Towards graded-index magnonics: Steering spin waves in networks of magnonic waveguides

C. S. Davies, 1 A. Francis, 1 A. V. Sadovnikov, 2 S. V. Chertopalov, 3 M. T. Bryan, 4 S. V. Grishin, 2 D. A. Allwood, 4 S. A. Nikitov, 2, 5 Yu. P. Sharaevskii 2 and V. V. Kruglyak 1

1 School of Physics, University of Exeter, Stocker road, Exeter, EX4 4QL, United Kingdom
2 Laboratory “Metamaterials,” Saratov State University, Saratov 410012, Russia
3 Donetsk National University, 24 Universitetskaya Street, Donetsk, 83001, Ukraine
4 Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
5 Kotel’nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009, Russia

The spin-wave dispersion is inherently complex and anisotropic, depending on both several magnetic parameters of the magnonic medium and the angle between the spin-wave vector and effective magnetic field. We have used time-resolved scanning Kerr microscopy and micromagnetic simulations to study the propagation of spin waves across Permalloy and yttrium-iron-garnet (YIG) waveguides, arranged to form junction structures and biased asymmetrically. We demonstrate that the non-uniformity of the internal magnetic field and magnetization inherent to patterned magnetic structures (Fig. 1(a)) can create a medium of graded refractive index for propagating magnetostatic waves and can be used to steer their propagation in magnonic architectures (Fig. 1(b)-(c)). The character of the non-uniformity can be tuned and potentially programmed using the applied magnetic field. Thus, our findings suggest a possibility of a novel reconfigurable computing and / or signal processing technology based on the principles of the graded-index magnonics.

Fig. 1 (a) The calculated distribution of the static magnetization (arrows) and the projection of the internal field on to the magnetization (colour) in a 5 μm wide T-junction structure. The global bias field \(H_b = 500 \) Oe is applied at 15° to the “leg” of the T-junction. (b) An experimental snapshot of spin wave propagation. (c) The calculated variation of the initial/reflected magnonic group velocity \(v_i/(v_r) \) and wave vector \(k_i/(k_r) \) overlaid on a snapshot of similar spin wave propagation obtained from micromagnetic simulation.