee] (70)

ki ro=02n+l)m, n=0,1,2,... (71)

which corresponds to a situation that the atoms are separated by a distance
ryp == (2n—|— 1)7\.0/2

The smallest distance at which the atoms could experience opposite phases
corresponds to r; = Ag/2. However, at this particular separation the dipole-
dipole interaction parameter €, is small (see Fig. 1), and then all of the
transitions between the collective states occur at approximately the same
frequency. In this case the secular approximation is not valid, and we cannot
separate the transitions at Ay + 2, from the transitions at A; — 5.

One possible solution to the problem of the selective excitation with opposite
phases is to use a standing laser field instead of the running wave field. If the
laser amplitudes differ by the sign, namely, E;, = -E;, = Ey, and k;, 1 =
=k, - ry, the Rabi frequencies experienced by the atoms are

2i . (1
Q] = Eul . E()Sln (—2-kL . l']z)
2i 1
Qz = —-ﬁl}lz . E()Sin (—z-kL . l‘12> (72)

where k; =k;, =k;, and we have chosen the reference frame such that
ri =3r; and r; = —ryp. It follows from Eq. (72) that the Rabi frequencies
oscillate with opposite phases independent of the separation between the atoms.
However, the magnitude of the Rabi frequencies decreases with decreasing ri5.

2. Indirect Driving through the Symmetric State

We now turn to the situation of nonidentical atoms and consider different
possible processes of the population transfer to the antisymmetric state that
could be present even if the antisymmetric state does not decay to the ground
level. This can happen when I'y; = +/T"| I3, that is, when the separation between
the atoms is negligible small. Under this condition the antisymmetric state is
also decoupled from the driving field. According to Eq. (58), the antisymmetric
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state can still be coupled, through the coherent interaction A, to the symmetric
state |+). However, this coupling appears only for nonidentical atoms.

From the master equation (31), we find that under the condition
'y, = /T1I> the equation of motion for the population of the state |—) is
given by [33]

. (= I,)° .
P =TT, Pee TIA(P - = P_4)
'y —
gD o) (73)

2 IT+13

This equation shows that the nondecaying antisymmetric state |—) can be
populated by spontaneous emission from the upper state |e) and also by the
coherent interaction with the state |+). The first condition is satisfied only when
I'; # T, while the other condition is satisfied only when A, # 0. Thus, the
transfer of population to the state |—) from the upper state |e) and the symmetric
state |s) does not appear when the atoms are identical, but is possible for
nonidentical atoms.

We illustrate this effect in Fig. 4, where we plot the steady-state population
of the state |—) as a function of A, for two different types of nonidentical
atoms. In the first case the atoms have the same damping rates (I'y = I'y) but
different transition frequencies (A # 0), while in the second case the atoms
have the same frequencies (A = 0) but different damping rates (I'; # I'y). Itis

0.8

T
L

Figure 4. The steady-state population of the antisymmetric state |—) for € = 5", €21 = 10T,
and I'; = T'|,A =Ty (solid line), I'; = 2I'}, A = 0 (dashed line).
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Figure 5. The steady-state populations of the upper state |e) (solid line) and the symmetric
state [+) (dashed line) for I, =T,Q = 5T,y = 10"y and A =T.

seen from Fig. 4 that in both cases the antisymmetric state can be populated
even if is not directly driven from the ground state. The population is transferred
to |—) through the coherent interaction A, which leaves the other excited states
completely unpopulated. This is shown in Fig. 5, where we plot the steady-state
populations p_, and p,, of the states |+) and |e). It is apparent from Fig. 5 that
at Ay = —§; the states |+) and |e) are not populated. However, the population
is not entirely trapped in the antisymmetric state |—), but rather in a linear
superposition of the antisymmetric and ground states. This is shown in Fig. 6,
where we plot the steady-state population p__ for the same parameters as in
Fig. 5, but different 2. Clearly, for a small 2 the steady-state population p__ ~ %,
and the amount of the population increases with increasing 2. The population
p__ attains the maximum value p__ ~ | for a very strong driving field.

This result shows that we can relatively easily prepare two nonidentical
atoms in the maximally entangled antisymmetric state. The closeness of the
prepared state to the ideal one is measured by the fidelity F. Here F is equal to
the obtained maximum population in the state |-). For €2 >> T" the fidelity of the
prepared state is maximal, equal to 1. As we have already mentioned, the system
has the advantage that the maximally entangled state |—) does not decay, that is,
is a decoherence-free state.

3. Atom-Cavity-Field Interaction

There have been several proposals to generate the antisymmetric state |a) in a
system of two identical atoms interacting with a single-mode cavity field. For
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Figure 6. The Steady-state population of the antisymmetric state |—) for Ty =T'|, Q. =
10I';,A =T and different ©: Q@ =T (solid line), 2 = 5I"y (dashed line), (2 = 20I"; (dashed-
dotted line).

example, Plenio et al. [30] have considered a system of two atoms trapped
inside an optical cavity and separated by a distance much larger than the optical
wavelength. This allows for the selective excitation of only one of the atoms. In
this scheme the generation of the antisymmetric state relies on the concept of
conditional dynamics due to continuous observation of the cavity field. If only
one atom is excited and no photon is detected outside the cavity, the atoms are
prepared in a dark state [44], which is equivalent to the antisymmetric state |a).

Several investigators [26—28] have analyzed two-atom Jaynes-Cummings
models for a violation of Bell’s inequality, and have shown that the atoms
moving across a single-mode cavity can be prepared in the antisymmetric state
via the interaction with the cavity field. In this scheme, the preparation of the
antisymmetric state takes place in two steps. In the first step, one atom initiaily
prepared in its excited state |e;) is sent through a single-mode cavity being in
the vacuum state |0), . During the interaction with the cavity mode, the atomic
population undergoes the vacuum Rabi oscillations, and the interaction time was
varied by selecting different atomic velocities. If the velocity of the atom is such
that the interaction time of the atom with the cavity mode is equal to a quarter of
the vacuum Rabi oscillations, then the state of the combined system, the atom
plus the cavity mode, is a superposition state:

) == ()0}, ~ lgn)I1)) 74)
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Hence, the state of the total system, two atoms plus the cavity mode, after the first
atom has crossed the cavity is

1
V2

If we now send the second atom, which is in its ground state, with the selected
velocity such that during the interaction with the cavity mode the atom
undergoes half of the vacuum Rabi oscillation, the final state of the system
becomes

[W1) = —=(len)]0), — lgn)1).)Ig2) (75)

il

|Uiac) = \/Z(‘el>|0>c|g2> — 1g1)10) |e2))
- \/%uemga ~ g lea))I0), = a0}, (76)

Thus, the final state of the system is a product state of the atomic antisymmetric
state |a) and the vacuum state of the cavity mode. In this scheme the cavity mode
is left in the vacuum state, which protects the antisymmetric state against any
noise of the cavity. The scheme to entangle two atoms in a cavity, proposed by
Cirac and Zoller [28], has been realized experimentally by Hagly et al. [36].

Gerry [29] has proposed a similar method based on a dispersive interaction of
the atoms with a cavity mode prepared in a coherent state |o). The atoms enter
the cavity in superposition states

1

ay) = ey) +i
|ar) ﬁ“ D) +iler)
1
ay) =——=(le2) — i 77
laz) \/§(| 2) — ilga) (77
After passage of the second atom, the final state of the system is
1
[W12c) = 2 {(lg1)1g2) + len)le2)) [ -or)

+illenlg2) — lg1)le2))|o)} (78)

Thus, if the cavity field is measured and found in the state |o), the atoms are in
the antisymmetric state. If the cavity field is found in the state | —a), the atoms are
in the entangled state:

(W12(-a)) =-;—(|81>Igz> + ler)le2)) (79)
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The state (79) is called a rwo-photon entangled state. In Section VI, we will
discuss another method of preparing the system in the two-photon entangled
state based on the interaction of two atoms with a squeezed vacuum field.

C. Preparation of a Superposition of Antisymmetric
and Ground States

In the section IV.B.2, we have shown that two nonidentical two-level atoms can
be prepared in an arbitrary superposition of the maximally entangled antisym-
metric state |a) and the ground state |g)

) = nla) + /1= |nl*lg) (80)

However, the preparation of the superposition state requires that the atoms have
different transition frequencies. Beige et al. [32] have proposed a scheme in
which the superposition state |®) can be prepared in a system of two identical
atoms placed at fixed positions inside an optical cavity.

Here, we discuss an alternative scheme where the superposition state |®) can
be generated in two identical atoms driven in free space by a coherent laser
field. This can happen when the atoms are in nonequivalent positions in the
driving field, where the atoms experience different intensities and phases of the
driving field. The populations of the collective states of the system can be found
from the master equation (31). We use the set of the collective states (35) as an
appropriate representation for the density operator

p=> plid(il, ij=gsae (81)
-

where p;; are the density matrix elements in the basis of the collective states.

After transforming to the collective state basis, the master equation (31) leads
to a closed system of 15 equations of motion for the density matrix elements
[46]. However, for a specifically chosen geometry for the driving field, namely,
that the field is propagated perpendicularly to the atomic axis (k. - rj2 = 0), the
system of equations decouples into 9 equations for symmetric and 6 equations
for antisymmetric combinations of the density matrix elements [45-50]. In this
case, we can solve the system analytically, and find that the steady-state values
of the populations are [45,46]

e
Pee = aD
120%(T% + A7) + @
P =3 D
104

Paa = ZB
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where

D=+ (I + Ag){nz + % (T + ) +(AL - le)z]} (83)

and A} = 0y — 0.
In this case all of the collective states are populated with the population

distribution p,, = p,, < p,;- Moreover, for a very strong driving field
(2> T, AL), the excited states are equally populated with p,, = py, = p,, =
i. The population distribution changes dramatically when the driving field
propagates in directions different from perpendicular to the interatomic axis
[49-50]. In this situation the populations strongly depend on the interatomic
separation and the detuning A;. This can produce the interesting modification
that the collective states can be selectively populated. We show this by solving
numerically the system of 15 equations for the density matrix elements. The
populations are plotted against the detuning A, in Fig. 7 for the laser field
propagating in the direction of the interatomic axis. We see from Fig. 7 that the
collective excited states are populated for most values of A, except
Ap = —{,. At this detuning the antisymmetric state is significantly populated,
whereas the population of the symmetric and upper states is close to zero. Since
Pa < 1, the population is distributed between the antisymmetric and the ground

06 I

04t ! \ , \

Pee’ Paa’ Pss’
—
~.
-

Figure 7. The steady-state populations of the collective atomic states of two identical atoms as
a function of A, for the driving field propagating in the direction of the interatomic axis, {2 = 2.5T’,
ri2/ho = 0.08 and i L Fia: p,, (solid line), p,, (dashed line), p,, (dashed-dotted line).
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states, and therefore at A; = —, the system is in a superposition of the
maximally entangle state |a) and the ground state |g).

Turchette et al. [35] have realized experimentally a superposition state of the
ground state and a nonmaximally entangled antisymmetric state in two trapped
jons. In the experiment two trapped barium ions were sideband-cooled to their
motional ground states. Transitions between the states of the ions were induced
by Raman pulses using copropagating lasers. The ions were at positions that
experience different Rabi frequencies Q; and , of the laser fields. By
preparing the initial motional ground state with one ion excited |e;)|g2)|0),
and applying the laser fields for a time ¢, the following entangled state |¥(t))
was created

i 2
) =~ sin i)+ { [ (cost = 1) 1 el

2,0
+ { o (cosqu — 1)] |g1)|e2)}|0) (84)
where 07 = 02 + Q2.
For Qt = n the entangled state (84) reduces to a nonmaximally entangled

antisymmetric state

|‘Ila> =

2 02
(BB ) = 2 e | 0 85

Franke et al. [51] proposed using the nonmaximally entangled state (85) to
demonstrate the intrinsic difference between quantum and classical information
transfers. The difference arises from the different ways in which the probabil-
ities occur and is particularly clear in terms of entangled states.

V. DETECTION OF THE ENTANGLED STATES

In this section we discuss problems that could be involved in any attempt to
detect an internal entangled state of two coupled atoms in free space. Beige et al.
[34] have proposed a scheme, based on the quantum Zeno effect, to observe a
decoherence-free state in a system of two 3-level atoms located inside an optical
cavity. Here, we discuss possible schemes to detect entangled states of two
2-level atoms in free space.

A. Fluorescence Intensity

One of the possible ways to detect an internal state of two coupled atoms is to
observe the fluorescence field emitted from the system. It is well known that the
fluorescence from the two-atom system exhibits strong directional properties
[7,10,48,52].
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To show this, we consider the fluorescence intensity detected at a point R in
the far-field zone of the radiation emitted by the atomic system. The intensity is
proportional to the first-order correlation functions of the atomic dipole
operators as [7,8]

I(R,t) = U(R) 22: <S,.+ (z - g) S; (t - §> >e"’<R'fu, (86)

i,j=1

where

4,2
Wt 2
UR) = [ ==2— | sin 87
(®) = (o sno (&)
is the geometric factor with ¢ the angle between the observation direction
R = RR and the atomic dipole moment p.

From Egs. (86) and (81) the fluorescence intensity can be written in terms of
the density matrix elements in the collective states representation as

I(R,1) = UR){(pe, + pys)[1 + cos (krizcos)]
+ (pee + paa)[l - COS(kruCOSG)]
+ i(psa - pas) sin (k}"]zCOSB)} (88)

where 0 is the angle between the observation direction R and the vector rs.

The first term in Eq. (88) arises from the fluorescence emitted on the
le) — |s) — |g) transitions, which involve the symmetric state. The second
term arises from the |e) — |a) — |g) transitions through the antisymmetric
state. These two terms describe two different channels of transitions for which
the angular distribution is proportional to [1 £ cos (kri>cos0)]. The last term in
Eq. (88) originates from interference between these two radiation channels. It is
seen from Eq. (1.88) that the angular distribution of the fluorescence field
depends on the population of the entangled states |s) and |a). Moreover,
independent of the interatomic separation riz, the antisymmetric state does
not radiate in the direction perpendicular to the atomic axis, as for 6 = 7/2 the
factor [1 — cos (kri>cos0)] vanishes. In contrast, the symmetric state radiates in
all directions.

It is evident from Eq. (88) that the radiation pattern is nonspherical unless
Pss = Py, and then the pattern is spherically symmetric independent of the
interatomic separation. Therefore, an asymmetry in the radiation pattern would
be compelling evidence that the entangled states |s) and |a) are not equally
populated. If the fluorescence were detected in the direction perpendicular to the
atomic axis, the observed intensity (if any) would correspond to the fluores-
cence field emitted from the symmetric state |s) and/or the upper state |e). On
the other hand, if there is no fluorescence detected in the direction perpendicular
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to the atomic axis, the population is entirely in a superposition of the anti-
symmetric state |@) and the ground state |g).

Guo and Yang [53] have analyzed spontaneous decay from two atoms
initially prepared in an entangled state. They have shown that the time evolution
of the population inversion, which is proportional to the intensity (87), depends
on the degree of entanglement of the initial state of the system. Ficek et al. [10]
have shown that in the case of two nonidentical atoms, the time evolution of the
intensity /(R,f) can exhibit quantum beats that result from the presence of
correlations between the symmetric and antisymmetric states. In fact, quantum
beats are present only if initially the system is in a nonmaximally entangled
state, and no quantum beats are predicted for maximally entangled as well as
unentangled states.

B. Interference Pattern

An alternative way to detect an internal state of the two atom system is to
observe an interference pattern of the fluorescence field emitted in the direction
R, not necessary perpendicular to the interatomic axis. The usual measure of the
depth of modulation of the interference fringes is a visibility defined as

Inax — Ini
4 max min 89
Imax + Imin ( )

where I corresponds to cos(kR-rpp) = I, whereas I, corresponds to
cos (kR - r3) = —1. This scheme is particularly useful when the antisymmetric
state is a decoherence-free (dark) state.

Using Eq. (88), we can write the visibility in the basis of the collective states as

— Pss — Paa (90)
Pss + Paa T 2Pee
This equation shows that the sign of ¥~ depends on the population difference
between the symmetric and antisymmetric states. For p,, > p,, the visibility ¥~
is positive, and then the interference pattern exhibits a maximum (bright center),
whereas for p,, < p,, the visibility 7~ is negative and then there is a minimum
(dark center). The optimum positive (negative) value is ¥" =1 (¥" = —1), and
there is no interference pattern when ¥~ = 0. The later happens when p ;= p,,.
Similar to the fluorescence intensity distribution, the visibility can provide us
an information about the internal state of the system. When the system is
prepared in the antisymmetric state or in a superposition of the antisymmetric
and the ground states, p,, = p,, = 0, and then the visibility has the optimum
negative value ¥” = —1. On the other hand, when the system is prepared in the
symmetric state or in a linear superposition of the symmetric and ground states,
the visibility has the maximum positive value ¥~ = 1.
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There have been several theoretical studies of the fringe visibility in the
fluorescence field emitted by two coupled atoms, and the Young’s interference-
type pattern has been observed experimentally in the resonance fluorescence of
two trapped ions [11]. The experimental results have been explained theoreti-
cally by Wong et al. [54], and can be understood by treating the ions as
independent radiators that are synchronized by the constant phase of the driving
field. It has been shown that for a weak driving field, the fluorescence field is
predominantly composed of an elastic component and therefore the ions behave
as point sources of coherent light producing an interference pattern. Under
strong excitation the fluorescence field is mostly composed of the incoherent
part and consequently there is no interference pattern. Dung and Ujihara [52]
have shown that an interference pattern can be observed in spontaneous
emission from two interacting atoms even if it is known for certain which
atom is excited initially. Michelson type (temporary) interference pattern has
been predicted in spontaneous emission from two non-identical atoms [43].
Kochan et al. [55] have shown that the interference pattern of the strongly
driven atoms can be partially recovered by placing the atoms inside an optical
cavity. The coupling of the atoms to the cavity mode induces atomic correla-
tions, which improves the fringe visibility. Meyer and Yeoman [56] have
reported an even stronger cavity induced modification of the interference pattern
that occurs when the coherent driving field is replaced by an incoherent field.
They have shown that in contrast to the coherent excitation, the incoherent field
produces an interference pattern with a dark center. Interference pattern with a
dark center has also been predicted when the atoms experience different
intensities of the driving field [57] or in the case where the driving field is
replaced by a squeezed vacuum field {58].

VI. TWO-PHOTON ENTANGLED STATES

We have already discussed different methods of generating two-atom entangled
states of the form

[¥) = cile1)|g2) £ c2lg1)e2) (91)

These states are generated by the dipole~dipole interaction between the atoms
and the preparation of these states is sensitive to the difference A between the
atomic transition frequencies and to the atomic decay rates.

There are two other collective states of the two-atom system: the double
atomic ground state |g) = |gi)|g2) and the double atomic excited state
le) = le1)|ez), which are also product states of the individual atomic states.
These states are not affected by the dipole—dipole interaction 2,, the detuning
A and the spontaneous emission rates.
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Here, we discuss a method of preparing a two atom system in entangled
states involving only the double atomic ground |g) and excited |e) states

1) = cglg) £ cele) (92)

where ¢, and ¢, are constant parameters such that |ch2 +|c|* = 1. The
entangled states of the form (92) are known in the literature as pairwise atomic
states [22] or multiatom squeezed states [23]. According to Eq. (36), the collec-
tive ground and excited states are separated in energy by 2wy, and therefore we
can call the states |T) as two-photon entangled (TPE) states.

The two-photon entangled states cannot be generated by a simple coherent
excitation. A coherent field applied to the two-atom system couples to one-
photon transitions. The problem is that coherent excitation populates the upper
state |e) but also populated the intermediate states |s) and |a). The two-photon
entangled states (92) are superpositions of the collective ground and excited
states with no contribution from the intermediate collective states |s) and |a).

The two-photon behavior of the entangled states (92) suggests that the
simplest technique for generating the TPE states would be by applying a two-
photon excitation process. An obvious candidate is a squeezed vacuum field,
which is characterized by strong two-photon correlations that would enable the
transition |g) — |e) to occur effectively in a single step without populating the
intermediate states. We will illustrate this effect by analyzing the populations of
the collective atomic states.

A. Two Atoms in a Squeezed Vacuum

The dynamics of the collective two-atom system in a squeezed vacuum can be
determined from the master equation of the density operator of the system or
from the equations of motion for the transition probability amplitudes [22]. In
Section II.B, we derived the master equation for the density operator of a two
atom system interacting with the ordinary vacuum field. It is our purpose to
extend the master equation to the case of a squeezed vacuum field. The method
of derivation of the master equation is a straightforward extension of that
presented in Section ILB.

The correlation functions for the field operators ay, and a akg, which describe a
three-dimensional field in a squeezed vacuum state, are given by [24,25]

) = <aks> 0
) = (N(oy) + 1)8° (k — K)dyy
il dioy) = N(o)8* (k — K)3yy
I( ) = M ()8 (2K, — k — k)3
) = M* ()5 (2k, — k — K')3yy (93)
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where N(ay) is the number of photons in the mode o and M () = M (2w, — o)
is the two-photon correlation function, which is symmetric about the squeezing
carrier frequency 2w;. The parameters N(wy) and M(wi) = |M(wy)lexp(id) are
not independent of each other but are related by the inequality

|M()]*< N(on)(NQ2os — ) + 1) (94)

where the term -1 on the r.h.s arises from the quantum nature of the squeezed
field [25], and ¢ is the phase of the squeezed vacuum field.

Substituting the interaction Hamiltonian (7), we find that the evolution of the
density operator depends on the second order correlation functions of the
reservoir operators. We assume that a part of the reservoir modes is in a
squeezed vacuum state for which the correlation functions are given by Eq. (93).

In order to optimize the squeezing effects on the atom, the mode function
U,(wy) of the squeezed vacuum field should be perfectly matched to the mode
function g (r;) of the three-dimensional vacuum field coupled to the atoms.
Such a requirement of the perfect matching is practically impossible to achieve
in present experiments [59]. Therefore, we consider mode functions that
correspond to an imperfect matching of the squeezing modes to the vacuum
modes surrounding the atoms. In this case, we can write the mode function
Us(ex) as

Uv(mk) =

{[J‘/(wk)]"/ ‘g, (r)D(wy)  for 6 <6, (95)

0 for 6; >0,

where A" (@) is the normalization constant such that |Uv(mk)|2: 1, the
parameter D(wy) determines the coupling efficiency of the squeezed field
mode function Uy(y;) to the vacuum field mode function gi,(r;), and 8,, is the
maximum angle over which the squeezed modes are propagated. For perfect
coupling efficiency {D(wy)| = 1, whereas |D{(w)| < 1 for an imperfect coupling.
The parameter D(w;) contains both the amplitude and phase coupling, and its
explicit form depends on the method of propagation and focusing the squeezed
field. For example, in the case of a Gaussian profile of a focused squeezed field,
the parameter D(wy) is given by [60,61]

D(wy) = exp[—Wy sin2@; — ikzy cos 0] (96)

where Wj is the beam spot size at the focal point z;. In a cavity situation, for
example, the parameter D(wy) is identified as the cavity transfer function, the
absolute value square of which is the Airy function of the cavity [61,62].
Before returning to the derivation of the master equation, we should remark
that in the squeezing propagation case in which the squeezed modes lie inside
the cone of angle 8,, < 1, we assume that the modes outside the cone are in their
ordinary vacuum state. In practice, the modes will be in a finite-temperature
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blackbody state, which means that inside the cone the modes are in mixed squeezed
vacuum and blackbody states. However, this is not a serious practical problem as
experiments are usually performed at low temperatures where the blackbody
radiation is negligible. In principle, we can include the blackbody radiation effect
(thermal noise) to the problem replacing N(wy) in (93) by N(w) + N, where N is
proportional to the photon number in the blackbody radiation.

We now return to the derivation of the master equation of the atom in
a squeezed vacuum field. Substituting the interaction Hamiltonian (7) into
Eq. (18) and using the correlation functions (93), we obtain

Z{S Yy(t,1),S71+ 57, Y1, 7S] ]

+ (SN (1,1), 8] + 187, Ny (8, 1)S; ]
+ [SFMy(1,0), ST + (ST My (2, 7)S] ]
+ [S7 M (2,0, 7]+ [S7 M*(t, 0871}
— iy (S'S; (1)) (97)

i#j
where €); is given in Eq. (28),

1 r .
Yij(t, 1) = = d(nk(;)l% [X,(JN)(I) + Xy(t)] L dvp(t — T)ez(w,-mk)r
1 t .
Nij(tv T) = ? dO)k(Dixl(j )( ) JO dtﬁ(t _ T)e"(wi—wk)'[ (98)
! ~
Mj(t,t) = 3 do)ku)k(Zo)Y U)k)X,(, ( )J drp(t — 1)@

with

00 = 49 Sl gl - g 1))

10(0) = NwoID(oy) e "
X ZJ ko gkv(l‘,)][uj . gks(rj)]
1 (1) = M(00g) Do) e )

x ZJ A%l B ()] B 21 ()] (99)

and € is the solid angle over which the squeézed modes are propagated.

The master equation (97) with parameters (98) is quite general in terms of
the matching of the squeezed modes to the vacuum modes and the bandwidth of
the squeezed field relative to the atomic linewidths. The master equation is in the
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form of a differential integral equation, and we can simplify the form employing
the Markov approximation. In this approximation the integral over the time
delay T contains functions that decay to zero over a short correlation time T..
This correlation time is of the order of the inverse bandwidth of the squeezed
field, and the short correlation time approximation is formally equivalent to
assume that squeezing bandwidths are much larger than the atomic linewidths.
Over this short timescale, the density operator would hardly have changed from
p(t), thus we can replace p(r —t) by p(z) in (98) and extend the integral to
infinity. Next, we can perform the integration and find

!
lim J artp(t — 1)e™™ ~ p1) [n&(x) + tq (100)
t—00 Jg X

where P indicates the principal value of the integral. Finally, to carry out the
polarization sums and integrals over d{) in (99), we use the plane-wave
description of the vacuum mode function g, (r), and assuming that the dipole
moments are parallel (p, ||p,), the sums over s and the integrals over d€) in (99)
lead to

M;i(2,7) = Ty (0;) | D () Pr(8,,) p 1) (20 0)1 (101)
where
v(0,,) = % 1-— 411 (3 + cos?6,,) cosH,, (102)

In the derivation of (101), we have ignored the principal value parts that
contribute to the energy shifts of the atomic levels. In fact, the shifts are very
small for a broadband squeezed field, and their contribution to the atomic
dynamics are negligible [63].

With the parameters (101), the master equation of two atoms in a broadband
squeezed vacuum, written in the Schrédinger picture, reads as

op

13 - _ _ _
P _EZFU[I +N(0))(pS7S; + 8787 p — 287 pS)

——ZFUN (@) (pS;'S] + 8787 p — 25} pS;)
ZFUM (IS .81+ [/, 08/ )

——ZFUM* (@)(S79,57)+ 157 .p871) ~ [ 0] (103)



CORRELATED SUPERPOSITION STATES IN TWO-ATOM SYSTEMS 253

where

(@) = nN (o)
(o) = nM () (104)

Xz

with n = |D(®;)|*v(6,,), and the Hamiltonian H’ as given in Eq. (32).

The parameter 1 determines the matching of the squeezed modes to the
modes surrounding the atom. This includes the coupling efficiency of the
mode functions, given by the parameter D(ay ), and the angular dimensions, given
by the angle 6,,, of the squeezed modes. For an imperfect matching the master
equation (103) is formally identical to that for perfect matching: the only
difference is the replacement of the squeezing parameters N and M by the
matching modified parameters N and M. The master equation (103) is a starting
equation to calculate the stationary state of a two-atom system interacting with a
squeezed vacuum field.

B. Steady-State Populations

In order to calculate the stationary state of the two-atom system, we have to know
the steady-state populations p;; of the collective atomic states and the coherencies
p;;(i # J). First, we consider a system of two identical atoms (A =0T =T1,)
separated by an arbitrary distance r, and interacting with a squeezed vacuum field.
Moreover, we assume that the carrier frequency ®, of the squeezed vacuum field is
resonant to the atomic transition frequencies (@, = ).

From the master equation (103), we find equations of motion for the
populations of the collective atomic states, which in the absence of the coherent
driving field (Q; = 2, = 0) can be written as

0 1

apee = —F(l’l + l)pee +5(n - 1)[(F + F12)pss + (F - Flz)paa]
+ T (M*p,, + Mp,,)

0 1

&pss = E(F +F12){(n - 1) - (3}’1 - l)pss - (n - l)paa +2pee

- 2(M*peg + Mpge)}
0 1
apaa = E(F - F12){(n - 1) - (3’1 - l)paa - (n - l)pss + 2pee

+ Z(M*peg 'JT_Mpge)}
0 0 * _
Epeg = <a pge) = FIZM - aneg

- M[(F + 2F12)pss - (F - 2F12)paa] (105)

where n = 2N(wg) + 1 and M = M(c).
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It is seen from Eq. (105) that the evolution of the populations depends on the
two-photon coherencies p,, and p,,, which can transfer the population from the
ground state |g) directly to the upper state |e) leaving the states |s) and |a)
unpopulated. The evolution of the populations depends on I'j3, but is com-
pletely independent of the dipole-dipole interaction 2;;.

There are two different steady-state solutions of Egs. (105) depending on
whether I'j; =T or T'j; # I'. This fact is connected with the existence of a
combination of the density matrix elements involving the antisymmetric state

Sz(t) =2- zpaa(t) (106)

which, for I'j; = I' is a constant of motion. In this case the population in the
antisymmetric state does not change in time. Thus an initially unpopulated
antisymmetric state remains unpopulated for all times, and then the population is
distributed only between three collective states |e), |s), and |g).

Assuming that T'j, = T" and setting the left-hand side of Egs. (105) equal to
zero, we obtain the steady-state solutions for the populations of the states |e)
and |s), and the two-photon coherence |p,,|. A straightforward algebraic
manipulation of Egs. (105) leads to the following steady-state solutions

n(n =1 —4(n - 2)|M|?
n(3n2 + 1 — 12|M|%)

_ (1) —dimP

S 32 41— 12iM)

_ 8|M|

a3 + 1 - 12|M))

Pee =

58

(107)

u

where p, = p,.e ® + p, e

The steady-state populations depend on the squeezing correlations M and
the coupling efficiency 1. For a classical squeezed field with the maximal
correlations M = N, the steady-state populations reduces to

_ W
Pys —m
n2N2
Pee = AN + 1)(3nN + 1)

(108)

In this case both the excited states are populated and the populations obey a
Boltzmann distribution with p,, > py > p,,.
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The population distribution is qualitatively different for a quantum squeezed
field with |M|* = N(N + 1). In this case the populations are given by

__nN(-nm)
OmN(l-n)+1
NN[1 4 2(1 — n)N]

Pee =N + DBn(1 — )N + 1] (109)

Clearly, the population in the symmetric state can be reduced to zero. This
happens for n = 1, that is, when the squeezed field is perfectly matched to the
atoms. In this case the population is distributed only between the ground state |g)
and the upper state |e).

The issue we are interested in concerns the final state of the system and its
purity. To answer this question, we apply the steady-state solutions (107) and
find the stationary density matrix of the system

Pee O Pee
peg O pee

where p;; are the nonzero steady-state density matrix elements.

It is evident from Eq. (110} that in the squeezed vacuum the density matrix of
the system is not diagonal, due to the presence of the two-photon coherencies
P and p,.. In this case the collective states |g), |s) and |e) are no longer
eigenstates of the system. The density matrix can be rediagonalized by
including p,, and p,, to give the new (entangled) states

|T1> = [(Pl - pee)lg> + peg|e>]/[(Pl - pee)z + lpeg|2]l/2
IT2) = [Pyelg) + (P2 — Peg) [)]/[(P2 — pgg)” + |peg| "1
1T3) = |s) (111)

where the diagonal probabilities are

1 1 2
Pr= 5 (Pgg + Pee) + 75 [(Pgg = Pee)” + 4[peg| 172
1 ! 2
Py =2 (Pgy + Pec) =5 (P = Pee) + 4lpeg 177
Py = Pys (112)
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In view of Eq. (111), it is easy to see that the squeezed vacuum causes the system
to decay into entangled states |Y;}, which are linear superpositions of the
collective ground state |g) and the upper state |e). The intermediate symmetric
state remains unchanged under the squeezed vacuum excitation. In general, the
states (111) are mixed states. However, for perfect coupling of the squeezed
vacuum to the atoms (1 = 1) and [M|> = N(N + 1) the populations P, and P3
are zero, leaving the population only in the state {T). Hence, in the limit of
perfect coupling | = 1 the state |Y) is a pure state of the system of two atoms
driven by a squeezed vacuum field. From Egs. (111), we find that the pure
entangled state |Y) is given by

T =¢-—12_;wn T1lg) + V- 1le)] (113)

The pure state (113) is nonmaximally entangled state; it reduces to a maximally
entangled state for N > 1. The entangled state is analogous to the pairwise
atomic state [22] or the multiatom squeezed state [23], (see also Ref. 24),
predicted in the small sample model of two coupled atoms.

C. Effect of the Antisymmetric State on the Purity of the System

The preparation of a two-atom system in the pure entangled state 1) requires
perfect matching of the squeezed modes to the atoms and interatomic separa-
tions much smaller than the optical wavelength. To achieve perfect matching
(n = 1), it is necessary to squeeze of all the modes to which the atoms are
coupled: that is, the squeezed modes must occupy the whole 4n solid angle of
the space surrounding the atoms. This is not possible to achieve with the present
experiments in free space, and in order to avoid the difficulty cavity environ-
ments have been suggested [59]. Inside a cavity the atoms interact strongly only
with the privileged cavity modes. By the squeezing of these cavity modes,
which occupy only a small solid angle about the cavity axis, it would be
possible to achieve perfect matching of the squeezed field to the atoms.

However, it is difficult experimentally to fulfil the second requirement that
interatomic separations should be much smaller than the resonant wavelength.
In fact, present atom trapping and cooling techniques can trap two atoms only
within distances of the order of a resonant wavelength [11-13]. It is therefore of
interest to examine the effect of increasing the interatomic separation so that the
simple three-state representation of two atoms, presented in the preceding
section, eventually ceases to be valid. With a finite interatomic separation, the
two-atom system is represented by the full four-level system of (35).

With the interatomic separation included, the antisymmetric state |a) fully
participates in the dynamics of the two-atom system. In this case I'j; # I" and
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the steady-state solutions of Eqs. (105) are

(n—1) N AMP*(2n — 1)

pee = 4n2 Q
o = (n> —1) 3 a|M|*(2n? - a)
55 4n? Q
(nr-1) N alM*(2n? + a)
Paa = 4}'12 Q
2an*|M
P, = _“"Q_H (114)
where
Q = n?n* + 4M* (& — n?)] (115)

This result shows that the antisymmetric state is populated in the steady-state
even for small interatomic separations (a 2 1). For large interatomic separations
a ~ 0, and then the symmetric and antisymmetric states are equally populated.
When the interatomic separation decreases, the population of the state |a)
increases, whereas the population of the state |s) decreases and p,, = 0 for very
small interatomic separations. In Fig. 8, we plot the steady-state populations as a
function of the interatomic separation. We see that the collective states are
unequally populated and for small r|, the state |a) is the most populated state of
the system, whereas the state |s) is not populated.

However, the vanishing of the population in the state |s) does not mean that
the system is in a pure TPE state. This is due to the presence of the anti-
symmetric state |a) which is significantly populated for small interatomic
separations. To show this, we calculate the quantity

Te(p?) = p2, + PL + Pl + P2 + [Pl (116)

which determines the purity of the system. Tr(p?) = 1 corresponds to a pure state
of the system, while Tr(p?) < 1 corresponds to a mixed state. Tr(p?) =}
describes a completely mixed state of the system. In Fig. 9, we display Tr(ng as
a function of the interatomic separation r, for perfect matching n =1, [M|° =
N(N + 1), and various N. Clearly, the system is in a mixed state independent of
the interatomic separation. Moreover, the purity decreases as N increases.

For small interatomic separation, the mixed state of the system is composed
of two states: the TPE state |Y;) and the antisymmetric state |a). We can
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Figure 8. The steady-state populations of the collective atomic states as a function of the
interatomic separation for 1 = 1,|M|* = N(N + 1}, N = 0.5, i LFi» and p,, (solid line), p,,
(dashed line), p,, (dashed—dotted line).
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Figure 9. Tr(p?) as a function of the interatomic separation for m = 1,|M|> = N(N + 1),
R L 717 and different N: N = 0.1 (solid line), N = 0.5 (dashed line), N = 1 (dashed—dotted line).
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illustrate this by diagonalizing the steady-state density matrix of the system

Pee O 0 pg
0 pu O O
0 0 p, O

peg 0 0 Pee

p= (117)

When we diagonalize the matrix (117), we find the new (entangled) states

(Pl - pee)|g> + peg| >

T, =

) [(Pr = Pee)+]Pee] 172

T,) = pge|g (P2 - pgg)le

| > [(Pz—ng 2+|peg‘ 2

IT3) = Is)

T4) = |a) (118)

where the diagonal probabilities (populations of the entangled states) are

1
P 5 (pgg + pee) 2 [(pgg - pee)2 + 4lpeg‘2]]/2
1 1
P2 = 5 (pgg + pee) - 5 [(pgg - pee)2 + 4|pegl2]l/2
P3 = Pss
P4 fd paa (119)

Note that the states | T),|T2) and | T3) are the same as for the small sample
model, discussed in the preceding section. This means that the presence of the
antisymmetric state does not affect the two-photon entangled states, but it can
affect the population distribution between the states and the purity of the
system. In Fig. 10, we plot the populations P; of the states | ;) as a function of
the interatomic separation. The figure demonstrates that the atoms are driven
into a mixed state composed of two states | Y;) and |a), and there is a vanishing
probability that the system is in the states |Y5) and |s).

However, the system can decay to the pure TPE state |T;) with the
1nteratomlc separation included, provided the observation time is shorter than
['~!. The antisymmetric state |a) decays on a time scale ~ (" — I';)”™", and for
I'y; ~ T the decay rate of the antisymmetric state is much longer than F . By
contrast, the state |s) decays on a time scale ~ (I' + T',)™", which for I'jy =~ T
is shorter than I'~!. Clearly, for observation times shorter than T~ I the
antisymmetric state does not participate in the interaction and the system
reaches the steady-state only between the triplet states. Thus, for perfect
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Figure 10. The populations P; of the entangled states (115) as a function of the interatomic
separation for n = 1, |M[2 = N(N+1), i L7 and N =0.5; P; (solid line), P, (dashed line), P3
(dashed—dotted line), P4 (dotted line).

matching of the squeezed modes to the atoms the symmetric state is not
populated and then the system is in the pure TPE state |T).

D. Two-Photon Entangled States for Two Nonidentical Atoms

By employing two nonidentical atoms of significantly different transition
frequencies (A > T'), it is possible to achieve the pure TPE state with the
interatomic separation comparable to the resonant wavelength, and the anti-
symmetric state fully participating in the interaction.

Assuming that A # 0, the master equation (103) leads to the following
equations of motion for the density matrix elements

0 1 )

apee = —F(l’l + l)pee + E (n - 1) [F(pxs + paa) + rlz(pss - paa)elAt]
+ 1—‘12|M|(pege'i[2(“’x_m0)t+¢] -+ pgeei[z(mJAwO)t"'d)])

0 1 :

apm = E(F + FlzelAt)[(n - 1) - (3)1 - l)pss - (l’l - 1)paa + 2pee]

- F|M|(pege*i[z(w"'_m])h“b] + pgeei[2((ﬂx~w1)t+¢])
— Do M| (pyge 2Ot 4 p PO 00
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0 1 )
apaa = E (F - FlzelAt)[(n - 1) - (3}1 - l)paa - (n - l)pss + 2pee]

+ F|M|(pege—i[2(ws—m|)t+¢] + pgeei[z(ws*ml)tﬁ-(b])
- F12|M|(pege*i[2(ml_mo)t+¢] + pgeei[z(mx—wo)t+¢])

0 0 * ~
ot Peg = (5 pge> = Tubfe? e 1L Peg
- FMei[Z(msuml)H_dﬂ(pss - paa)
+ 2F12Mei[2(ms_m0)t+¢](pss + paa) (120)

where mp = 1 (@ + a).

Equations (120) contain time-dependent terms that oscillate at frequencies
exp(£iAr) and exp[+2i(e; — wo)t + ¢]. If we tune the squeezed vacuum field
to the middle of the frequency difference between the atomic frequencies,
namely, o; = (®; 4+ 0;)/2, the terms proportional to exp [+2i(w; — wo)t + 9]
become stationary in time. None of the other time-dependent components is
resonant with the frequency of the squeezed vacuum field. Consequently, for
A > T, the time-dependent components oscillate rapidly in time and average to
zero over long times. Therefore, we can formulate a secular approximation in
which we ignore the rapidly oscillating terms, and find that Egs. (120) give us
the following steady-state solutions [64]:

1 (11—2)+ 1
Pe=a| 0 T (w2 —aalm)

2a|M|

n(n? — 4a2|M|?) (121)

Pu =

These equations are quite different from Eqgs. (114) that in the case of non-
identical atoms the symmetric and antisymmetric states are equally populated
independent of the interatomic separation. These are, however, similar to the
steady-state solutions for the small sample model that for small interatomic
separations p,, = P, ~ 0 and then only the collective ground and the upper
states are populated.

E. Mapping of the Entanglement of Light on Atoms

The generation of the pure TPE state is an example of mapping of a state of
quantum correlated light onto an atomic system. The two-photon correlations
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contained in the squeezed vacuum field can be completely transferred to the
atomic system. It is seen from Eq. (121) that the collective damping parameter
ala =T'12/+/TI,) plays the role of a degree of the correlation transfer from
the squeezed vacuum to the atomic system. For large interatomic separations,
I'12 = 0, and there is no transfer of the correlations to the system. In contrast,
for very small separations, I'j; ~ I', and then the correlations are completely
transferred to the atomic system.

However, the complete transfer of the correlations does not necessary mean
that the two-photon correlations are stored in the pure TPE state. This happens
only for the small sample model and two atoms with significantly different
transition frequencies, where the steady state is the pure TPE state. For identical
atoms separated by a finite distance r),, a part of the correlations is stored in the
antisymmetric state. This fact can lead to an interesting modification of the
interference pattern of the fluorescence field. Using the steady-state solutions
(114), we find that the visibility in the interference pattern is given by [58]

4an?|M |’

V= 3 (122)
m(n—1)+4n? M| (a+n — n?)

This visibility is negative, indicating that the squeezing correlations stored in
the antisymmetric state generate an interference pattern with a dark center. In
Fig. 11, we plot the visibility ¥~ as a function of the interatomic separation for

0.8 . : :

0 0.5 1 1.5 2
r12/7\.0

Figure 11. The visibility ¥~ as a function of the interatomic separation for n = I, |M|2 =
N(N + 1), p L 7, and different N: N =0.1 (solid line), N = 0.5 (dashed line), N = 5 (dashed—
dotted line).
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n =1 and |M|=+/N(N + 1). An interference pattern with a dark center is
observed for small interatomic separations (r12 < ko) with the maximal negative
value ¥ ~ —1 5. The value ¥~ = -1 5 compared to the possible negative value
V=1 1nd1cates that 50% of the squeezing correlations are stored in the
antisymmetric state. Thus, the visibility can be used to measure the degree of
correlations stored in the entangled state |a).

The two-photon correlations stored in the pure TPE state can be measured by
detecting fluctuations of the fluorescence field emitted by the atomic system.
Squeezing in the fluorescence field is proportional to the squeezing in the
atomic dipole operators (squeezing in the atomic spins) which, on the other
hand, can be found from the steady-state solutions for the density matrix
elements.

The fluctuations of the electric field are determined by the normally ordered
variance of the field operators as

(:(AE)*) Z Ei(2 ak ais) + {axsans)e?® + (a;r(sa;f“,)e“lie) (123)

Using the correlation functions (93) and choosing 8 = 1t/2, the variance of the
incident squeezed vacuum field can be written as

(:(A ﬁ/2)25> = 2Ey(N — |M|) (124)

where Ej is a constant.

Since [M| = /N(N + 1), the variance (124) is negative, indicating that we
have a squeezed field.

On the other hand, the normally ordered variance of the emitted fluorescence
field can be expressed in terms of the density matrix elements of the two-atom
system as

2
(: (AEE)”:) = Eo(2p +2p,, + [P, c0520) (125)
Using the steady-state solutions (107) and choosing 6 = n/2, we find

(N — |M])

((AEE,) ) = 2B ™

(126)

Thus, at low intensities of the squeezed vacuum field (N < 1) the fluctuations in
the incident squeezed vacuum field are perfectly mapped onto the atomic system.
For large intensities (N > 1), the thermal fluctuations of the atomic dipoles
dominate over the squeezed fluctuations, resulting in a reduction of squeezing in
the fluorescence field.
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Kozhekin et al. [38] proposed a method of mapping of quantum states onto
an atomic system based on the stimulated Raman absorption of propagating
quantum light by a cloud of three-level atoms. Hald et al. [40] have experi-
mentally observed the squeezed spin states of a system of three-level atoms
driven by a squeezed field. The observed squeezed spin states have been
generated via entanglement exchange with the squeezed field completely
absorbed in the process. Fleishhauer et al. [39] have considered a similar
system of three-level atoms and have found that quantum states of single-photon
fields can be mapped onto collective states of the atomic system. In this case the
quantum state of the field is stored in a dark state of the collective states of the
system.
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