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I. INTRODUCTION

More than a century has passed since Planck discovered that it is possible to
explain properties of the blackbody radiation by introducing discrete packets of
energy, which we now call photons. The idea of discrete or quantized nature of
energy had deep consequences and resulted in development of quantum mecha-
nics. The quantum theory of optical fields is called quantum optics. The cons-
truction of lasers in the 1960s gave impulse to rapid development of nonlinear
optics with a broad variety of nonlinear optical phenomena that have been
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experimentally observed and described theoretically and now are the subject of
textbooks [1,2]. In early theoretical descriptions of nonlinear optical phenom-
ena, the quantum nature of optical fields has been ignored on the grounds that
laser fields are so strong, that is, the number of photons associated with them are
so huge, that the quantum properties assigned to individual photons have no
chances to manifest themselves. However, it turned out pretty soon that
quantum noise associated with the vacuum fluctuations can have important
consequences for the course of nonlinear phenomena. Moreover, it appeared
that the quantum noise itself can change essentially when the quantum field is
subject to the nonlinear transformation that is the essence of any nonlinear
process. The quantum states with reduced quantum noise for a particular
physical quantity can be prepared in various nonlinear processes. Such states
have no classical counterparts; that is, the results of some physical measure-
ments cannot be explained without explicit recall to the quantum character of
the field. The methods of theoretical description of quantum noise are the
subject of Gardiner’s book [3]. This chapter is not intended as a presentation of
general methods that can be found in the book; rather, we want to compare the
results obtained with a few chosen methods for the two, probably most
important, nonlinear processes: second-harmonic generation and downconver-
sion with quantum pump.

Why have we chosen the second-harmonic generation and the downconver-
sion to illustrate consequences of field quantization, or a role of quantum noise,
in nonlinear optical processes? The two processes are at the same time similar
and different. Both of them are described by the same interaction Hamiltonian,
so in a sense they are similar and one can say that they show different faces of
the same process. However, they are also different, and the difference between
them consists in the different initial conditions. This difference appears to be
very important, at least at early stages of the evolution, and the properties of the
fields produced in the two processes are quite different. With these two best-
known and practically very important examples of nonlinear optical processes,
we would like to discuss several nonclassical effects and present the most
common theoretical approaches used to describe quantum effects. The chapter
is not intended to be a complete review of the results concerning the two
processes that have been collected for years. We rather want to introduce the
reader who is not an expert in quantum optics into this fascinating field by
presenting not only the results but also how they can be obtained with presently
available computer software. The results are largely illustrated graphically for
easier comparisons. In Section II we introduce basic definitions and the most
important formulas required for later discussion. Section III is devoted to
presentation of results for second-harmonic generation, and Section IV results
for downconversion. In the Appendixes A and B we have added examples of
computer programs that illustrate usage of really existing software and were
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actually used in our calculations. We draw special attention to symbolic
calculations and numerical methods, which can now be implemented even on
small computers.

II. BASIC DEFINITIONS

In classical optics, a one mode electromagnetic field of frequency ®, with the
propagation vector k and linear polarization, can be represented as a plane wave

E(r,t) =2Egcos(k-r — ot + @) (1)

where Ej is the amplitude and ¢ is the phase of the field. Assuming the linear
polarization of the field, we have omitted the unit polarization vector to simplify
the notation. Classically, both the amplitude Ey and the phase ¢ can be well-
defined quantities, with zero noise. Of course, the two quantities can be
considered as classical random variables with nonzero variances; thus, they
can be noisy in a classical sense, but there is no relation between the two
variances and, in principle, either of them can be rendered zero giving the
noiseless classical field. Apart from a constant factor, the squared real ampli-
tude, E3, is the intensity of the field. In classical electrodynamics there is no real
need to use complex numbers to describe the field. However, it is convenient to
work with exponentials rather than cosine and sine functions and the field (1) is
usually written in the form

E(l‘, t) — E(Jr)ei(k-rth) + E(-)e—i(k»r-mt) (2)

with the complex amplitudes E* = Ege™®. The modulus squared of such an
amplitude is the intensity of the field, and the argument is the phase. Both
intensity and the phase can be measured simultaneously with arbitrary accuracy.

In quantum optics the situation is dramatically different. The electromagnetic
field E becomes a quantum quantity; that is, it becomes an operator acting in a
Hilbert space of field states, the complex amplitudes E* become the annihilation
and creation operators of the electromagnetic field mode, and we have

~ | h . .
E= za?v[&ez(k-r—mt) + &+e—t(k-r—mt)] (3)

with the bosonic commutation rules
[a,a7] =1 (4)

for the annihilation (&) and creation (&™) operators of the field mode, where g is
the electric permittivity of free space and V is the quantization volume. Because
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of laws of quantum mechanics, optical fields exhibit an inherent quantum
indeterminacy that cannot be removed for principal reasons no matter how
smart we are. The quantity

ho
28()V

&y = )

appearing in (3) is a measure of the quantum optical noise for a single mode of
the field. This noise is present even if the field is in the vacuum state, and for this
reason it is usually referred to as the vacuum fluctuations of the field [4].
Quantum noise associated with the vacuum fluctuations, which appears because
of noncommuting character of the annihilation and creation operators expressed
by (4), is ubiquitous and cannot be eliminated, but we can to some extent
control this noise by ‘squeezing’ it in one quantum variable at the expense of
“expanding” it in another variable. This noise, no matter how small it is in
comparison to macroscopic fields, can have very important macroscopic
consequences changing the character of the evolution of the macroscopic fields.
We are going to address such questions in this chapter.
The electric field operator (3) can be rewritten in the form

A

E = &[Qcos (k- r— o) + Psin(k -t — o1)] (6)

where we have introduced two Hermitian quadrature operators, Q and P, defined
as

O=a+a", P=—ila—a") (7
which satisfy the commutation relation
[0,P] =2i (®)
The two quadrature operators thus obey the Heisenberg uncertainty relation
(A0 (AP)) 2 1 )

where we have introduced the quadrature noise operators

A A

AQ=0-(0), AP=P-(P) (10)

For the vacuum state or a coherent state, which are the minimum uncertainty
states, the inequality (9) becomes equality and, moreover, the two variances are
equal

((AQ)") = ((AP)* =1 (11)
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The Heisenberg uncertainty relation (9) imposes basic restrictions on the
accuracy of the simultaneous measurement of the two quadrature components
of the optical field. In the vacuum state the noise is isotropic and the two
components have the same level of quantum noise. However, quantum states
can be produced in which the isotropy of quantum fluctuations is broken—the
uncertainty of one quadrature component, say, 0, can be reduced at the expense
of expanding the uncertainty of the conjugate component, P. Such states are
called squeezed states [5,6]. They may or may not be the minimum uncertainty
states. Thus, for squeezed states

~ a

(M) <1 or ((APP)<1 (12)

Squeezing is a unique quantum property that cannot be explained when the field
is treated as a classical quantity—field quantization is crucial for explaining this
effect.

Another nonclassical effect is referred to as sub-Poissonian photon statistics
(see, e.g., Refs. 7 and 8 and papers cited therein). It is well known that in a
coherent state defined as an infinite superposition of the number states

2 o0 n
) = exp (— %) > = (13)

p(n) = le)f” = exp(—Ja?) 2 = exp(-ip 14

which means
(B#)*) = (%) - (A)* = (A) (15)
If the variance of the number of photons is smaller than its mean value, the field

is said to exhibit the sub-Poissonian photon statistics. This effect is related to the
second-order intensity correlation function

GO (1) = Ga()a( +1):) = (@ ()a* (¢ + v)a(t + 1)a(r)) (16)
where : : indicate the normal order of the operators. This function describes the

probability of counting a photon at ¢ and another one at ¢ 4 t. For stationary
fields, this function does not depend on ¢ but solely on 1. The normalized
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second-order correlation function, or second-order degree of coherence, is
defined as

g (r) = (17)

If g@ (1) < g@(0), the probability of detecting the second photon decreases
with the time delay 1, indicating bunching of photons. On the other hand, if
g (1) > g(0), we have the effect of antibunching of photons. Photon anti-
bunching is another signature of quantum character of the field. For 1 = 0, we
have

g2(0) = (18)

(a)?
which gives the relation between the photon statistics and the second-order
correlation function. Another convenient parameter describing the deviation of

the photon statistics from the Poissonian photon number distribution is the
Mandel g parameter defined as [9]

<12
g =)~ Gy - 1) (19)
()
Negative values of this parameter indicate sub-Poissonian photon statistics,
namely, nonclassical character of the field. One obvious example of the
nonclassical field is a field in a number state |n) for which the photon number
variance is zero, and we have g(0) =1—1/n and g = —1. For coherent
states, g(z) (0) = 1 and g = 0. In this context, coherent states draw a somewhat
arbitrary line between the quantum states that have “classical analogs™ and the
states that do not have them. The coherent states belong to the former category,
while the states for which g@ (0) < 1 or g < 0 belong to the latter category.
This distinction is better understood when the Glauber—Sudarshan quasidistri-
bution function P(a) is used to describe the field.
The coherent states (13) can be used as a basis to describe states of the field.
In such a basis for a state of the field described by the density matrix p, we can
introduce the quasidistribution function P(a) in the following way:

pzjfamwwxw (20)

where d*o = dRe(o) d Im(a). In terms of P(a), the expectation value of the
normally ordered products (creation operators to the left and annihilation
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operators to the right) has the form
(@)ma") = Te[p(aty"a] = j dPoP(e) (o )"of" (21)

For a coherent state |o), p = |oto) (|, and the quasiprobability distribution
P(a) = 8P (o — o) giving ((a)"a") = (a*)™o"). When P(at) is a well-be-
haved, positive definite function, it can be considered as a probability distribu-
tion function of a classical stochastic process, and the field with such a P
function is said to have “classical analog.” However, the P function can be
highly singular or can take negative values, in which case it does not satisfy
requirements for the probability distribution, and the field states with such a P
function are referred to as nonclassical states.

From the definition (13) of coherent state it is easy to derive the complete-
ness relation

1
—Jd2cx |oc) (| = 1 (22)
T

and find that the coherent states do not form an orthonormal set

()| = exp(~|o - BJ*) (23)

and only for |o — B|2 > 1 they are approximately orthogonal. In fact, coherent
states form an overcomplete set of states.

To see the nonclassical character of squeezed states better, let us express the
variance ((AQ)?) in terms of the P function

(A0)") = ((a+a™)*) — ((@+a"))*
= (@ +a?+2ata+1)—(a+at)?
=14 Jd2oc P(o)[{o + oc*)2 —{a+ oc*)z] (24)

which shows that ((AQ)?) < 1 is possible only if P(a) is not a positive definite
function. The unity on the right-hand side of (24) comes from applying the
commutation relation (4) to put the formula into its normal form, and it is thus a
manifestation of the quantum character of the field (‘“shot noise”).

Similarly, for the photon number variance, we get

(AR)%) = (a) + (@™2a?) - (a*a)’

= (i) + [ P@)laf - (o) (25)
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Again, ((Ah)?)< (i) only if P(a) is not positive definite, and thus sub-
Poissonian photon statistics is a nonclassical feature.
In view of (24), one can write

(A0 =14+ (:(A0% ),  ((AP) =1+ (AP (26)

where : : indicate the normal form of the operator. Using the normal form of the
quadrature component variances squeezing can be conveniently defined by the
condition

:(AQY ) <0 or (:(AP):) <0 (27)

Therefore, whenever the normal form of the quadrature variance is negative, this
component of the field is squeezed or, in other words, the quantum noise in this
component is reduced below the vacuum level. For classical fields, there is no
unity coming from the boson commutation relation, and the normal form of the
quadrature component represents true variance of the classical stochastic
variable, which must be positive.

The Glauber—Sudarshan P representation of the field state is associated with
the normal order of the field operators and is not the only c-number represen-
tation of the quantum state. Another quasidistribution that is associated with
antinormal order of the operators is the Q representation, or the Husimi function,
defined as

0(0) = {slolo) (28)

and in terms of this function the expectation value of the antinormally ordered
product of the field operators is calculated according to the formula

@@ =1 [ alploa oy (29)

It is clear from (28) that Q{a) is always positive, since p is a positive definite
operator. For a coherent state |o), Q(at) = (1/m)exp (—|a — do|*) is a Gaussian
in the phase space {Re a, Im o} which is centered at ofp. The section of this
function, which is a circle, represents isotropic noise in the coherent state (the
same as for the vacuum). The anisotropy introduced by squeezed states means a
deformation of the circle into an ellipse or another shape.

Generally, according to Cahill and Glauber [10], one can introduce the s-
parametrized quasidistribution function #(a) defined as

W0 = ~Tr{p 7o) (30)
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where the operator 7¢)(a) is given by

19(0) = | 8 exp (a2 — D)D) o)
and

DOIE) = exp (%D(&) (32)

where D(&) is the displacement operator and p is the density matrix of the field.
The operator 7()(«) can be rewritten in the form

7 (a) =

2 . s+1\", .
D Dt 33
(oc>|n>( )<nr (@) (33)

1—5 s—1

n

which gives explicitly its s dependence. So, the s-parametrized quasidistribution
function % (at) has the following form in the number-state basis

# (@) = =3 oyl ) m) (34)

where the matrix elements of the operator (31) are given by

~ n! 2 m-n+l s+1 " —i(m—n —n
ot =\ 5(2) () e

s

2000\ e [ 4ol
X exp (- 1= s) Ln (m (35)

in terms of the associate Laguerre polynomials L7 "(x). In this equation we
have also separated explicitly the phase of the complex number o by writing

o = |ae”® (36)

The phase 0 is the guantity representing the field phase.

With the quasiprobability distributions %) (at), the expectation values of the
s-ordered products of the creation and annihilation operators can be obtained by
proper integrations in the complex o plane. In particular, for s = 1,0, —1, the s-
ordered products are normal, symmetric, and antinormal ordered products of the
creation and annihilation operators, and the corresponding distributions are the
Glauber—Sudarshan P function, Wigner function, and Husimi Q function. By
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virtue of the relation inverse to (34), the field density matrix can be retrieved
from the quasiprobability function

b= szcx F) (o) 9 (1) (37)

Polar decomposition of the field amplitude, as in (36), which is trivial for
classical fields becomes far from being trivial for quantum fields because of the
problems with proper definition of the Hermitian phase operator. It was quite
natural to associate the photon number operator with the intensity of the field
and somehow construct the phase operator conjugate to the number operator.
The latter task, however, turned out not to be easy. Pegg and Barnett [11-13]
introduced the Hermitian phase formalism, which is based on the observation
that in a finite-dimensional state space, the states with well-defined phase
exist [14]. Thus, they restrict the state space to a finite (o + 1)-dimensional
Hilbert space H'®) spanned by the number states |0), |1}, ..., |c). In this space
they define a complete orthonormal set of phase states by

|6m)=ﬁ;exp(in9m)|n), m=01,. .5  (3)

where the values of 0,, are given by

6, =6y + (39)

c+1

The value of 6y is arbitrary and defines a particular basis set of (c + 1) mutually
orthogonal phase states. The number state |n) can be expanded in terms of the
16,,) phase-state basis as

1
c+1

) = 3" [8) (Buln) = S exp(—ind)0n)  (40)
m=0 m=0

From Egs. (38) and (40) we see that a system in a number state is equally likely
to be found in any state |6,,), and a system in a phase state is equally likely to be
found in any number state |n).

The Pegg—Barnett Hermitian phase operator is defined as

By = > Onl0m) (O] (41)
m=0
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Of course, the phase states (38) are eigenstates of the phase operator (40) with
the eigenvalues 0,, restricted to lie within a phase window between 0, and
8o + 2nc /(o + 1). The Pegg—Barnett prescription is to evaluate any observable
of interest in the finite basis (38), and only after that to take the limit ¢ — oo.

Since the phase states (38) are orthonormal, (8,,|0,y) = 8,,.s, the kth power
of the Pegg—Barnett phase operator (41) can be written as

[
B = _ 0,10, (0| (42)
m=0
Substituting Egs. (38) and (39) into Eq. (41) and performing summation over m

yields explicitly the phase operator in the Fock basis:

o 2n expli(n — n')8g]|n) (|

Dy =0
0 0+0'+1+0‘+ln%n,exp[i(n—n’)Zn/(c—i—1)]—1

(43)

It is readily apparent that the Hermitian phase operator &y has well-defined
matrix elements in the number-state basis and does not suffer from the problems
as those the original Dirac phase operator suffered. Indeed, using the Pegg—
Barnett phase operator (43) one can readily calculate the phase-number commu-
tator [13]

2n (n—n')expli(n — n')8y]

(B0 = 55T 2ol el 1) -

)] (@4)

This equation looks very different from the famous Dirac postulate for the
phase-number commutator.

The Pegg—Barnett Hermitian phase formalism allows for direct calculations
of quantum phase properties of optical fields. As the Hermitian phase operator is
defined, one can calculate the expectation value and variance of this operator for
a given state | f). Moreover, the Pegg—Barnett phase formalism allows for the
introduction of the continuous phase probability distribution, which is a re-
presentation of the quantum state of the field and describes the phase properties
of the field in a very spectacular fashion. For so-called physical states, that is,
states of finite energy, the Pegg—Barnett formalism simplifies considerably. In
the limit as ¢ — oo one can introduce the continuous phase distribution

P(8) = tim 2!

6—00 2T

(Bl ) (45)

where (o4 1)/2m is the density of states and the discrete variable 8,, is
replaced by a continuous phase variable 0. In the number-state basis the
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Pegg—Barnett phase distribution takes the form [15]

P(6) = 2_175 {1 +2Re S puexpl—i(m - n)e]} (46)

m>n

where p,,, = (m|p|n) are the density matrix elements in the number-state basis.
The phase distribution (46) is 2n-periodic, and for all states with the density
matrix diagonal in the number-state basis, the phase distribution is uniform over
the 2n-wide phase window. Knowing the phase distribution makes the calcula-
tion of the phase operator expectation values quite simple; it is simply the
calculation of all integrals over the continuous phase variable 8. For example,

0o+27
i = | ™ 100tp(0) (“7)

When the phase window is chosen in such a way that the phase distribution is
symmetrized with respect to the initial phase of the partial phase state, the phase
variance is given by the formula

(ADg)?) = J d0 6> P(9) (48)

-7

For a partial phase state with the decomposition

1) = bue"In) (49)
the phase variance has the form
(A9 = + 43 bib (=1 (50)
’ 3 n>k " (n— k)2

The value 2 /3 is the variance for the uniformly distributed phase, as in the case
of a single-number state.

On integrating the quasiprobability distribution %" () (o), given by (34), over
the “‘radial” variable |o|, we get a “phase distribution” associated with this
quasiprobability distribution. The s-parametrized phase distribution is thus
given by

POO) = | dlol # O o (51)
0
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which, after performing of the integrations, gives the formula similar to the
Pegg—Barnett phase distribution

1 4
PY(0) 5 {1-+2Rej{jpmneﬂw-ﬂecﬁxnun)} (52)

n m>n

The difference between the Pegg-Barnett phase distribution (46) and the
distribution (52) lies in the coefficients G*)(m, n), which are given by [16]

] ) (m+n)/2 min(m,n) 1 I
() F e

1—3s =

O () )

N Jim—D)l(n — )

The phase distributions obtained by integration of the quasidistribution func-
tions are different for different s, and all of them are different from the Pegg—
Barnett phase distribution. The Pegg—Barnett phase distribution is always
positive while the distribution associated with the Wigner distribution (s = 0)
may take negative values. The distribution associated with the Husimi Q
function is much broader than the Pegg—Barnett distribution, indicating that
some phase information on the particular quantum state has been lost. Quantum
phase fluctuations as fluctuations associated with the operator conjugate to the
photon-number operator are important for complete picture of the quantum
noise of the optical fields (for more details, see, e.g., Refs. 16 and 17).

III. SECOND-HARMONIC GENERATION

Second-harmonic generation, which was observed in the early days of lasers [18]
is probably the best known nonlinear optical process. Because of its simplicity
and variety of practical applications, it is a starting point for presentation of
nonlinear optical processes in the textbooks on nonlinear optics [1,2]. Classi-
cally, the second-harmonic generation means the appearance of the field at
frequency 2w (second harmonic) when the optical field of frequency o
(fundamental mode) propagates through a nonlinear crystal. In the quantum
picture of the process, we deal with a nonlinear process in which two photons of
the fundamental mode are annihilated and one photon of the second harmonic is
created. The classical treatment of the problem allows for closed-form solutions
with the possibility of energy being transferred completely into the second-
harmonic mode. For quantum fields, the closed-form analytical solution of the



14 RYSZARD TANAS

problem has not been found unless some approximations are made. The early
numerical solutions [19,20] showed that quantum fluctuations of the field
prevent the complete transfer of energy into the second harmonic and the
solutions become oscillatory. Later studies showed that the quantum states of
the field generated in the process have a number of unique quantum features
such as photon antibunching [21] and squeezing [9,22] for both fundamental
and second harmonic modes (for a review and literature, see Ref. 23). Nikitin
and Masalov [24] discussed the properties of the quantum state of the
fundamental mode by calculating numerically the quasiprobability distribution
function Q(er). They suggested that the quantum state of the fundamental mode
evolves, in the course of the second-harmonic generation, into a superposition
of two macroscopically distinguishable states, similar to the superpositions
obtained for the anharmonic oscillator model [25-28] or a Kerr medium [29,30].
Bajer and Lisonék [31] and Bajer and Pefina [32] have applied a symbolic
computation approach to calculate Taylor series expansion terms to find
evolution of nonlinear quantum systems. A quasiclassical analysis of the second
harmonic generation has been done by Alvarez-Estrada et al. [33]. Phase
properties of fields in harmonics generation have been studied by Gantsog et
al. [34] and Drobny and Jex [35]. Bajer et al. [36] and Bajer et al. [37] have
discussed the sub-Poissonian behavior in the second- and third-harmonic
generation. More recently, Olsen et al. [38,38] have investigated quantum-
noise-induced macroscopic revivals in second-harmonic generation and criteria
for the quantum nondemolition measurement in this process.

Quantum description of the second harmonic generation, in the absence of
dissipation, can start with the following model Hamiltonian

H=H,+H, (54)
where
Ho = hoata + 2hob™b,  H; = ix(@®b* + a*?b) (55)

and a (at), b (b™) are the annihilation (creation) operators of the fundamental
mode of frequency ® and the second harmonic mode at frequency 2w,
respectively. The coupling constant k, which is real, describes the coupling
between the two modes. Since I:IO and I:II commute, there are two constants of
motion: flo and ﬁ,, I:Io determines the total energy stored in both modes, which
is conserved by the interaction H,. The free evolution associated with the
Hamiltonian Ho leads to a(r) = a(0)exp(—iot) and b(r) = b(0)exp (—i2wt).
This trivial exponential evolution can always be factored out and the important
part of the evolution described by the interaction Hamiltonian H,, for the slowly
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varying operators in the Heisenberg picture, is given by a set of equations

%&(I) = %[a,ﬁ,} = —2ixat (6)b(r)
%B(r) = % b, H] = —ixa*(r) (56)

where for notational convenience we use the same notation for the slowly
varying operators as for the original operators — it is always clear from the
context which operators are considered. In deriving the equations of motion (56),
it is assumed that the operators associated with different modes commute, while
for the same mode they obey the bosonic commutation rules (4).

Usually, the second-harmonic generation is considered as a propagation
problem, not a cavity field problem, and the evolution variable is rather the path
z the two beams traveled in the nonlinear medium. In the simplest, discrete two
mode description of the process the transition from the cavity to the propagation
problem is done by the replacement ¢ = —z/v, where v denotes the velocity of
the beams in the medium (we assume perfect matching conditions). We will use
here time as the evolution variable, but it is understood that it can be equally
well the propagation time in the propagation problem. So, we basically consider
an idealized, one-pass problem. In fact, in the cavity situation the classical field
pumping the cavity as well as the cavity damping must be added into the simple
model to make it more realistic. Quantum theory of such a model has been
developed by Drummond et al. [39,40]. Another interesting possibility is to
study the second harmonic generation from the point of view of the chaotic
behavior [41]. Such effects,however, will not be the subject of our concern here.

A. Classical Fields

Before we start with quantum description, let us recollect the classical solutions
which will be used later in the method of classical trajectories to study some
quantum properties of the fields. Equations (56) are valid also for classical fields
after replacing the field operators @ and b by the c-number field amplitudes o
and B, which are generally complex numbers. They can be derived from the
Maxwell equations in the slowly varying amplitude approximation [1] and have
the form.

%a(t) = —2ixa*(1)B(1)
d .
(1) = —ixa(0) 7

For classical fields the closed-form analytical solutions to equations (57) are
known. Assuming that initially there is no second-harmonic field (B(0) = 0),
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and the fundamental field amplitude is real and equal to a(0) = a the solutions
for the classical amplitudes of the second harmonic and fundamental modes are
given by [1]

a(t) = agsech (V2 apkt)

B(r) = % tanh (v/2 aokt) (58)

The solutions (58) are monotonic and eventually all the energy present initially
in the fundamental mode is transferred to the second-harmonic mode.

In a general case, when both modes initially have nonzero amplitudes, ag # 0
and B, # 0, introducing o = |at|e’®« and B = |B|e'®, we obtain the following set
of equations:

5;|<x| = —2«]a|B|sin®

d 2,
EIB] = K|o|” sin®

d,_ (lof
a—tﬁ = K(I—BI— - 4|B|> cos?

d
E(b“ = —2x|B{cos?

d 2
E(bb = —KM cos¥ (59)

where ¥ = 2, — ¢,,. The system (59) has two integrals of motion
Co=lof + 2B,  Cr=|u’|Blcos? (60)

which are classical equivalents of the quantum constants of motion Hy and H,;
(Co = (I:IO), C = (1:11)). Depending on the values of the constants of motion Cp
and C;, the dynamics of the system (59) can be classified into several cate-
gories [42,43]:

1. Phase-stable motion, C; = 0, in which the phases of each mode are
preserved and the modes move radially in the phase space. The phase
difference ¥ is also preserved, which appears for cos? =0 and
¥ = +m/2. The solutions (58) belong to this category.

2. Phase-changing motion, C; # 0, in which the dynamics of each mode

involves both radial and phase motion. In this case both modes must be
initially excited and their phase difference cannot be equal to £m/2.
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3. Phase-difference-stable motion, which is a special case of the phase-
changing motion that preserves the phase difference 9 between the modes
even though the phases of individual modes change. This corresponds to
the no-energy-exchange regime when sini = 0 and the initial amplitudes
of the modes are preserved.

Introducing new (scaled) variables
ua = ol/\/Co,  wp=v2B|//Co, W+ui=1 (61)
T=+2CyKt (62)

the set of equations (59) can be rewritten in the form

d .

%ua = —UgUpsind

Eub = uz sin?}

2

119 = (ﬁ - 2ub) cost}

dt Up

d
E(b“ = —upcos¥

d uZ
%4)1; = —u—bcosﬂ (63)

Solutions to the set of equations (63) describe the evolution of the fields with the
fundamental as well as second-harmonic frequencies.
From (60) we have

9= 64
cos " (64)
where the constant of motion € is defined by
2C
= g/TI = 12 (0)u, (0) cos¥(0) (65)
0

From (63) and (64) one easily obtains the closed-form equations for the
intensities n, = u? and n, = u2 of the two modes

dna _ dny
dv  dt

=2 n;,(l — nb)2 — g2 (66)
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where n, = 1 — n,. Since the normalized variable n, must be less, than or equal
to unity, the maximum value that can be obtained by €? is equal to % (for
cos? = 1). From (66) we immediately obtain

d
2dr = 2 (67)
/(1 —np)? — €2
which can be integrated, giving
d
2= j s (68)
n,,(

1 —nb)z —¢?

For € = 0, the integral on the right-hand side (r.h.s.) of (68) is elementary and
has the form

dny, 1+ \/l’l_b
=In 69
J nb(l _ nb)2 1-— \/n—b ( )

In this case we get the well-known classical solution for the intensity of the
second harmonic[1]

ny(t) = tanh® 1 (70)

which is a monotonic function of the scaled time t = \/2Cpkt. For € #0
(C; # 0), the r.hs. of (68) is not elementary and the character of solution
depends on the roots of the third order polynomial under the square root.
Depending on the value of

A:€2(€2_24_7> (71)

the polynomial has three different real roots (A < 0) and two real roots, one of
which is double (A = 0). The third case with A > 0, in which the polynomial
has one real root and two complex conjugate roots, is excluded on physical
grounds since €* < .

In case of three different real roots ny < np < nyz (A < 0 or €2 < 24—7), we
can effect a substitution

ny = np1 + (2 — np1 ) sin* (72)
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which leads to the elliptical integral

J dny, _ 2 J do (73)
np(1 —np)> — 2 VM3 =M1} /1~ k2sin?¢
where
= Np2 — Rpy (74)
np3 — Np1

and we get from (68) and (73)

dé
Vv 1 —k?sinZ¢

Using the definitions of the Jacobi elliptic functions we have

sind = sn(y/nps — fpy 7| k) (76)
and inserting (76) into (72) we obtain the solution

np(T) = np1 + (nyg — npy) s0® (\/ps — npy T| K%) (77)

Vi3 —Hp T = J

where sn is the Jacobi elliptic function sinusamplitude. The solution (77) is a
periodic function of the scaled time T with the period depending on the value of
k*. This means that even very small € makes the solution periodic. The values of
ny(t) are restricted to the region between the two smallest roots of the third
order polynomial 751 < n,(7) < npy. To illustrate the behavior of the classical
solutions, we plot in Fig. 1 the time evolution of the intensities of the two
modes, n,(t) and n,(t), for the case when the second-harmonic mode is initially
weak with respect to the fundamental mode (n,(0) = 0.001) and the initial
phases are both zeros (¢,(0) = ¢,(0) = 0). In this case the constant of motion
€ = 0.0316. We see the regular periodic oscillations of the two intensities.

In the limiting case, for which k = 1, we have ny; =0, ny = ny3 = 1, and
sn(x | 1) = tanh(x) which is the phase-stable motion case and reproduces the
classical result (70). The other limiting case appears when k =0, which
corresponds to the situation with €2 = or |of* = 4|B* (ny = iy =1
Rp3 = %) This is the phase-difference stable motion, or no-energy-exchange,
case in which the solution is constant n,(t) = 1. This case has been discussed by
Bajer et al. [36]. Thus the two extreme cases, k = | and k = 0, of the general

solution (77) correspond to the phase-stable and phase-difference-stable
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Figure 1. Intensities #,(t) (dashed line) and n,(t) (solid line) of the fundamental and second-
harmonic modes for n,(0) = 0.001, ¢,(0) = ¢,(0) = 0 (¢ = 0.0316).

motions in the phase space and they are special cases of the general case of the
phase changing motion of the system.

The solution (77) for radial variables u,(t) = 1/n,(t) and u,(7) = /np(7)
must be supplemented with the corresponding solution for the phase variables
¢,(t) and ¢, (t) in order to find the trajectory in the phase space. The equations
governing the evolution of the individual phases of the two modes can be
rewritten in the form

d € d €
i =—— Sy =—— 78
dt a na7 d‘C¢b e ( )

where € is given by (65). Of course, in the phase-stable regime (€ = 0) both
phases individually, and obviously the phase difference ¥, are preserved. In
Fig. 2 we have shown the evolution of the phases for the case of weak initial
excitation of the second-harmonic mode. The initial values are same as in Fig. 1.
Comparing Fig. 1 with Fig. 2, it is seen that there is a jump of the phase ¢, (1)
by n/2 whenever the intensity n,(t) reaches its minimum and a jump by 7 of
the phase ¢,(t) when n(t) reaches its minimum. The phase difference
(1) = 2¢,(t) — P, (1) jumps between the values +n/2. To plot these figures,
we have solved numerically the set of equations (63).

Solutions of equations (66) and (78), or equivalently the set (63), for given
initial values describe the deterministic trajectories in the phase space for both
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2 r . r

Phases

-10

Figure 2. Evolution of the individual phases ¢,(t) (dashed line), ¢,(t) (solid line), and the
phase difference 9J(t) (dashed—dotted line). Initial values are same as in Fig. 1.

modes, the mode at frequency ® and the mode at frequency 2, in a general case
of the system that describes coupling of the two modes via the x® nonlinearity.
It is a matter of initial conditions whether we have a purely second-harmonic
generation case [7,(0) =0, n,(0) = 1] or a purely downconversion case
[7,(0) = 0, n,(0) = 1]. It is clear from (63) that for the purely downconversion
regime [1,(0) = 0] the classical description does not allow for generating signal
at the fundamental frequency from zero initial value. The quantum fluctuations
are necessary to obtain such a signal. In a general case both processes take place
simultaneously and compete with each other. If the initial amplitudes are well
defined, that is, there is no classical noise, the amplitudes at time 7 are also well
defined. For quantum fields, however, the situation is different because of the
inherent quantum noise associated with the vacuum fluctuations. Some quantum
features, however, can be simulated with classical trajectories when the initial
fields are chosen as random Gaussian variables with appropriately adjusted
variances, and examples of such simulations will be shown later.

B. Linearized Quantum Equations

Assuming that the quantum noise is small in comparison to the mean values of
the field amplitudes, one can introduce the operators

Na=a- (@), Ab=b—(b) (79)
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which describe the quantum fluctuations. On inserting the fluctuation
operators (79) into the original evolution equations (56) and keeping only the
linear terms in the quantum fluctuations, we get the equations

%A& — oix(Aat(B) + (@) Ab)
%Ai) = _2ik(a)Ad (80)

where (4) and (b) are the solutions for the mean fields and can be identified with
the classical solutions. With the scaled variables (61) and (62) we can rewrite
equations (80) in the form

d . ) .

%A& = —i(Aatu, e +2u, e"’d’“Ab)

d . - . B .

%Ab= —ivV2u, % Ad (81)

where u, = u,(1), up = up(t), &, = ¢,(1), and ¢, = ¢, (1) are the solutions of
classical equations (66) and (78).

The analysis becomes easier if we introduce the following quadrature noise
operators [44,45] (for further comparisons, we adjust the phase in quadrature
definitions for the second harmonic mode in such a way as to take into account
that ¥ = 2¢, — ¢, = 7/2)

AQ,(1) = Ada(r)e ) 4 Agt(1)e'®

AP, (1) = —i[Ad(t)e ) — Aat (1)ei®)]

APy (1) = Ab(1)e ™) 4 Ab* (1)e®

AQy(1) = i[Ab(t)e~ " — AbT(1)e'® ()] (82)

for which we get from (81) the following set of equations:

d . - . .
d_tAQ” = —AQ.upsint — 2AP u, cos?d

— AP,V2 u,sind — AQpV2u,cosd
%Af’a = AP u,sin®d — APV2 u,c080

+ AQpV2 u,sind (83)
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d . . R R
T AP, = AQ,V2u,sind + AP,N2 u,cos¥
n u2
+ AQp -2 cost
Up
‘%AQ, = AQa\/Eua cost — AP,V/2 u,sin®
2

— AP, Ya cost
Up

In the case of pure second-harmonic generation, that is, for u,(0) =0 and

us(0) = 1, we have from (59) that cos? = 0 or ¥ = +n/2, which implies that,
according to (77) for k = 1, the scaled intensities obey the equations

u,(t) = sechr, up(t) = tanht (84)

Inserting ¥ = m/2 and the solutions (84) into (83), we arrive at the following
system of equations:

d . - R .

EAQQ = —AQ,tanht — AP,v/2 secht

d . N

— AP, = AQa\/Q secht

drt

%Ai’a = AP, tanh T + AQ,V?2 secht

d - .

A0, = —AP,V2 secht (85)

which shows that the quadratures AQa and Af’b of the two modes are coupled
together independently from the quadratures AP, and AQj. This splits the
system (85) into two independent subsystems. It was shown by Ou [44] that the
two systems can be solved analytically, giving

AQ, (1) = AQ,(0)(1 — ttanh t)secht — AP,(0)v/2 tanht secht

AP,(1) = AQ,(0) —\}—5 (tanh T + tsech® t) + AP,(0) sech?t

AP,(1) = AP,(0) secht + AQ,(0) —= (sinh T + 1 sech )

1
V2
AQy(t) = —AP,(0)v2 tanh T + AQ,(0)(1 — 1 tanh T) (86)
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Now, assuming that the two modes are not correlated at time t =0, it is
straightforward to calculate the variances of the quadrature field operators and
check, according to the definition (12), whether the field is in a squeezed state. If
the initial state of the field is a coherent state of the fundamental mode and a
vacuum for the second-harmonic mode, |{,) = |#,(0)}|0), for which we have

(A0.0)7) = ([ADO)]) = (AP (O)F) = ([AP,O)) =1 (87)

the variances of the two quadrature noise operators are described by the
following analytical formulas [44,45]:

([AQa(‘C)]Z> = (1 — ttanh ’C)2 sech? 7 + 2 tanh? t sech® T
([AP,(1)]?) = sech® T + % (sinh T + 1 secht)?
([AQy(1))?) = 2 tanh? T 4 (1 — 1 tanht)’

(AP, (D)) = % (tanht + T sech® ‘|:)2+sech4 T (88)

The solutions (88) clearly indicate that the quantum noise present in the initial
state of the field, which represents the vacuum fluctuations, undergoes essential
changes due to the nonlinear transformation of the field as both modes
propagate in the nonlinear medium. As T — 00, we have tanht — 1,
secht — 2¢7, and sinht — €7/2, which gives ([AQ,(1)]") — 4t%e™,
(AQ(T)2) = 2 ([AP,(1)]) — €%/8, and ([AP,(1)]*) — L. According o
the definition of squeezing (12), we find that the quadratures Qa and P, become
squeezed as T increases while the other two quadratures, f’a and Qb, are
stretched. For very long times (lengths of the nonlinear medium) the noise in
the amplitude quadrature of the fundamental mode is reduced to zero (perfect
squeezing), while for the second-harmonic mode it approaches the value 1 5 (50%
squeezing). Quantum fluctuations in the other quadratures of both modes
explode to infinity as T goes to infinity. Of course, we have to keep in mind
that the results have been obtained from the linearized equations that require
quantum fluctuations to be small. In Fig. 3a we have shown the evolution of the
quadrature variances ([AQ,(T 7)]?) and ([APy(t 7)]*) exhibiting squeezing of
quantum fluctuations in both fundamental and second harmonic-modes. With
dotted lines the classical amplitudes of the two modes are marked for reference.
The value of unity for the quadrature variances sets the level of vacuum
fluctuations (coherent states experience the same fluctuations), and we find
that indeed the quantum noise can be suppressed below the vacuum level in the
amplitude quadrature ([AQ4(1))?) of the fundamental mode and the phase
quadrature ([AP(t)]?) of the harmonic mode. It becomes possible at the
expense of increased fluctuations in the other quadratures as to preserve the
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Quadrature variances

Uncertainty products

Figure 3. (a) Variances ([AQa(t)]z) (dashed line) and ([Alsa(r)]2) (solid line) [for reference,
the amplitudes u,(t) and u,(t) are marked with dotted lines]; (b) uncertainty products.

validity of the Heisenberg uncertainty relation (9). We have
([A:(P)AP(D]) = ([AQ () ([AP (D))
= sech?(t)[2tanh® T + (1 — Ttanh1)?]

1
x |sech’t + 3 (sinh T 4 Tsech1)? (89)
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and as T — oo both uncertainty products are divergent as t2/2. The evolution of
the uncertainty products is illustrated in Fig. 3b. Since, except for the initial
value, the value of the uncertainty product is larger than unity, the quantum
states produced in the second-harmonic generation process are not the minimum
uncertainty states.

The linear approximation to the quantum noise equations presented in this
section shows that even in linear approximation the inherent property of
quantum fields — the vacuum fluctuations which are ubiquitous and always
present — undergo essential changes when transformed nonlinearly. The lineari-
zed solutions suggest that perfect squeezing (zero fluctuations) is possible in the
fundamental mode for long evolution times (long interaction lengths). This
means that one can produce highly nonclassical states of light in such a process.
Later we will see to what extent we can trust in the linear approximation.

C. Symbolic Calculations

The linear approximation with respect to quantum noise operators, which
assumes that the mean values of the fields evolve according to the classical
equations and the quantum noise represents only small fluctuations around the
classical solutions is a way to solve the operator equations (56). Another
alternative is to use Taylor series expansion of the operator solution and make
the short time (or short length of the medium) approximation to find the
evolution of the quantum (operator) fields. This approach has been proposed by
Tana$ [46] for approximate calculations of the higher-order field correlation
functions in the process of nonlinear optical activity and later used by
Kozierowski and Tana$§ [21] for calculations of second order correlation
function for the second-harmonic generation. Mandel [9] has used this approach
to discuss squeezing and photon antibunching in harmonic generation. When
doing calculations with operators it is crucial to keep track of the operator
ordering and use the commutation relations to rearrange the ordering. This
makes the calculations cumbersome and error-prone. The first calculations were
performed by hand, but now we have computers that can do the job for us. The
computer symbolic calculations of the subsequent terms in a series expansion
have been performed by Bajer and Lisonék [31] and Bajer and Pefina [32].
Bajer and Lisonék [31] have written their own computer program for this
purpose (about 3000 lines of code in Turbo Pascal). We want to show here how
. to do the same calculations with the freely available version of the computer
program FORM [47] with only few lines of coding (see Appendix A).

The main idea of the approximate symbolic computations is based on the
series expansion of any operator O(t) into a power series

o0 tk dk

C 90
ot k' dtk (90)
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where the subsequent derivatives are obtained from the Heisenberg equations of

motion

o= [0, H] (91)
BT

B

where H is the Hamiltonian. The higher derivatives are obtained recursively
from (91), and the resulting expansion takes the form [31}

0t =00+ 3 (4 L 2)
k=1 :
where
Dy = [Dk—lal:l] = [[[0(0),?[],?]],,[;] (93)

is the kth-order commutator with Dy = O(0).

Implementing the algorithm sketched above in the computer symbolic
manipulation program FORM, as exemplified in Appendix A, and applying
the method to the second-harmonic-generation (SHG) process, which is de-
scribed by the interaction Hamiltonian H; given by (55), one can easily
calculate subsequent terms of the series (92). Restricting the calculations to
the fourth-order terms, we get

a(t) = a—2i(xt)a*h — (xr)*(ata® - 2ab*b)

- % i(xt)* (2a°b* — 3a*2ab + 2a*b* b — aTh)

+ é (x1)* (5a%2 + 8a*3b? — 284+ &b b + 4ab+?h?

+ata? —20abth) + - - (94)
b(t) = b — i(xe)a® — (xr)*(2a*ab + b)

+ % i(xr)’ (2ata® — 462b*h + 4a2b? + &%)

+ é (ke)* (2a™2a%h — 4a*b* — 164+ ab* b?

+8atab —8b"b? +b) + - (95)

where the operators on the r.h.s. of equations (94) and (95) are at time ¢ = 0. We
can see that the terms that are of kth power in ¢ contain the operator products
that are of the k + 1 order as well as the products that are of the order k — 1,
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k —3,.... The latter products appeared as a result of application the bosonic
commutation relations (4) for the operators of the two modes, and these terms
represent purely quantum contributions that would not appear if the fields were
classical. For classical fields, only the highest-order products survive. The
quantum noise contributions appear in terms ~ #* and higher in the expansion
(94) for the fundamental mode operators and in terms ~ > and higher in the
expansion (95) for the second harmonic mode operators. However, for the initial
conditions representing the purely second-harmonic generation process, speci-
fically, under the assumption that the harmonic mode is initially in the vacuum
state such that b|0> = 0, we can drop all the terms containing operators borbt
because they give zero due to the normal ordering of the operators. Assuming,
moreover, that the pump beam is in a coherent state |og) we find the following
expansions for the mean values of the operators a(r) and b(r) (M

(0 = a1 = (ol + g 0" Sl + o) + -
(b(t)) = —io} {(m) —% (k1) 2loo* + 1) + - } (96)

or in the normalized variables (61) and scaled time (62), we have

u(,t):u(o)eid)u(o) 1_ﬁ+_§_1¢4 1+__1_ R
¢ “ 2 24 2

3
ub(‘t) = ua(o)Zei(2¢u(0)—1t/2) I: _E?’__ (1 + —lf> + .- :l (97)

On neglecting the quantum noise terms, ~ 1/ locolz, one can easily recognize
in (97) the first terms of the power series expansions of sech T and tanh 1, which
are the classical solutions. When |ozo|2 > 1, the quantum noise introduces only
small corrections to the classical evolution of the field amplitudes. It is also seen
that the phase of the second harmonic field is phase-locked so as to satisfy
19:2¢a_¢b=n/2‘

We can thus expect from the short-time approximation that quantum noise
does not significantly affect the classical solutions when the initial pump field is
* strong. We will return to this point later on, but now let us try to find the short-
time solutions for the evolution of the quantum noise itself—let us take a look
at the quadrature noise variances and the photon statistics. Using the operator
solutions (94) and (95), one can find the solutions for the quadrature operators Q
and P as well as for QZ and P2. It is, however, more convenient to use the
computer program to calculate the evolution of these quantities directly. Let us
consider the purely SHG process, we drop the terms containing b and b after
performing the normal ordering and take the expectation value in the coherent
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state |ag) of the fundamental frequency mode, and in effect we arrive at
(Q2(1)) = 1+ 2Jotg|* + o + 015
— (xt)? [4lo0]* + (2laol” + 1)(aF + o7

4
Kt
¥ % [32|oc0|6 + 16]oo[* + (16|cx0|4

+ 8log? + 1) (2 + ag)} .
(B2(1)) = 1+ 2o = (03 +a3?)
— (t)? [4lol* = (2laof” + (e + 95|
(N
6
+ 8log + 1) (a2 + ag)] T
(03(1) = 1+ (e (2ol — (af + 5) ) —

ol = (jool? + 1)(05 + )| + -

+ [32|oc0|6 + 16" — (16|oco|4

2 060) 20
(B30 = 1+ (2 (2lool* + 4 + %) 5 1) 2l
+ ool* + (a0l + 1)(o5° +af)] +- - (98)
From equations (98) and (96) we obtain formulas for the field variances
([AQ () = 1 = (1) (0 + o)

) 2ol + (Jool + ) (68 052 4

1 1
=1-12cos2 —7*1 1
1°cos ¢u+21[+( +6N

a

)code)a] + -
(AP = 1+ (k1) (o + o)

) 2ol = (o + §) 03+ 05|

1 1
=1+ 1%cos2d, +-2—‘E4 [1 - <1 +6Na) cos2¢a] +
. 2 14
<[AQb(t)]2) =1 +§(Kt)4(u3 + 0(64) +.o=14 3 cosdd, + - - -
2 4

(AP OP) = 1 =S (k1) (6 +g) + -+ = 1 =T cosddg+-- (99)
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It is easy to check, assuming ¢, = 0, that the series expansion of the linearized
solutions (88) agrees with (99) up to the leading terms, but in the higher-order
terms there are already differences between the two solutions. Since the latter
solutions are exact up to the fourth order, they show restricted applicability of
the linearized solutions. We see that the quadratures {[AQ,(1)]*) and (JAP,(1)])
become smaller than unity, showing squeezing, while the other two quadratures
grow above unity.

The symbolic calculations using a computer allows for easy derivation of the
approximate formulas for any operators for the two modes. Beside squeezing it
is interesting to study the variance of the photon number operator for both
modes in order to look for a possibility of obtaining the sub-Poissonian photon
statistics in the process of second-harmonic generation. Let us calculate
approximate formulas for the mean number of photons and the second order
correlation function. Again, assuming initial conditions for pure second har-
monic generation, |{o) = |0, 0) with |ato|> = N,,, we have for the mean number
of photons

(@ a)(1) = fool? {1 — 2l + 2 )l @l + 1)+ ]
BB (1) = Jaof* [(mz =2 (e @l + 1)+ - ] (100)

or in the scaled variables (61) and (62) Egs. (100) take a very simple form

2 1
na(®) = (r) = 1 - 2 +§r4<1 +2Na) e

ny(t) = ui(t) :r2—§r4<1+211v) +-- (101)

which explicitly shows the quantum noise contributions coming from the
vacuum fluctuations.
The second order correlation functions can be obtained in the same manner
giving
(@22 (1) = [aol* [ 1 — 2(k1)’ 2lool* + 1)
4
+ )" ol + 8+ 1)

6780 = ool [ (60" = S0l + 1) 4| (102
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and combining equations (100) and (102) we obtain
4
@) (1) - (@ a) (1) = —2(x0)?|o|* + 3(m)“|c>c0|“(6|oc0|2 S+

BH2) 1) — (B0 = 5 (k0 + - (103)
The results (103), obtained first by Kozierowski and Tana$ [21], explain a very
important property of the second harmonic generation, that is, the appearance of
the sub-Poissonian photon statistics, which is an effect of quantum properties of
the fields. The leading terms in (103) are negative, indicating, according to (18)
and (19), that the photon statistics in both modes becomes sub-Poissonian at the
initial stages of the evolution. The computer software now makes the calcula-
tions of this kind almost trivial and less error-prone. However, the results that
we obtain in this way are just few terms of the power series expansion that
properly describe the evolution of the system only at the initial stages of the
evolution. The results can be improved by taking into account more and more
terms of the expansion [31,32], but the long-time behavior cannot be predicted
with such methods.

Some conclusions about the role of quantum noise in the long-time behavior
of the solutions for the SHG process can be drawn by closer inspection of the
operator equations of motion for the number of photon operators and their
approximate solutions for the expectation values [38,48]. From the equations of
motion (56) it is easy to derive the equations for the number of photons
operators N, = a*a and N, = b*b in the form

d . d . .

—2—Ny = —N, = =2ix(a*?h — a*h* 104
'’ T dt ix(a ) (104)
and taking the derivative of the operator on the rh.s. of Eq. (104) (again the
symbolic manipulation program makes it easy), we get the second-order
differential equation

d* d . N . .
gilNe=—22N, = —4? [Ny(N, — 1) — 4NN, — 20, (105)

and taking into account that Na + 21% = Co is a constant of motion, we find

d2

7 (2) = 4[3(2N,)* ~ Co(1 + 4(28) + €3] (106)

This second-order _equation cannot be solved exactly because it contains
operators N2 and N,Cy, which, in turn, obey their own equations of motion
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and we come into an infinite hierarchy of equations. However, if we neglect the
correlations and take

N

N3y = (M), (NoCo) = (N)(Co) (107)

and introduce the normalized intensity n, = 2(N,)/Co and the scaled time
= /2C, kt with Cy = (Cy), we obtain the equation for the mean value of the
normalized intensity 7, in the form

d2

1
Jan = 2[3nb 4np+ 1 — -——} (108)

Co

This is the second-order differential equation, which reminds us of the equation
for a particle moving under the action of a force, and the force can be derived
from a potential. There is a quantity that is conserved during this motion, and
we can write

2

where €' = 1/Cy is the term representing the quantum noise contribution (it
comes from application of the commutation rules to the field operators). The
quantlty in the square brackets can be con31dered as the total energy of a

“particle” at position ny, w1th the kinetic energy 3 L(dny /d‘c) and the potential
energy V = —2n,[(1 — ny)> — €']. The potential energy is shown in Fig. 4. The
potential represents a well in which the particle will oscillate exhibiting fully
periodic behavior. From Eq. (109) we get

s _ ny(1 — ny)* — nye’ (110)

dt
Comparing Eq. (110) with Eq. (66), we find that both equations have extra terms
(the € or € terms) which make the solutions oscillatory, but the physical reason
for oscillations is different in both cases. In Eq. (66) different from zero € comes
from the nonzero initial value of the second-harmonic mode intensity, while in
Eq. (110) the nonzero value of € comes from the quantum noise. We can
interpret this fact in the following way. It is the spontaneous emission of
photons, or vacuum fluctuations of the second harmonic mode, that contribute to
the nonzero value of the initial intensity of the second harmonic mode and lead
to the periodic evolution. This means that the very small quantum fluctuations
can cause macroscopic effects, such as quantum-noise-induced macroscopic
revivals [38], in the nonlinear process of second-harmonic generation.
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Figure 4. Plot of the pseudopotential curve for € = 0.01.

A procedure similar to that used to solve equation (66) can be applied to
solve equation (110). Again, the solution is given by the Jacobi elliptic
functions. The third-order polynomial under the square root on the r.h.s.
of (110) has the roots

n;,1=0, n;,2=1—\/€—’, nb3=1+\/€_’ (111)

and the solution has the form

ny(t) = 1—\/gsn2(\/1+\/§'c|k2) (112)

where
. 1—vFE
k= — (113)
1+ Ve

The results have been recently obtained by Olsen et al. [38], and they show that
even for almost vanishingly small €/, which is inversely proportional to the
initial mean value of the number of the pump mode photons, usually very large,
the quantum fluctuations have huge macroscopic effect on the system dynamics.
It is evident that the quantum noise, which is always present, is responsible for
the oscillations between the two regimes of second-harmonic generation and
downconversion. The period of oscillation is becoming infinite as €' vanishes.
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The solution (112) is fully periodic, but it does not allow for the complete
transfer of energy from the fundamental to the second harmonic mode. The
maximum that can be achieved by u, is equal to 1 — Ve'. We have to
remember, moreover, that the solution (112) has been obtained with the
decorrelation (107), and it is only an approximate solution.

D. Numerical Methods

When analytical solutions are not known and the approximate analytical
methods give results of limited applicability, the numerical methods may be a
solution. Let us first discuss a method based on the diagonalization of the
second-harmonic Hamiltonian [48,49]. As we have already said, the two parts of
the Hamiltonian Hy and H; given by (55), commute with each other, so they are
both constants of motion. The H, determines the total energy stored in both
modes, which is conserved by the interaction ﬁ,. This means that we can factor
the quantum evolution operator

—iHt —iH, —iHt
exp( lﬁ >:exp( lh0t>exp( lhl) (114)

If the Fock state basis is used to describe the field state, we find, for the initial
state |n,0) = |n)|0) with r photons in the fundamental mode and zero photons
in the second harmonic mode, that the Hamiltonian Hj splits the Hilbert space
into orthogonal sectors. Since I:IO is a constant of motion, we have for a given
number of photons n the relation

(a*a)y +2(b*hy =n (115)

which implies that the creation of k photons of the second-harmonic mode
requires annihilation of 2k photons of the fundamental mode. Thus, for given n,
we can introduce the states

n

Y = |1 — 2k, k), k:O,l,---,H (116)

where [n/2] means the integer part of n/2, which form a complete basis of states
of the field in the sector with given n. We have

WY = 8B (117)

which means that the subspace with given n has [n/2] + 1 orthogonal states. In
such a basis the interaction Hamiltonian H; has the following nonzero matrix
elements

WY = (W) = EDE = DL
= hiky/(k+ )(n — 2k)(n — 2k — 1) (118)
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which form a symmetric matrix of dimension ([n/2] + 1) x ([n/2] + 1) with
real nonzero elements (we assume that x is real) that are located on the two
diagonals immediately above and below the principal diagonal. Such a matrix
can easily be diagonalized numerically [49]. To find the quantum state
evolution, we need the matrix elements of the evolution operator. Since the
evolution due to the Hamiltonian H; at each sector of the Hilbert space with
given n introduces only a constant phase factor exp(—inwt), we will drop this
factor in our calculations and calculate the state at time ¢ according to the
formula

90 = exp (5 Jlv(o) (19)

where [W(0)) is the initial state of the field. In each subspace of the Hilbert space
we can calculate the matrix elements of the evolution operator

enalt) = (0" exp (520 E7) (120

by diagonalizing the Hamiltonian matrix (118). If the matrix U is the unitary
matrix that diagonalizes the interaction Hamiltonian matrix (118)

U HU = hx diag (Ao, My -+ Mny2)) (121)

then the coefficients ¢, 4(¢) can be written as

(/2]
cnk(t) =Y e ™M ULU, (122)
=0

where A; are the eigenvalues of the interaction Hamiltonian in units of k. Of
course, the matrix U as well as the eigenvalues A; are defined for given # and
should have an additional index n, which we have omitted to shorten the
notation. Moreover, for real x the interaction Hamiltonian matrix is real, and the
transformation matrix U is a real orthogonal matrix, so the star can also be
dropped.

The numerical diagonalization procedure gives the eigenvalues A; as well as
the elements of the matrix U, and the coefficients ¢, () can thus be calculated
according to (122). It is worthwhile to note, however, that because of the
symmetry of the Hamiltonian, the eigenvalues A; are distributed symmetrically
with respect to zero, with one eigenvalue equal to zero if there is an odd number
of them. When the eigenvalues are numbered from the lowest to the highest
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value, there is an additional relation
UiiUy = (_l)kUk,[n/Z]ijO,[nﬁ]—j (123)

which makes the coefficients ¢, (r) either real (k even) or imaginary (k odd).
This property of the coefficients ¢, x(¢) is very important and allows in some
cases to get exact analytical results.

Knowing the coefficients ¢, (¢) the resulting state of the field (119) in the
particular sector can be written, for the initial state |n,0), as

[n/2]
NO@) =3 car®N™) (124)
k=0

The typical initial conditions for the second-harmonic generation are a coherent
state of the fundamental mode and the vacuum of the second-harmonic mode.
The initial state of the field can thus be written as

() = 3 e™eb,jn,0) (125)
n=0
where )
_ n/2
b, = exp ( ;Va) % (126)

is a Poissonian weighting factor of the coherent state |o) represented as a
superposition of the number states, N, = |oc0|2 is the mean number of photons,
and ¢, is the phase of the coherent state — ag = /N exp (id,). With these
initial conditions the resulting state of the field (119) takes the form

(1)) =D &b, Y (1))
n=0

0 (/2]

= e™b, Y car(t)ln — 2k, k) (127)
n=0 k=0

Equation (127) describing the evolution of the system is our starting point for
further discussion of the second-harmonic generation. If the initial state of the
fundamental mode is not a coherent state but has a decomposition into a number
states of the form (125) with different b,, equation (127) is still valid when
corresponding b, are taken. It is true, for example, for the initially squeezed
state of the fundamental mode.
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It is interesting to consider one particular initial state of the field in which
there are only two photons at the fundamental mode and no photons in the
second-harmonic mode: |2,0). With this initial state the only state that can be
created in the process is the state |0, 1) with one photon in the second-harmonic
mode and zero photons in the fundamental mode. Next, the second-harmonic
photon can be downconverted into two photons of the fundamental mode, and
we observe fully periodic evolution. The evolution is thus restricted to the two-
dimensional subspace {|2,0), (0, 1)}. The Hamiltonian matrix in this subspace

has the form
o= O V2 (128)
V2 0

the diagonalizing matrix U has the form

O A

and the two eigenvalues are Ag = —v/2 and A; = v/2. We have two coefficients
Cnk (l )

c20(t) = cos(V2kt), 2.1 (f) = —isin (V2 xz) (130)
and the resulting state has the form
W@ (1)) = cos (V2x1)[2,0) — isin(v2kt)|0, 1) (131)
The mean numbers of photons in the state (131) are given by
(a*a)(t) = 2cos?(V2xt), (b*b)(1) = sin?(V2 kt) (132)

which are exact analytical formulas for these particular initial conditions. We
also have

(@*%a?) — (a*a)* = —2cos®V2kr(2cos>V2kt — 1)

~ ~

(6267 — (b*h)? = —sin*V2xs (133)

From the definition (19) of the Mandel ¢ parameter and Eq. (133) we
immediately find that

go=1—2cos>V2xt,  q,=—sin’V2xt (134)
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which shows that initially the fundamental mode has g, = —1 denoting the sub-
Poissonian statistics of the initial Fock state with two photons and the second
harmonic mode initially has g, = 0, as it should be for the vacuum state. At
later times, however, the fundamental mode becomes super-Poissonian while
the second-harmonic mode becomes sub-Poissonian. This simple example
shows that even in the case of the evolution that is restricted to the two-
dimensional subspace, there are essential changes in photon statistics.

Generally, the second-harmonic generation is described by the quantum
state (127) and we use this state in our further calculations. Classical solutions
discussed earlier, u,(t) = secht and u,(t) = tanh, indicated that the ampli-
tudes of the two modes are monotonic functions of time and that eventually all
the energy from the fundamental mode will be transferred into the second-
harmonic mode, assuming that there was no second-harmonic signal initially. It
is well known [20,48], however, that the quantum solution has oscillatory
character and does not allow for the complete power transfer. Using the
state (127) we find that the mean photon numbers evolve in time according to
the formulas

o0 (/2]

(Na(r)) = (W(0)la*aly(r) szz (n = 2k)cas (1)

) "/ 2]

(Np(0) = (W@OBTBI(D) =D B2 klena() (135)

n=0 k=0

Because of the Poissonian factors, which are peaked at N,, the summation over
n can be performed numerically if N, is not too great. On the other hand, some
features of the classical solutions can be expected for N, > 1. To evaluate
numerically formulas (135) we use the computer program quoted in the
Appendix B, which can be run using the freely available software OCTAVE
[50] or the commercial software MATLAB [51]. The results are illustrated in
Fig. 5. In Fig. 5a we have plotted the normalized second-harmonic intensity
ny = Z(Nb> /N,, where N, is the initial mean number of photons of the coherent
state of the fundamental mode, against the scaled time t for the initially
coherent state with the mean number of photons equal to 2 (solid line) and
compared it with the corresponding intensity obtained for the initial state of the
fundamental mode being the Fock state with two photons [Eq. (132)]. In the
latter case we see the perfectly periodic behavior with complete transfer of
energy between the fundamental and second-harmonic modes. In the case of
coherent state with the mean number of photons being the same as for the Fock
state we already see the distorted oscillations, and the transfer of power is not
complete. In Fig. 5b we have presented the results for initially coherent state of
the fundamental mode with the mean number of photons satisfying the inequal-
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Intensity of the second-harmonic: (a) initial coherent state with N, = 2 (solid line)

and initial number state with two photons (dashed line); (b) initial coherent state with N, = 10 (solid
line), N, = 40 (dashed line), and N, = 100 (dashed—dotted line). Dotted line marks the classical

solution.

ity N, > 1. The curves are plotted for N, = 10 (solid line), N, = 40 (dashed
line), and N, = 100 (dashed-dotted line). For reference, with the dotted line the
classical solution is marked on both figures. The solutions are oscillatory but the
oscillations are damped rather quickly when the pump mode is strong. The
higher is the intensity of the pump mode, the longer the solution sticks to the
classical solution before the process is reversed from the second-harmonic
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generation into the downconversion. The maximum reached by the second
harmonic intensity increases, as the intensity of the pump mode increases,
giving better efficiency of conversion of the fundamental mode field into the
second harmonic. This tendency is clearly seen from Fig. 5b.

At this point it is interesting and worthwhile to compare the solution (112)
that predicted fully periodic behavior resulting from the quantum noise with the
fully quantum calculations performed in this section. In Fig. 6 we present both
solutions for the initial mean number of photons N, = 100, which gives
¢ = 0.01. Both solutions are almost identical up to the first maximum, but
subsequent maxima are substantially damped with respect to the approximate
solution. The approximate solution correctly predicts the transition from the
second harmonic regime to the downconversion regime, which is the physical
reason for starting oscillations. The quantum noise really induces macroscopic
revivals, but subsequent maxima are smaller and smaller and the second
harmonic intensity asymptotically approaches a certain value. Without quantum
fluctuations the solution is a monotonic function as shown in the figure by the
dotted curve. The quantum noise is necessary to trigger the macroscopic
changes in the intensity of the second-harmonic mode.

Now, we can proceed further and ask the question about the evolution of the
quantum fluctuations. We have already seen that there are essential changes in
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Figure 6. Comparison of the fully quantum numerical solution (solid line) and the approximate
solution (112) (dashed line) for the initial mean number of photons N, = 100(€’ = 0.01). Classical
solution is marked by dotted curve.
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the photon statistics when the evolution is restricted to the two-state subspace.
Even in this simple case the fundamental mode evolved from the sub- to super-
Poissonian photon statistics. The numerical method presented above is suitable
for answering questions about photon statistics and squeezing equally well as
the question about the mean intensity. To calculate the mean value of the square
of the photon number operator for the fundamental mode, it is as simple as
replacing n — 2k by (n — 2k)2 in (135), or replacing k by k? in order to calculate
the mean value of the square of the photon number operator for the second-
harmonic mode. All the rest is up to the computer. Let us calculate the Mandel ¢
parameter as defined by (19). In Fig. 7 we have presented the results of the
numerical calculations for the Mandel g parameters for both fundamental (Fig.
7a) and second harmonic (Fig. 7b) modes. Both modes exhibit sub-Poissonian
photon statistics (negative values of the ¢ parameter) at the initial stages of the
evolution, but for long times the statistics becomes super-Poissonian. The sub-
Poissonian statistics at initial stages of the evolution is in agreement with the
short time approximation presented in Eq. (103).

In Fig. 8 we have plotted the quadrature variances for the two modes and
compared them to their counterparts obtained from the linearized noise
equations. In Fig. 8a we see the two squeezed quadratures, ([AQ,)*) and
({APy)?), calculated numerically for the mean number of photons of the pump
mode N, = 10, and their counterparts obtained from the linearized theory, that
is, plotted from the formulas (88). In Fig. 8b the nonsqueezed quadratures
([AP,)*) and {[AQ,)*) are compared. It is evident from the figures that, as one
could expect, the linearized theory has only limited range of applicability. The
linearized results are in good agreement with the exact numerical results
roughly up to the scaled time T ~ 1. The long-time evolution (t > 1) of the
quadrature variances is principally different from their linearized approximation
counterparts because the linearization fails to predict the quantum noise induced
revival in the evolution. It is also clear from Fig. 8a that the degree of squeezing
that can really be obtained is much smaller than that predicted from the linea-
rized theory. The long time behavior of the quadrature variances is presented in
Fig. 9 where the same quadratures are plotted as in Fig. 8 but for longer time 1
showing irregular oscillations of the quantum noise with a general tendency for
that noise to increase and we should not expect squeezing in the long time-limit.
The reduction of the quantum noise below the vacuum level is thus a property
that in second-harmonic generation appears at the beginning of the evolution
and never reappears again.

Since ﬁo is a constant of motion, I:I(% is also a constant of motion, which
gives, for the fluctuations of fio, the relation

([AH") = (H;) = (Ho)* = No(hoo)® (136)
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14

Figure 7. The Mandel g parameter for the (a) fundamental mode and; (b) second-harmonic
mode. The mean number of photons is N, = 10 (solid lines) and N, = 40 (dashed lines).

which can be rewritten as

(ARLP) + 4( AR +4(ANARp) = N, (137)

Formula (137) establishes the relation between the fluctuations of the indivi-
dual-mode photon numbers and the intermode photon-number correlation. All
the quantities on the left hand side (L.h.s.) of Eq. (137) can be calculated
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Figure 8. The quadrature variances: (a) squeezed variances ([AQ,]*) (solid line) and ([AP,])
(dashed line) (b) nonsqueezed variances ([APa]2) (solid line) and ([AQ,,]Z) (dashed line) for
Ng = 10. The dotted lines are the linearized solutions.

numerically starting with the state (127), and formula (137) can serve as a test
of numerical precision. The value of N, sets the level of fluctuations for an
initially coherent state with the mean number of photons N,,. In Fig. 10 we have
visualized the evolution of the correlations between the photon-number fluctua-
tions (normalized) 4<ANaANb) /N, of the two modes. The two photon noises
are negatively correlated. This negative correlation of photon fluctuations
compensates for the large increase of the photon number variances in each
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Quadrature variances

Quadrature variances

Figure 9. Same quadratures as in Fig. 8 but for longer time 7.

mode, which is clearly visible from Fig. 7. Thus the super-Poissonian photon
statistics is related with the appearance of strong negative correlations between
the photon-number fluctuations. The peak in the Mandel ¢ parameter, indicating
highly super-Poissonian photon statistics, is, on the other hand, related to the
minimum of the quadrature variance, that is, it is related to the maximum of
squeezing. This shows that quantum fluctuations of various physical quantities
are related to each other, but this relation is not necessarily simple.

The statistical properties of the quantum fields are well characterized by the
quasiprobability distribution functions defined in the Section II. Let us consider
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Figure 10. Correlations 4(AN,AN,)/N, between the photon-number fluctuations in the two
modes for N, = 10 (solid line) and N, = 40 (dashed line). Compare to Fig. 7

the Husimi Q function as defined by (28) for the fundamental mode. To find this
function, we start with the more general function for the two-mode field

O(o, B) = l( BV () (138)

where |[{s(¢)) is as given by (127). By integrating the function Q(, B) over d* B
we obtain the function Q(a) for the fundamental mode. We find

1 z+ﬁz
0(x,B) = e (I +1BP)

) [7/2] ( s\n—2k ik

Zeind)ﬂbn Z (0( ) (B ) Cn,k(t) (139)
n=0 =0 V/ (n — 2k)l!

and after integrating over d°p we get

|_4k|C 2
0e) = Lot { > bl Z ""
+ 2Re Z Z e )%p, by (o) o

n=1 n'=0
[7'/2]

o~ ene (e a 1) }

=5 /(n = 20)\(n' = 2K)! (140)
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In a similar way, integrating (139) over d*a we obtain the Q function for the
second-harmonic mode, which has the form

1 B S iy
0(p) = _e—iw{ SY et
T n=0 n'=0
(/2] [ /2] (B*)kBk’

X Z Z ch,k(t)02/7k/ (I)Sn—Zk,n’—zk’} (141)
k=0 k'=0 e

The two functions can be evaluated numerically for a not-too-large mean
number of photons N,. In Fig. 11 we have shown the contour plots of the Q
function for the fundamental mode (Fig. 11a) and the second-harmonic mode
(Fig. 11b) for the initial mean number of photons of the fundamental mode
N, =10. It is seen that the centroid of the distribution, in case of the
fundamental mode, moves to the left along the Re o axis showing squeezing
along this axis at initial stages of the evolution, and next it becomes a two-peak
structure first noticed by Nikitin and Masalov [24]. Nikitin and Masalov [24]
suggested that the two peaks appearing in the Q function indicated a macro-
scopic superposition of quantum states. In case of the second harmonic mode
the Q function starts with the peak localized at the origin (initial vacuum state)
and moves along the Im P axis undergoing deformation during the evolution.
Motion of the centroid of the distribution along the Im B axis confirms again our
earlier prediction that the phases of the two fields exhibit a shift by n/2. The Q
function is one of the quasiprobalility distributions that describe quantum
statistical properties of the field. It has advantage that it is always positive, so
it can be treated in the way as the classical probability distributions are treated,
but it also has disadvantages; for example, it does not lead to correct marginal
distributions. In this context the Wigner function is more appropriate, but the
Wigner function can take negative values, which precludes its treatment as
classical probability distribution. In many cases, however, the Wigner function
is very useful. All the quasidistribution functions take into account the fact that
quantum fields are operator fields and are represented by noncommuting
operators, which unavoidably introduce quantum noise. The different quasidis-
tributions are related to different orderings of the field operators. The Q function
is associated with the antinormal ordering of the operators.

As we have already seen, quantum noise changes the character of the
evolution of the field in the second-harmonic generation by making it periodic.
But periodic behavior is also seen for classical solution if we assume that there
is a small classical signal of the second harmonic mode when the evolution
starts. One can thus say that the quantum noise, or spontaneously emitted
photons, play a role of the classical signal that makes the evolution periodic.
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Figure 11. Contour plots for the Q function: (a) fundamental mode and (b) second-harmonic
mode, for the mean number of photons N, = 10. Contours are taken at 0.1 of the maximum.
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This also prompts us a way to simulate the quantum noise by introducing
randomly chosen initial values. We can use deterministic classical equation of
motion to describe the evolution of the fields, but the initial conditions are
chosen at random. Let us assume that o = o9 + Ao, B = By + AB, where o
and B, are the mean values of the initial amplitudes and Ao = Ax, + iAy,,
AB = Axy, + iAy, are the fluctuations of the two fields, where Ax,, Ay, Axp,
Ay, being the independent real Gaussian processes with identical variances
sz Ay = Axl = Ay, = where we have denoted the classical averaging
by the overline (v1ncu1um) W1th these assumptions we find that the variances of
the quadrature components O and P of the fields, which for the vacuum state are
equal to unity, can be expressed by the variances of these classical random
variables ([AQ,)*) = 2(Ax2 + Ay2) =1, and so on. Now, starting with the
Gaussian distribution of the initial values of the field amplitudes, we can
simulate some quantum properties of the fields using classical trajectories. It is
interesting to compare the results obtained using the method of classical
trajectories to the quantum results for the Q function. This kind of comparison
has been done for second-harmonic process by Nikitin and Masalov [24]. Since
it is really impressive to see how good the quantum Q function contours are
reproduced by a cloud of points that undergone classical evolution starting from
the initial conditions described by the Gaussian distribution, we show in Fig. 12
clouds of 1000 points for the same values of the evolution time as in Fig. 11 for
N, =10. Why is the Q function reproduced so well with the classical
trajectories? The Q function is a representative of a whole class of the
quasidistribution functions. Generally, the s-parametrized quasiprobability dis-
tribution for a coherent state, defined by (30), is given by

1 2 2
W) () = T &XP <— I slon - cx0|2> (142)

which, for s < 1, is a Gaussian distribution. For s = 1, the distribution becomes
the Dirac delta function, for s = 0 it is the Wigner function, and for s = —1, we
have the O function. The distribution (142) becomes narrower as s increases
approaching unity. The Q function is the broadest distribution, but all of them
for s <1 are just Gaussians with various variances. In terms of classical
description of the field noise, the most suitable function is the Wigner
function [52], for which the variance of the Gaussian distribution is equal to
%. The Q function is broader, with the variance equal to %, but because the state
of the field has a large coherent component, the two functions are very similar in
shape and the Q function is usually easier to calculate. For the nontrivial
quantum states, the Wigner function can take negative values, and then it is
difficult to simulate properties of such states by classical stochastic variables
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Figure 12. Classical trajectories for 1000 points for Gaussian distribution of initial values with

unit variance and N, = 10. Compare to Fig. 11a.

while the Q function does not suffer from such problems. When the initial state
of the fundamental mode is a coherent state, the initial distribution is a
Gaussian, and the result of simulation is pretty good. The method of classical
trajectories has been used by Bajer et al. to explain the sub-Poissonian photon
statistics in the second harmonic generation [36] as well as the third harmonic
generation [37] in the no-energy-exchange regime. They have found that in this
regime it is possible to obtain the steady-state solutions exhibiting sub-
Poissonian photon statistics, and, surprisingly, they have shown that this

quantum effect can be explained within the classical trajectories approach.
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As we have already discussed in Section II, another characteristic of the
quantum field is its phase distribution. The phase distribution of the quantum
field can be calculated from the quasidistribution functions by integrating over
the radial variable. In this way we get a kind of phase distribution that can be
considered as an approximate description of the phase properties of the field.
One can calculate the s-parametrized phase distributions, corresponding to the
s-parametrized quasidistributions, for particular quantum states of the field [16].
However, a better way to study quantum phase properties is to use the Hermitian
phase formalism introduced by Pegg and Barnett [11-13]. We have already
introduced this formalism in Section II. Now, we apply this formalism to study
the evolution of the phase properties of the two modes in the SHG process. In
this case we have a two-mode field which requires a modification of the
formulas presented in Section I into a two-mode case. The modification is
rather trivial, and for the joint probability distribution for the continuous
phase variables 6, and 0, describing phases of the two modes, we get the
formula [53]

/2]

i b, Z Cnyk(t)

n=0 k=0

1

PO 8) =

2
x exp{—i[(n — 2k)8, + kB, — k(2d, — d,]} (143)

where ¢, and ¢, are the initial phases of the two modes, and the coefficients
cax(t) are given by (122). The distribution (143) is normalized such that

T T
J J P(6,,6,) d6, d6, = 1 (144)
—nJ-7

To choose the phase windows for 6, and 0,, we have to assign to ¢, and ¢,
particular values. It is interesting to notice that formula (143) depends, in fact,
on the difference 2¢, — ¢, which reproduces the classical phase relation for
the second harmonic generation, as seen in in classical equations (59). Classi-
cally, if there is no second-harmonic initially, this quantity must be
2¢, — ¢, = +r/2. This means that the phase of the second-harmonic mode
is locked to the phase of the fundamental mode by this relation. It turns out that
this is also a good choice to fix the phase windows in the quantum description. If
the initial phase ¢, of the fundamental mode is zero, then ¢, = +m/2
(depending on the sign of «); that is, the second harmonic is shifted in phase
by m/2 or —m/2 with respect to the fundamental mode.
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The joint probability distribution given by Eq. (143) can be evaluated
numerically and an example of such distribution is shown in Fig. 13, where
the function P(0,, 0,) is plotted for several values of the scaled time t and the
initial mean number of photons of the fundamental mode N, = 10. Initially the
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Figure 13. Joint phase probability distribution P(0,,6;) of the fundamental and second-

harmonic modes for various evolution time 1. In the last two figures the phase windows for 6, and 8,
are shifted by =
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Figure 13. (Continued)

distribution is peaked at 6, =0 in the 0, direction reflecting the phase
distribution of the coherent state of the fundamental mode, and it is completely
flat in the 0, direction reflecting the uniform phase distribution of the vacuum of
the second-harmonic mode. At a later time, T = 1, a single, well-resolved peak
of the distribution is visible, signifying a relatively well defined phase of the
second-harmonic mode in conjunction with the phase of the fundamental mode.
The fact that the peak appears for 6, = 8, = 0 corroborates the classical phase
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relation 2¢, — ¢, = ®/2, which has been assumed here to choose the phase
windows. As the evolution proceeds, for T = 2, the phase distribution P(6,,0)
splits into two peaks. This is very interesting interval of time in which the
second-harmonic mode achieves its maximum and the reverse process of
downconversion start to predominate (can be seen from Fig. 5). The case of
downconversion will be discussed later on, but now we can say that appearance
of the two-peak phase distribution is a qualitative change in the phase properties
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of the field, and it can be ascribed to the transition in the evolution from the
harmonic generation regime into the downconversion regime. The two-peak
structure of the ideal squeezed states has been indicated by Vaccaro and
Pegg [54], and for the downconversion process with quantum pump by
Gantsog et al. [55). The splitting of the phase distribution into two peaks
resembles the splitting of the @ function for the fundamental mode indicated by
Nikitin and Masalov [24] which we have discussed earlier. The multipeak
structure of the Q function or/and the phase distribution can be an indication
that the field becomes a superposition of macroscopically distinguishable
quantum states, the so-called Schrodinger cats [25,27,30,56]. For still longer
times, T = 4, the intensity of the second-harmonic approaches its minimum and
we observe a transition from the regime of downconversion back to the regime
of second-harmonic generation, but this time with a quite different “initial”
state. Such “bifurcations” of the phase distribution lead to a multipeak structure
of the phase distribution, which means more and more uniform phase dis-
tribution. We would also draw attention to the jump in phase by m, which is
clearly visible in the last two figures (compare to the classical phase evolution
shown in Fig. 2). The fact that one peak splits into just two peaks is related to
the fact that the process we discuss is the two-photon process. For example,
for the three-photon downconversion the threefold symmetry of the distributions
is observed [57]. Generally, the joint phase probability distribution carries
quite a bit of useful information about the quantum state of the field. It is
also important that for two-mode fields the joint phase probability distribution
is a function of two variables 6, and 0, only, in contrast to the function
Q(a, B), which is a function of four real variables Re o, Im o, Re B, Im f, so it is
easy to visualize the two-mode field using the phase distribution while it is
difficult to visualize the Q function in the phase space. Of course, the phase
distribution obtained by integration of the quasidistributions is in this respect
equally easy to handle as the Pegg—Barnett phase distribution even though
the two functions are different. Generally, different distribution functions
carry different information, but some properties of the field can be read out
from all of them.

The phase distribution function (143) allows for calculations of the phase
variances for the individual modes as well as the phase correlations between the
two modes by performing simple integrations over the phase variables 0, and
0,. Detailed discussion of the phase properties of the fields can be found in Ref.
16, and we will not repeat it here. The material presented in this section has
been chosen as to illustrate how quantum noise, which is an indispensable
ingredient of quantum description of optical fields, can be incorporated into the
theory of nonlinear optical phenomena, in particular the phenomenon of second-
harmonic generation.
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IV. DEGENERATE DOWNCONVERSION

A process on the one hand similar to the second-harmonic generation because it
is described by the same Hamiltonian (54) but on the other hand opposite the
second-harmonic generation because the initial conditions are interchanged, is
the process of degenerate downconversion. For the second-harmonic generation
initially there is no signal field at the second-harmonic frequency 2w and there
is a strong (coherent) field at the fundamental frequency ®. On the contrary, for
the downconversion process initially there is no signal at frequency ® and there
is a strong (coherent) field at the frequency 2w, which is the pump mode in this
process. As we have already discussed, we can talk about “pure” second-
harmonic generation or downconversion only at the initial stage of the evolution
with these particular initial conditions. At later times both processes compete
with each other with domination of one of them between the subsequent
maxima and minima of the signal intensity in a given mode. There is, however,
one important difference between the two processes—the second-harmonic
process can start even when the fields are classical, while the downconversion
process must be triggered by quantum fluctuations.

The simplest and most often used approximation allowing for analytical
solutions of the downconversion problem is the parametric approximation, in
which it is assumed that the pump mode is a strong coherent field that remains
undepleted during the evolution. The amplitude of this classical field is an
external parameter on which the solutions for the signal field depend. Equations
of motion for the downconversion process are the same as in (56)

d, e A (A

Ea(,) = —2ixa' (£)b(t)

d . o

;l;b(t) = —ixa*(r) (145)

It is easy to note that for classical fields a(r) — o(r) and b(r) — B(¢), there is no
nonzero solution for the signal field a(7) if «(0) =0. In the parametric
approximation, the pump field at frequency 2o is assumed to be constant
classical field By = |By|exp (id,). Within this approximation the first equation,
Eq. 145, together with its Hermitian conjugate, can be solved analytically giving

a(t) = a(0) cosht + a*(0) sinh T exp [i (<I>b - g)}

a* (1) = a*(0) cosht + &(0) sinh T exp {—i(d),, - g)} (146)
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where we have introduced the scaled time © = 2|Bg|x?. The solutions (146) can
be generated using the following squeezing operator

S(¢) = exp (% o — %C&*z) (147)

where the parameter ¢ = it, in the following way [4]

a(t) =87'(Qa(03(¢),  a'(x) =57"(Q)at (0)5() (148)

Thus, the degenerate parametric oscillator, specifically, the downconversion
process in the parametric approximation, performs the squeezing transforma-
tion, generating the ideal squeezed states, which have been widely discussed in
the literature (see, e.g., Refs. 5 and 6 and papers cited therein). This material is
well known, and we will not repeat it here. We rather concentrate on the cases
when the parametric approximation is not applicable and the pump mode must
be treated as a dynamical variable, the evolution of which must be taken into
account. The quantum dynamics of the parametric oscillator has been studied by
Kinsler and Drummond [58]. Reid and Krippner [59] have found that a
macroscopic superposition states can be created in the nondegenerate para-
metric oscillator. Mode entanglement in such a system has been studied by
Drobny et al. [60]. Here, we focus on comparison of the quantum properties of
fields produced in the downconversion to those produced in the second-
harmonic generation using the same theoretical methods.

A. Symbolic Calculations

Let us start with the short-time approximation in which we can use the symbolic
manipulation computer program described in Appendix A to find the corrections
coming from the quantum fluctuations of the fields. The operator formulas (94)
and (95) are valid also for the degenerate downconversion because the two
processes are governed by the same Hamiltonian, but now initially the second-
harmonic mode is populated while the fundamental mode is initially in the
vacuum state. Assuming that the pump mode at the frequency 2w is in a
coherent state |By) (By = v/ Nyexp (id,)), we have

(@) =0

(b(e)) = Bo 1 (<0 ~ g () BIBof ~ 1)+ (149)
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It is interesting to note that the mean value of the signal mode at frequency o is
zero, and it is true for all powers in the expansion, reflecting the fact that
photons are created in pairs. In case of pump mode, we see that the amplitude of
the field will evolve in time and the lowest nonzero term is the quadratic term.
The fact that the mean field of the signal mode is zero explains why the signal
mode is said to be in the squeezed vacuum. Another interesting and character-
istic feature of such field is the fact that the mean value of the square of the
annihilation operator is nonzero

(@(0) = 2B x0) + 5 (<) BIPof ~ 1) 4+
= expli(d, —n/2)][r+§r3<1—8LNb>+---] (150)

and this fact justifies the name the two-photon coherent state introduced by
Yuen [61].

Let us take a look at the mean number of photons in the signal mode, which
up to the fourth order is given by

(@ 0a0) = 4600+ 5 00" 2o = 1+ .

, T 1
=T +?<1—2—A’b>+ (151)

where we have introduced the scaled time t = 24/Nx?, as suggested by the
solutions (146) in the parametric approximation. The last term, ~ N, !, comes
from the field commutator and represents the quantum noise. The other terms
are the terms of the expansion of sinh?t, which is the mean number of photons
in the parametric approximation given by the solutions (146). For the pump
mode we have

(b0} = 8o 1 = 2007 = 500" IR~ 1)+
:Nb—lrz—lt4<1———]->+--- (152)

Again, we can easily identify the noise term, and moreover, it is clear from
Egs. (151) and (152) that the quantity (a*(r)a(r)) + 2(b* (1)b(r)) = 2|By|* =
2N is conserved including the quantur noise terms.
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Similarly, we obtain corresponding expressions for the quadrature variances

([AQ]") = 1+ 4(ir)Im By + 8(kr)?| o Jrg(Kt)3lmﬁo(8|l30|2 -1

200 BoP 2o — 1)+ -

" 8N,

2, 1
24— p.. 1
3t0 2m> (153)

4 1
= 1+2tsin¢b+212+§r3sin¢b(l )

(AP, = 1 — 4(xr)Im By + 8(x1)?|Bo|* — g () Tm By (8]Bo|* — 1)

2 ) BoP 2Bl — 1)+ -

T8N,

2, 1

4 1
=1 —2tsin¢b+2rz—§r3sin¢b<1 )

The sign of the linear terms in (153) and (154) depends on the sign of Imf,, and
this sign decides whether the quadrature is squeezed. These examples illustrate
the effectiveness of the symbolic manipulation programs in obtaining such
expansions. Previously such calculations have been performed by hand. This
approach belongs to the standard methods of quantum optics, and many results
based on the power series expansion have been discussed in the book [62], so
we restrict ourselves to these few examples only.

B. Numerical Methods

The exact operator expansions presented in the previous section indicated that
the parametric approximation fails for sufficiently long evolution times, and,
moreover, the quantum character of the pump mode introduces corrections to
the field evolution coming from the quantum noise. Since the two parts of the
Hamiltonian H, and H; given by Eq. (55) are constants of motion, again we can
. split the Hilbert space into orthogonal sectors, as before, and introduce for a
given number n of the pump mode at frequency 2o the states

WY = [2k,n—k),  k=0,1,...,n (155)

which again form a complete orthogonal basis of states in a sector with given n.
Now, however, n is the number of photons of the second-harmonic mode, which
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would correspond energetically to the 2rn photons of the fundamental mode, so
the dimension of the sector with given # is (r + 1)x(n + 1). Assuming that the
initial state of the pump mode is a coherent state |B,) and the signal mode at
frequency o is in the vacuum, we can define the initial state of the field as

0= by 0,n) (156)
n=0
where
Y

where N, = |B,|>, and ¢, is the initial phase of the pump field
[Bo = |Bolexp (id;)]. With these initial conditions the resulting state of the field
is given by

V(1)) = i bye® Z Cani () 2k, n — k) (158)
n=0 k=0

where the coefficients ¢, () are the matrix elements of the evolution operator

Hit
exp( lh1> O,n>

Ze"’” “Up_ijU (159)
J=

Can <2k,n k

Comparing Egs. (122) and (159), it is clear that the coefficients c,(¢) and
conk(t) are derived from the same matrix U diagonalizing the Hamiltonian H;,
but they include different elements of the matrix. As before, the
coefficients (159) can be calculated numerically by diagonalizing the interaction
Hamiltonian I:II [55]. The mean number of photons in both modes can be
expressed, using the state (158), in the form

Fa(0) = W@l a0y = 382 S Hlene(s)
n=0 k=0

n

() = (O B) ib Dleme@f  (160)
n=0 k
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Figure 14. Signal intensity of the degenerate downconverter for the mean number of pump
photons N, = 10. Dotted line illustrates the parametric approximation.

where b, is given by (157). In Fig. 14 we have plotted the signal intensity
n, = (N,(1))/(2N) at frequency ® as a function of the scaled time t = 2|B,|xt.
The intensity n, is scaled in such a way that unity at the figure would mean the
100% conversion ratio. For reference we have plotted the normalized signal
intensity in the parametric approximation, which is given by sinh® t/(2N,). It is
seen that the parametric approximation is valid for t < 1, and it fails for longer
evolution times. As in the case of second-harmonic generation, the signal
intensity exhibits damped oscillations; however, there is one important differ-
ence between the second-harmonic generation and the downconversion process,
namely, the conversion ratio that can be achieved in both processes. As it is
evident from Fig. 5b as the mean number of photons of the fundamental mode
increases, the maximum conversion ratio also increases, becoming closer and
closer to 100% efficiency. From Fig. 14 we see that the maximum conversion is
below 70% for N, = 10, and contrary to the second-harmonic generation, as the
mean number of photons N, of the pump mode increases the maximum
conversion decreases. This effect is illustrated in Fig. 15, where we have plotted
. the maximum values of the scaled signal intensity n, as a function of the mean
number of photons of the pump mode N;. This rather counterintuitive result has
been discussed by Drobny and BuzZek [63] who have found that there is a
fundamental limit on the energy transfer in the k-photon downconversion. There
is always a fraction of energy that is trapped in the pump mode and cannot be
transferred to the downconversion signal and this fraction increases as the
intensity of the pump mode becomes higher. If the dynamics of the pump mode
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Figure 15, Maximum efficiency of energy transfer in the degenerate downconversion versus
the initial mean photon number N, of the pump mode.

is taken into account the downconversion signal behaves quite differently from
the the idealized case when the parametric approximation is done.

The degenerate parametric downconversion is a source of squeezed light,
which, as far as the parametric approximation is valid, produces the ideal
squeezed states with the quadrature variances ([AQ,]*) = exp(—2t) and
([AP,]*) = exp(2t), which means that for T — oo, one of the variances goes
to zero while the other goes to infinity. Thus, the idealized model allows for
perfect squeezing. Of course, in a more realistic model in which the quantum
noise of the pump mode is taken into account the amount of squeezing that can
be obtained is limited. The two quadrature variances calculated numerically for
Np =10 and ¢, = —n/2 are illustrated in Fig. 16. For short evolution times 1
the variance ([AQ,(t)]) is squeezed, that is, it takes values below unity, that is
below the vacuum fluctuations level. The Q quadrature is squeezed for the
particular choice of the phase of the pump field, ¢, = —n/2, in agreement with
the analytical results presented in Eq. (99). For ¢, = 0 both quadratures are
unsqueezed. The dependence of squeezing on the field phase is a characteristic
feature of this effect. The Q quadrature variance reaches a minimum below
7 =1 and next shows maxima and minima that, however, do not fall below
unity. It is a well-known fact that when the depletion of the pump mode and its
quantum character is taken into account, the quadrature noise has finite
minimum, and it has been shown [64-66] that the value of squeezing is
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Figure 16. Quadrature variances of the signal mode for Nj = 10 and ¢, = —1/2: ({AQ, (D)%)
(solid line) and ([AP,(t)]) (dashed line).

bounded by (2/N;)~'. Kinsler et al. [66] compared various numerical
methods, including the number-state calculations and stochastic simulations
based on the stochastic differential equations derived from the positive P
representation. Here, we use the method of diagonalization of the Hamiltonian
in the number-state basis, which is simple but it is applicable only for the pump
fields with a not-too-large mean number of photons. Nevertheless, the results
obtained in this simple way illustrate pretty well the features of the field
produced in the degenerate down converter with quantum pump. In Fig. 17 we
have plotted the quadrature variances for several values of the mean number of
photons of the pump mode. It is seen that, as the number of photons increases,
the solutions remain close to the parametric approximation for longer times, or
in other words, the parametric approximation is valid longer as the pump fields
are becoming stronger.

Similarly to the second-harmonic generation, we can calculate the Q
function for the fields. With the state (158) we find for the two-mode field
the formula

2
U )[R ey, o () ()"
O, B) = —e ;e b,,;‘—____@k)! (n_k)!cz,,,k(z) (161)
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Figure 17. Quadrature variances (a) {[AQ,(t)]*) and (b) {[AP,(1)]?) for the signal mode with
¢, = —1/2 and N, = 10 (solid line), N, = 40 (dashed line), and N, = 100 (dashed—dotted line).

Dotted lines represent parametric approximation.

which after corresponding integrations gives the @ functions for individual

modes. For the signal mode, we have

1 o
0() = 3N g
n=0 n'=0

n n (CX* )Zk ko’

X —_— Czn‘k(t)c*n, ’(t)s"“kﬁ’—k’
;k’;) (2k)1(2K)! ' k

(162)
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and for the pump mode

:_eﬂm ZZe‘” " Voup, b,

n=0 n'=0

min(n,n’) )n an —k

8 kz: W(n' — k)!

where the coefficients ¢y, x(¢) are given by (159) and the Poissonian factors by,
by (157). The contours of the Q functions for the signal (Fig. 18a) and pump
(Fig. 18b) modes, for a particular choice of the evolution times, are illustrated in
Fig. 18. The squeezing property of the signal is clearly seen for T = 1, and for a
longer time T =3 the Q function of the signal mode develops a two-peak
structure. All the time the mean amplitude of the signal mode is zero — the
quasidistribution exhibits a twofold symmetry around the origin. The pump
mode starts from a coherent state with the amplitude —iv/10, and next the
distribution is smeared along the imaginary axis (t = 3) and concentrates again
to an approximately coherent state with the amplitude ivV10 (1 =6). It is
interesting to compare the shape of the Q functions with the maxima and
minima of the intensity of the signal mode shown in Fig. 14.

The classical trajectories approach, described in Section III.D, applied to the
downconversion regime confirms pretty well the fully quantum calculations for
the quasidistribution functions presented in Fig. 18. Examples of the classical
trajectories approach are shown in Fig. 19. Similarly to the second-harmonic
generation (see Section IILD), the initial values are taken from the Gaussian
distribution with the appropriately adjusted variance and the set of classical
equations (59) is solved numerically for 1000 trajectories. As it is evident from
Fig. 19, the cloud of points reproduces very well the quasidistribution functions
for both modes. The classical trajectories approach has an advantage over the
direct quantum calculations with the diagonalization of the Hamiltonian in this
that it can be applied to the fields with large number of photons where the
diagonalization method cannot be used because of the computer limitations. It
has been shown [52] that the Wigner function is the most adequate quasidis-
tribution function to use with classical trajectories approach, and the symmetric
ordering associated with the Wigner function should be used to calculate mean
values of the physical quantities by averaging over ensembles of classical
trajectories. Here we have illustrated both approaches, choosing the mean
number of photons N, = 10 for which the calculations can be performed
even on small computers.

The Hermitian operator phase formalism of Pegg and Barnett {11-13] allows
for quantum calculations of phase distribution for the fields produced in the

C2n e (1)Co 1 (1) (163)
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Figure 18. Contour plots of the Q function for (a) the signal mode and (b) pump mode for
N, = 10,¢, = —n/2, and several values of the evolution time 1. Contours are taken at half the

maximum.
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Figure 19. Classical trajectories for 1000 points for Gaussian distribution of initial values and
N, =10, ¢, = —n/2 for the signal mode (upper figures) and the pump mode (lower figures). The
evolution times are chosen as to compare with Fig. 18.

downconversion process [55]. The joint phase probability distribution has the
following form in this case [16,55]:

1 e 0] n
— b, Con
| 25t 20
x exp{—i[2k0, + (n — k)8, + k20, — d,,)]} (164)

P(6,,6,) =

It is very instructive to compare the joint phase probability distributions for the
signal and pump modes produced in the downconversion process shown in
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Fig. 20 to the same distribution for the fields produced in the second-harmonic
generation process shown in Fig. 13. The differences are clearly visible. The
distribution for the downconverted field from the beginning develops a two-peak
phase structure, which is a consequence of the two-fold rotational symmetry of
the @ function for the signal mode. It is known [57,67] that for k-photon
downconversion the Q function has k-fold rotational symmetry and the phase
distribution has k peaks, at least at the initial stages of the evolution. From
Fig. 20 it is also clear that when the intensity of the signal mode reaches its

1=0

3.4
% —3.14

Figure 20. Joint phase probability distribution P(8,,0,) for the signal and pump modes at
several evolution times t and N, = 10. In the last two figures the window for 6, is shifted
0, — 0, + n/2 and 8, — 0, + m, correspondingly.
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Figure 20. (Continued)

maximum (t = 3), the process is reversed from the downconversion regime to
the harmonics generation regime and the phase distribution for 8, splits into two
peaks and a jump in phase by n/2 appears. For T = 6, the phase distribution
confirms the fact seen from the contours of the Q function, that the pump mode
reaches the state close to the initial coherent state but shifted in phase by n. To
avoid splitting of the peaks in the phase distribution, we have made correspond-
ing shifts of the phase window for 6, variable for the last two pictures of Fig. 20,
80 08, — 0 + 1/2 and 0, — 0, + 7, correspondingly. The two-peak structure of
the phase distribution is a characteristic feature of the ideal squeezed states. To
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compare the ideal squeezed state phase distribution with the distribution for
downconversion with quantum pump, we can calculate the marginal phase
distribution functions, which are obtained by integrating (164) over one of the
phase variables. The result is

P(G) {1+2RCZb meZCznk C2n’k’

n>n' k=0 k'=

X exp [—l(k - k’)(29a + 2¢a — c])b)]ﬁn_,,/,k_k/}

P(6,) = {1+2Re2bb ZCznk S alt

n>n'

x exp[—i(n—n’)ﬂb]} (165)

The marginal phase distributions are illustrated in Fig. 21a, where we have
plotted the phase distribution P(6,) for the signal mode at the evolution time
T =1 and the phase distribution for the ideal squeezed state for the same
squeezing parameter. The mean number of photons for the pump mode is equal
to 10. It is clear that quantum fluctuations of the pump mode cause broadening
of the phase distribution, but the two-peak structure of the distribution with the
peaks at +7/2 is obvious. For large squeezing, the phase distribution of the
ideal squeezed state becomes the sum of two symmetrically placed delta
functions

P(ea)zé[s(e ~2) +8(00+3)] (166)

but the quantum noise present in the pump mode broadens the phase distribution
which can never become the delta function distribution. In Fig. 21b we have
shown the distribution for the pump mode at the evolution time Tt = 6, which is
compared to the initial coherent state phase distribution (dotted line). The
window for 0, is shifted by m to be consistent with Fig. 20. The phase
distribution of the pump mode for this particular evolution time corroborates
what has already been found from previous figures, that at time T = 6 the state
of the pump mode becomes close to the coherent state but shifted in phase by ©
with respect to the initial state. This illustrates that the phase distribution is a
very convenient function to study in order to get information about the quantum
state of the field.

Because of the oscillatory behavior of the intensity of the signal mode, which
switches the process from the downconversion regime to the second-harmonic
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Figure 21. Marginal phase distributions: (a) P(6,) for T =1 (solid line) and ideal squeezed
vacuum (dotted line); (b) P(6;) for t = 6 (solid line) and coherent state with N, + 10 (dotted line).
The window for 8, is shifted by m.

generation regime and back, the structure of the joint phase distribution
P(9,,8;) for longer evolution times becomes more complicated. This is true
for both the phase distribution that started in the pure SHG regime and the
distribution that started in the pure downconversion regime. As the evolution
proceeds the subsequent bifurcations of the distribution take place and the effect
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of quantum noise accumulates, making the phase distributions more and more
flat indicating randomization of the phase. More details on the quantum phase
properties of the fields produced in nonlinear optical phenomena can be found
in Ref. 16.

V. SUMMARY

In this chapter we have discussed two best-known nonlinear optical phenomena
— second-harmonic generation and parametric downconversion — drawing
particular attention to the signatures of quantum fluctuations of the optical fields
that can be found in the phenomena. The ubiquitous vacuum fluctuations can
manifest themselves in various ways when an optical field undergoes nonlinear
transformation. The two processes considered here are only examples of a rich
variety of nonlinear phenomena, but they are of great practical importance and
thus they have been studied for years and a lot of knowledge has been
accumulated. It was not our intention to collect all the facts known about the
two processes, but rather to select some specific effects illustrating the role of
quantum character of the field in the process. We have also presented several
theoretical methods that are used to describe quantum properties of the field and
are now available to everybody owing to common access to computers and
software. Quantum fields are operator quantities that cannot be treated on
computers in the same way as ordinary numbers describing classical quantities.
However, presently existing computer software allows for symbolic manipula-
tion, which makes it trivial to obtain formulas that would be very difficult or
even impossible to obtain by hand. The early results indicating possibility of
nonclassical effects such as sub-Poissonian photon statistics or squeezing were
based on the power expansions of operator products. We have shown here how it
can be done with freely available software using a computer. Also traditional
numerical calculations became easy with the use of now existing numerical
packages. We have presented examples of such calculations. We have compared
quantum statistical properties of the fields produced in the idealized models of
second-harmonic generation and downconversion with quantum pump using the
same methods of symbolic calculations, approximate analytical methods, the
method of classical trajectories with stochastic initial conditions and direct,
fully quantum-mechanical calculations using the method of diagonalization of
the interaction Hamiltonian. Since both processes discussed in this chapter are
described by the same Hamiltonian, the differences between the quantum
properties of the field generated in them have their origin in the initial
conditions, in particular, in the presence of quantum fluctuations. As we have
shown, the differences are quite important and their comparison is very
instructive.
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APPENDIX A

An example of the FORM [47] program calculating symbolically evolution of
the operator a*(r)a(t) in the SHG process and the results produced by the
program. The program calculates the Taylor series expansion terms up to given
order (16 in the example). T’n’ is the nth order term which must be multiplied
by ()", and the notation ad(n) means (a*)", and correspondingly a(n) means
4", where @ and a' are the annihilation and creation operators for the
fundamental beam. In the calculations we assume that initially there are no
photons of the second-harmonic beam, that is, after operator calculations we
take the expectation value over the vacuum state for the second-harmonic beam.
In the program this is performed by identifying b and b as zero after the
normal ordering of the operators. The program is very simple (just few lines of
code) and very effective (just few seconds on a Dual PIII 450 MHz machine
under Linux).

FORM by J.Vermaseren. Version 1.1 Dec 14 1998
* calculates Taylor series terms for harmonics generation

nwrite statistics;
Symbols n,k;

Function T,a,ad,b,bd,x,y;
Set aa:a,ad;

Set bb:b,bd;

* definitions

#define MAX "16"

* Hamiltonian

Local H=ad*ad*b+a*a*bd;

* operator the evolution we are looking for
Local TO=adx*a;

.sort

* main loop

#do i=1, MAX’
Local T{’i’} = (T{?i’-1}*H-H*xT{’i’-1})/i_/’1i’;
repeat;

id x7bb*y7aa=y*x;
endrepeat;
.sort
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repeat;

id a*ad=ad*at1;
id b*bd=bd*xb+1;
endrepeat;
.sort

#enddo;

id b=0;

id bd=0;

id x?=x(1);
repeat;

id x?7(n?)*x? (k?)=x(n+k) ;
endrepeat;
print;

.end

results

TO = ad(1)*a(1);

T8 = 992/3165*%ad(5)*a(5) + 184/35*ad(4)*a(4) + 416/315%ad(3)*a(3)
+ 16/315*%ad (2)*a(2) ;

T10 = - 44224/14175*ad (6)*a(6) - 4544/567*ad(5)*a(5) - 12128/
2835+*ad (4)*a(4)
- 1024/2835*ad (3) *a(3) - 64/14175%ad(2)*a(2);

T11 = 0;
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T12 = 1398016/467775%ad(7)*a(7) + 730976/66825%ad (6)*a(6)
+ 914944 /93555%ad (5) *a(b) + 67904/31185%ad(4)*a(4)
+ 2816/42525%ad (3) *a(3) + 128/467775*ad(2)*a(2);

T13 = 0;

T14 = - 118984832/42567525*ad (8)*a(8) - 65317888/4729725*
ad(7)*a(7)
- 12242816/654885%ad (6) *a(6) - 1856000/243243+ad (5) *a(5)
- 4741376/6081075*ad (4) *a(4) - 4096/467775*ad(3)*a(3)
- 512/42567525*%ad (2) *a(2) ;

T15 = 0;

T16 = 1639572992/638512875*ad (9) *a(9) + 2102147456/
127702575%ad (8) *a(8)
+ 20049444736/638512875%ad (7) *a(7) + 378236224/
18243225*ad (6)*a (6)
+43331584/10135125*ad (5) *a(5) + 6365056/30405375*ad (4)*a(4)
+ 559616/638512875%ad (3) *a(3) + 256/638512875%ad (2)*a(2);

APPENDIX B

An example of the program that can be run using the free available software
OCTAVE [50] (under Linux) or the commercial software MATLAB [51] (under
Linux or MS Windows). The program calculates numerically the intensity of the
second-harmonic using the procedure of diagonalizing the interaction Hamilto-
nian described in the text (Section IIL.D).

% program intensity.m

% calculates the intensity of the second-harmonic

% using diagonalization of the interaction Hamiltonian
% int2 - second-harmonic intensity

% intl - fundamental mode intensity

clear

nav=input(’ mean number of photons: ’);
nmax=input (’ nmax: ’);

tmax=input (’ taumax: ’);
t=0:tmax/511:tmax;

tic;
int2=zeros(1,512);
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% Poisson distribution
b(1)=exp(-nav);
b(2)=b(1)*nav;

for n=2:nmax
b(n+1)=b(n)*nav/n;

% calculates the Hamiltonian H

nd=floor (n/2)+1;

ndi=floor((nd-1)/2);

hk=zeros(nd-1,1);

for k=0:nd-2
hk(k+1,1)=sqrt ((k+1) * (n-2%k) * (n-2%k-1)) ;
end :
H=diag(hk,1)+diag(hk,-1);

% diagonalization with scaling
[u e]l=eig(H./sqrt(2*nav));

% [u el=eig(H);

[e 1]1=sort(diag(e));
u=u(:,1);

% calculation of the intensity
cz=0;
for k=0:nd-1;
c=0;
if rem(k,2)==0;
for 1=0:nd1;
c=ctu(k+1,1+1)*u(l,1+1) *cos(e(1+1,1)*t) ;
end
else
for 1=0:nd1;
c=c+ulk+1,1+1)*u(l,1+1)*sin(e(1+1,1)*t);
end
end
c=2%cC;
if rem(nd+1,2)==0;
c=c-u(k+i,nd1+1)*u(1,nd1+1);
end
cz=cz+k*c."2;
end

int2=int2+b(n+1) *cz; % second-harmonic intensity

end

75
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R

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

31
32

intl=nav-2*int2; % fundamental intensity
r=intl/nav;

toc

plot(t,r);

xlabel(’time’),ylabel(’intensity ’);
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