Physics Faculty Seminars on\ Modern Trends in Physics Research

Physics Faculty Seminars on
Modern Trends in Physics Research

Seminars start usually at 13:00 on Wednesdays
in room 16 (in front of dean's office).
Everyone is most welcome to give a talk!
Maciej Krawczyk (MK), Adam Miranowicz (AM), and Michał Banaszak (MB)
Physics Faculty of Adam Mickiewicz University
Collegium Physicum, ul. Umultowska 85, Poznań

Forthcoming talks

  1. /341/
    Date: Wednesday 2017.10.25 at 13:00
    Speaker: Dr Paweł Zawadzki
    Affiliation: Molecular Biophysics Division, Faculty of Physics, AMU
    Title: Single-molecule imaging of DNA repair in single living cells
    Abstract: [PDF]  Every single day an individual cell must deal with ~10,000 lesions in order to prevent accumulation of harmful mutations, which might lead to cancer. Understanding the mechanism of DNA repair is therefore of central importance to our understanding of cancer and for the development of new therapeutics against it. Repair pathways are highly conserved, in both prokaryotes and eukaryotes, and studying the simpler pathways in bacteria provides key insight into the mechanism used by human cells to repair damaged DNA. We apply an interdisciplinary approach to understand the mechanistic details of DNA repair pathways (Nucleotide Excision Repair, Mismatch Repair, Base Excision Repair) in living Escherichia coli (and human cells in near future). We use a combination of cutting-edge single-molecule methods to elucidate how repair enzymes participate in removal of damaged nucleotides. Firstly, live super-resolution microscopy combined with single-particle tracking is used to study the behaviour of individual proteins as they scan the genome and repair damaged DNA. To complement this, we use cell biology, genetics and TIRF microscopy to verify and extend the conclusions established using a super-resolution microscopy. Together, this will provide a comprehensive understanding of the bacterial repair pathway, and constitute a starting point to understanding the way mutations in human repair proteins contribute to the development of cancer.
    Chair: MK
    Seminar language: English
  2. /342/
    Date: Monday 2017.11.06 at 11:00 (sic!)
    Speaker: Dr Andriy Khobta
    Affiliation: Unit “Responses to DNA Lesions”, Institute of Toxicology, University Medical Center Mainz
    Title: Exploiting synthetic DNA lesions to pinpoint the critical repair pathways
    Abstract: [PDF]  DNA damage is a well-recognised causal factor of gene dysfunction in cancers and age-related diseases. Because DNA of all living cells is constantly exposed to a variety of reactive endogenous metabolites and environmental toxicants, DNA damage can never be fully avoided and its complexity comprises dozens of structurally different DNA modifications ("DNA lesions"). Knowledge of the lesion-specific responses of cells is required to characterise hazards of exposure to specific genotoxic agents and, from the translational perspective, to identify molecular susceptibility markers and potential targets for personalised therapeutic interventions.
    My team exploits synthetic nucleotide derivatives to understand harmful consequences of individual DNA lesions and the lesion-specific repair mechanisms. To model damage induced by food carcinogens, drugs, environmental toxicants and endogenous cellular mechanisms at specific nucleotide positions, we incorporate synthetic analogs of the respective DNA modifications as building blocks into functional reporter genes [1-2]. Delivered to human host cells, such gene constructs can be efficiently used to monitor functional consequences of defined DNA lesions (tolerance versus toxicity), to characterise determinants of damage recognition by individual repair pathways, and to identify redundancy and potential switch points between the pathways [3-7]. I will discuss some recent applications of vectors containing the elements of synthetic nucleic acids to address questions in the fields of DNA repair and epigenetics.
     
    [1] Lühnsdorf B, et al. (2012) Analytical Biochemistry 425: 47-53
    [2] Kitsera N, et al. (2011) Nucleic Acids Research 39: 5926-5934
    [3] Kitsera N, et al. (2014) PloS One 9: e94405
    [4] Allgayer J, et al. (2013) Nucleic Acids Research 41: 8559-8571
    [5] Lühnsdorf B, Epe B, Khobta A (2014) The Journal of Biological Chemistry 289: 22008-22018
    [6] Allgayer J, et al. (2016) Nucleic Acids Research 44: 7267-7280
    [7] Kitsera N, et al. (2017) Nucleic Acids Research doi: 10.1093/nar/gkx718 [Epub ahead of print].
    Chair: Dr Paweł Zawadzki
    Seminar language: English
  3. /343/
    Date: Tuesday 2017.11.07 at 13:00 (sic!)
    Speaker: Dr Taras Radchenko
    Affiliation: Department of Solid State Theory, Institute for Metal Physics, National Academy of Sciences of Ukraine, 03142 Kyiv, Ukraine
    Title: Electronic and transport properties of (un)strained graphene with structural defects: Numerical calculations
    Abstract: The study deals with modelling electronic and transport properties of unstrained and uniaxially deformed graphene with structural imperfections: zero-dimensional (point) and one-dimensional (extended) defects. Point defects are modelled as resonant (neutral) adsorbed atoms or molecules, vacancies, charged impurities, and local distortions. Extended (line) defects are attributed to atomic steps and terraces in epitaxially-grown graphene, and grain boundaries, quasi-periodic nanoripples or wrinkles in polycrystalline (chemically vapor-deposited) graphene. Results are obtained numerically using the quantum-mechanical Kubo–Greenwood formalism along with tight-binding approach. Calculated behaviours of electronic density of states and conductivity indicate that deviations from perfection can be useful: they make possible tailoring graphene's electrotransport properties for achievement of new functionalities.
    Chair: dr Mateusz Kempiński
    Seminar language: English
  4. /344/
    Date: Wednesday 2017.11.8 at 11:00 (sic!)
    Speaker: Dr Koji Maruyama
    Affiliation: Osaka City University, Osaka, and Waseda University, Tokyo, Japan
    Title: Two-qubit control suffices to efficiently perform quantum computation on a spin chain
    Abstract: Towards the full manipulation of multi-body quantum systems, there are still a number of obstacles we have to overcome. We would need some tricks when taming a complex quantum system, contemplating what we can do and what we cannot. In this talk, I will delineate a theoretical guiding principle for quantum controllability, and will present a specific idea for controlling a spin system with a highly limited access. Three important issues, i.e., the controllability, the computability of pulse sequence, and the time-scale of quantum computing operations, are addressed and answered positively.
    Chair: AM
    Seminar language: English
  5. /345/
    Date: Wednesday 2017.11.8 at 13:00
    Speaker: Dr Koji Maruyama
    Affiliation: Osaka City University, Osaka, and Waseda University, Tokyo, Japan
    Title: Machine Learning by Mathematica (Wolfram Language)
    Abstract: The machine learning functionality has been significantly augmented in Mathematica 11. There are a number of functions that allow us to start machine learning quickly without expertise in this field. At the same time, it provides us with a rich set of components to build up more complex tools, such as deep neural networks. I will show how Mathematica can be used to carry out machine learning computations for various types of data sets.
    Chair: AM
    Seminar language: English
  6. /346/
    Date: Thursday 2017.11.9 at 12:00
    Speaker: Dr Koji Maruyama
    Affiliation: Osaka City University, Osaka, and Waseda University, Tokyo, Japan
    Title: Hilbert space structure induced by limited access
    Abstract: Having seen the possibility of controlling multi-body quantum systems indirectly, as well as that of identifying the entire Hamiltonian, now let us consider a more fundamental/abstract problem. When our direct access, or the number of (direct) control probes, to the system is limited, what is the extent to which it can be identified/controlled? This is a natural question, especially after realising that there are (infinitely) many systems that cannot be distinguished via restricted access. In our attempt to understand the intrinsic origin of the indistinguishability, we have revealed the characteristic structures of Hilbert space that is induced by the limited access. The structure tells us what draws the line between controllable and uncontrollable subsystems, which necessarily leads to indistinguishability as well.
    Chair: AM
    Seminar language: English
  7. /347/
    Date: Wednesday 2017.11.15 at 13:00
    Speaker: Prof. Konstantin Guslienko
    Affiliation: Universidad Del Pais Vasco/Euskal Herriko Unibertsitatea, San Sebastian, Spain
    Title: Skyrmion stability and dynamics in ultrathin magnetic dots
    Chair: MK
    Seminar language: English
  8. /348/
    Date: Wednesday 2017.11.22 at 13:00
    Speaker: Prof. Igor Lyubchanskii
    Affiliation: Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine and Department of Physics and Technology, Donetsk National University
    Title: Static magneto-optic effects in photonic-magnonic crystals
    Chair: MK
    Seminar language: English
  9. /349/
    Date: Wednesday 2017.11.29 at 13:00
    Speaker: Dr. Jaroslaw Paturej
    Affiliation: Institute of Physics, University of Szczecin.
    Title: How macromolecular architecure affects physical properties of polymers
    Abstract: [PDF]  Significant progress in polymerization techniques allows to synthesize macromolecules with complex, yet precisely controlled structure. Three distinct examples are branched bottlebrushes, star polymers and ring-like polymers. During the talk I will demonstrate that variation of macromolecular architecture affects structural, mechanical, interfacial and frictional properties of polymers as compared to conventional linear chains.
    Chair: MK
    Seminar language: English
  10. /350/
    Date: Wednesday 2017.12.06 at 13:00
    Speaker: Dr Michał Michałowski
    Affiliation: Astronomical Observatory, Faculty of Physics, Adam Mickiewicz University in Poznan
    Title: The first observation of radiation from colliding neutron stars – the sources of gravitational waves
    Chair: prof. UAM Agnieszka Kryszczyńska
    Seminar language: English
  11. /351/
    Date: Wednesday 2017.12.13 at 13:00
    Speaker: Dr Agnieszka Cichy
    Affiliation: Solid State Theory Division, Faculty of Physics, AMU
    Title: Classical and quantum simulations with ultracold 4-component fermionic mixtures in optical lattices
    Abstract: The impressive development of experimental techniques in ultracold quantum degenerate gases of alkaline-earth-like atoms in the last years has allowed investigation of strongly correlated systems. Long-lived metastable electronic states in combination with decoupled nuclear spin give the opportunity to study the Hamiltonians beyond the possibilities of current alkali-based experiments. Ytterbium is particularly convenient due to its large number of bosonic and fermionic (e.g. Yb-173) isotopes with a wide range of interaction strengths. In [1] we study finite-temperature properties of ultracold four-component mixtures of alkaline-earth-metal-like atoms in optical lattices that can be effectively described by the two-band spin-1/2 Hubbard model including Hund's exchange coupling term. Our main goal is to investigate the effect of exchange interactions on finite-temperature magnetic phases for a wide range of lattice fillings. We use the dynamical mean-field theory approach and its real-space generalization to obtain finite-temperature phase diagrams including transitions to magnetically ordered phases. It allows to determine optimal experimental regimes for approaching long-range ferromagnetic ordering in ultracold gases. We also calculate the entropy in the vicinity of magnetically ordered phases, which provides quantitative predictions for ongoing and future experiments aiming at approaching and studying long-range ordered states in optical lattices. In [2] we study the thermodynamic properties of four-component fermionic mixtures described by the Hubbard model using the dynamical mean-field-theory approach. Special attention is given to the system with SU(4)-symmetric interactions at half filling, where we analyze equilibrium many-body phases and their coexistence regions at nonzero temperature for the case of simple cubic lattice geometry. We also determine the evolution of observables in low-temperature phases while lowering the symmetry of the Hamiltonian towards the two-band Hubbard model. This is achieved by varying interflavor interactions or by introducing the spin-flip term (Hund's coupling). By calculating the entropy for different symmetries of the model, we determine the optimal regimes for approaching the studied phases in experiments with ultracold alkali and alkaline-earth-like atoms in optical lattices.

    [1] A. Cichy, A. Sotnikov, Phys. Rev. A 93, 053624 (2016)
    [2] A. Golubeva, A. Sotnikov, A. Cichy, J. Kuneš, W. Hofstetter, Phys. Rev. B 95, 125108 (2017)
    Chair: MK
    Seminar language: English
  12. /352/
    Date: Wednesday 2018.01.17 at 13:00
    Speaker: Prof. Matteo Rizzi
    Affiliation: Johannes Gutenberg-Universität, Institut für Physik, Mainz, Germany
    Title: Exploring Interacting Topological Insulators with Ultracold Atoms: the Synthetic Creutz-Hubbard Model
    Abstract: Understanding the robustness of topological phases of matter in the presence of strong interactions, and synthesising novel strongly-correlated topological materials, lie among the most important and difficult challenges of modern theoretical and experimental physics. The synthetic Creutz-Hubbard ladder is a paradigmatic model that provides a neat playground to address these challenges, including the generation of flat bands as well as of non-doubled Dirac dispersion relations. In [1], we present a theoretical analysis of the competition between correlated topological phases and orbital quantum magnetism in the regime of strong interactions at half-filling. We predict topological quantum phase transitions for weak and intermediate interactions with different underlying conformal field theories (CFTs), i.e. Dirac versus Majorana CFTs. In [2], we study the response of an interacting system of Dirac-Weyl fermions confined in a one-dimensional (1D) ring: we show that tuning of interactions leads to a unique many-body system that displays either a suppression or an enhancement of the Drude weight—the zero-frequency peak in the ac conductivity—with respect to the non-interacting value. Both studies are furthermore confirmed and extended by extensive numerical simulations based on matrix product states (MPS) and binary Tree Tensor Networks (bTTN). Moreover we propose how to experimentally realize this model in a synthetic ladder, made of two internal states of ultracold fermionic atoms in a one-dimensional optical lattice.

    [1] J. Jünemann, et al., PRX 7, 031057 (2017)
    [2] M. Bischoff, et al., arXiv:1706.02679
    Chair: Dr Agnieszka Cichy
    Seminar language: English
  13. /353/
    Data: środa 24.01.2018, 12:00
    Prelegent: Dr Gotard Burdziński
    Afiliacja: Zakład Elektroniki Kwantowej, Wydział Fizyki UAM
    Tytuł: Osobliwości naukowe roślin
    Streszczenie: W ramach seminarium zostaną omówione wybrane metody obronne roślin takie jak szybki ruch związany ze składaniem liści, wytwarzaniem substancji trujących, lub zapachu, który przywabia owady drapieżne. Szczególna uwaga zostanie poświęcona roślinom owadożernym, których ruch pułapkujący bywa zaskakująco szybki (w czasie ok. 3 ms u Ultricularia inflata), co wymaga stosowania szybkich kamer (15000 klatek na sekundę). Omówione zostaną również aspekty związane z powabnością kwiatów zarówno w zakresie akustyki (liść o kształcie czaszy stanowi akustyczną echo-latarnię dla nietoperzy zapylających kwiaty Marcgravia evenia), jak i optyki (ubarwienie strukturalne płatków kwiatowych). Główną rolę ubarwienia kwiatów pełnią barwniki, spośród których dla betalain wykazaliśmy funkcję fotoprotekcyjną.
    Przewodniczący seminarium: MK
    Seminar language: Polish
  14. /354/
    Date: Wednesday 2018.02.28 at 13:00
    Speaker: Prof. Andrzej Dobek
    Affiliation: Molecular Biophysics Division, Faculty of Physics, Adam Mickiewicz University
    Title: Direct observation of the THz Kerr effect in deionized, distilled, and buffered water
    Chair: MK
    Seminar language: English

Former talks

  1. /340/
    Data: środa 2017.10.18
    Prelegent: Dr Anna Marciniak
    Afiliacja: Obserwatorium Astronomiczne, Wydział Fizyki UAM
    Tytuł: Pierścień wokół planety karłowatej Haumea oraz jej rozmiary, kształt i gęstość z obserwacji zakrycia gwiazdowego
    Streszczenie: Na seminarium omówione zostaną wyniki badań opublikowane w ostatnim numerze Nature 550, 219 (2017)  w artykule pt. The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation.
    Prowadząca: prof. UAM Agnieszka Kryszczyńska
  2. /339/
    Date: Thursday 2017.10.12
    Speaker: Doc. Jan Soubusta
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Experimental tests of coherence and entanglement conservation
    Abstract: In the year 2015, Svozilík and co-authors published a paper [Phys. Rev. Lett. 115, 220501 (2015)] discussing migration of coherence of the studied system between its subsystems. The authors showed that the coherence is also linked to the correlations between the subsystems. The authors mentioned a few interesting examples, where it is possible to study conservation of the maximal accessible coherence in the system. We want to demonstrate the effect of migration of coherence of the system on two experimental schemes implemented using polarization states of photons. The first scheme is based on linear optical controlled-phase quantum gate and the second scheme is utilizing effects of nonlinear optics.
  3. /338/
    Date: Thursday 2017.10.12
    Speaker: Doc. Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Building a quantum router for discrete photons using linear optics
    Abstract: The talk discusses our experimental implementation of a linear-optical quantum router. This device allows single-photon polarization-encoded qubits to be routed coherently into two output modes. Routing is programmed by two identical control qubits and over this procedure, the quantum information stored in the state of the routed photon is not disturbed. The success probability of our scheme can be increased up to 25% making it the most efficient linear-optical quantum router known to this date.
  4. /337/
    Date: Thursday 2017.10.12
    Speaker: Dr Antonín Černoch
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Experimental characterization of photon-number noise in Rarity-Tapster-Loudon-type interferometers
    Abstract: We develop a simple model describing inherent photon-number noise in Rarity-Tapster-Loudon-type interferometers. This noise is caused by generating photon pairs in the process of spontaneous parametric down-conversion and adding a third photon by attenuating the fundamental laser mode to the single-photon level. We experimentally verify our model and present resulting signal-to-noise ratios as well as obtained three-photon generation rates as functions of various setup parameters.
  5. /336/
    Date: Wednesday 2017.10.11
    Speaker: Dr Alexander Mikkelsen
    Affiliation: Faculty of Physics, Adam Mickiewicz University
    Title: Droplets covered by particles: Physics and applications
    Abstract: [PDF]  Clay and colloidal particles of nano- and micrometer size adsorb strongly at liquid interfaces where they display a wide range of studies and applications [1],[2], for instance to stabilize emulsions, in material development and to encapsulate, store and release a range of materials such as medicine, cells, food or oil. Structuring of particles on droplets is a particularly hot topic these days with increasing interest and efforts devoted to the synthesis of functional colloidal capsules. Such capsules, with tailored physical, chemical or morphological characteristics, can be used as building blocks to prepare complex structures with advanced and novel material properties [3]. The talk will demonstrate and explain how weakly conductive (leaky-dielectric) droplets behave when suspended in another weakly conducive fluid and subjected to an external electric field. Especially how electrohydrodynamic and eletrorheological effects in such droplets can be used to structure and dynamically control colloidal particle assemblies at droplet surfaces. This includes electric-field-assisted convective assembly of jammed colloidal “ribbons”, electrorheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains. In addition, the talk will demonstrate the size control of “pupil” like openings in colloidal shells [4], present a simple and robust method to assemble colloidal shells of controlled heterogeneity [5] and discuss some of the many applications for particle covered droplets.
     [1] B. P. Binks, Curr. Opin. Colloid In. 7, 21 (2002).
     [2] C. Zeng, H. Bissig, and A. D. Dinsmore, Solid State Commun. 139, 547 (2006).
     [3] B Bollhorst, T., K. Rezwan, and M. Maas, Chemical Society Reviews, 46, 2091 (2017).
     [4] P. Dommersnes, Z. Rozynek, A. Mikkelsen, R. Castberg, K. Kjerstad, K. Hersvik, and J. O. Fossum, Nat. Commun. 4, 2066 (2013).
     [5] Z. Rozynek, A. Mikkelsen, P. Dommersnes, and J. O. Fossum, Nat.Commun. 5, 3945 (2014).
  6. /335/
    Date: Wednesday 2017.10.4
    Speaker: Dr Zbigniew Rozynek
    Affiliation: Faculty of Physics, UAM
    Title: Granular and colloidal 1D structures: Physics and applications
    Abstract: [PDF]  The fabrication of 1D granular and colloidal materials is of considerable interest as they offer opportunities for a variety of electronic applications, including granular conductors, flexible electronics for wearable devices, electromagnetic energy transport, etc. These particle structures can be assembled either from particle groups or from individual particles. In this talk I will show structures composed of individual microparticles. There are several methods for fabricating particle structures, including lithography, cluster-assisted assembly and colloidal polymerization, pore-assisted assembly, and field-directed assembly in electro- or magneto-rheological fluids. The latter is generally considered to be a simple and effective approach to form particle structures. Thou fast and efficient, the external field-driven approach suffers from three major limitations to its applications, for example in electronic-device manufacturing. First, the assembly often takes place in a bulk liquid; it is difficult to remove the bulk liquid and maintain the assembled structure intact. Second, in principal only linear 1D structures can be formed along the field lines and positioning of the formed structure is greatly limited. Third, maintaining the formed structures normally requires a continuous energy supply; once the external field is turned off, the structures disintegrate. Within this talk, I will present novel routes to overcoming these limitations, making it possible to easily fabricate self-sustained 1D structures outside of a dispersion.
    For more details, see the following article: Formation of printable granular and colloidal chains through capillary effects and dielectrophoresis, Nature Communications 2017, 8, 15255 
  7. /334/
    Date: Wednesday 2017.09.27
    Speaker: Dr Łukasz Laskowski
    Affiliation: Department of Microelectronics and Nanotechnology, Częstochowa University of Technology
    Title: Practical application for porous silica template functional nanomaterials
    Abstract: [PDF]  The presentation will be devoted to novel functional nanomaterials precisely tailored for specific applications. The materials are based on porous silica matrices both in the form of powder and vertically aligned thin films. Powdered SBA-15 silica activated by copper ions can play a role of strongly antimicrobial specimen with restricted migration into environment. Thin film form of silica matrices with vertically aligned channels makes the materials highly applicative in electronics or IT technologies. We consider three types of such silica-templated materials for application as antimicrobial specimen or electronics elements. Porous silica films containing permanent magnetic specimen inside pores can be used for fabrication of super-dense magnetic memory. When silica is activated by individual molecular magnets in pores bottom the material can play a role of layout of molecular neurons. Porous silica thin layer containing strongly dipolar units have strong non-linear optical (NLO) response, that can be tuned by means of functional groups concentration variation.
  8. /333/
    Date: Monday 2017.09.25
    Speaker: Prof. David Sherratt
    Affiliation: Department of Biochemistry, University of Oxford, UK
    Title: How one chromosome makes two
    Abstract: [PDF]  Chromosomes were first observed and the process of their segregation in mitosis described by Walther Flemming, working in Kiel, Germany, in 1878, but it was another 25 years before their role in inheritance was proposed. The coordinated processes of chromosome replication, unlinking and subsequent chromosome segregation underlie the life process. Defects in these processes lead to genetic diseases and a multitude of pathologies in humans, while interfering with these processes is the basis of the action of many antibiotics and anti-cancer agents.
    My laboratory studies the molecular mechanisms of the action of the molecular machines that act in these processes in the bacterium E. coli by using a combination of in vivo and in vitro biochemistry, quantitative single-molecule imaging and genetics. The presentation will focus on the importance of eliminating ensemble averaging wherever possible and in the challenges of reconciling in vitro and in vivo experimental data and in building them into a mechanistic framework.
    Chair: Dr Paweł Zawadzki
  9. /332/
    Date: Thursday 2017.09.14
    Speaker: Prof. Charles Henry Bennett
    Affiliation: IBM Fellow at IBM Research, Thomas J. Watson Research Center in Yorktown Heights, New York.
    Title: Is there such a thing as private information?
    Abstract: One of the original motivations for quantum information theory was the use of quantum effects to protect the privacy of classical communications. Yet the new theory, which has grown to elegantly encompass all of classical informatics, has undermined the very notion of classical private information, by showing that it sits on a slippery slope between quantum information and public information. Classical privacy survives only as a useful approximation, since in principle any memory so well shielded that it can hold classical data without the environment finding out can also hold superpositions of the classical values, thereby serving as a quantum memory. To recover a sharp notion of classical privacy it suffices to consider scenarios in which some information escapes to a place beyond the reach of one's adversaries.
    Biography: Prof. Bennett is one of the most acclaimed physicists and one of the founding fathers of modern quantum information theory. Among his many discoveries are: reversible computation, explanation of Maxwell's demon paradox, quantum cryptography, and quantum teleportation. He also created the foundations of entanglement theory and quantum communication. Prof. Bennett is a laureate of many awards including this year's Dirac Medal. See Wikipedia  for more details.
    Chair: prof. Andrzej Grudka
  10. /331/
    Date: Friday 2017.09.8
    Speaker: Dr Bernadeta Dobosz
    Affiliation: Zakład Fizyki Medycznej, Wydział Fizyki, UAM
    Title: Badanie metodą ESR fizycznych właściwości funkcjonalizowanych nanocząstek magnetytu jako potencjalnych nośników leków
    Abstract: Nanomateriały cieszą się coraz większą popularnością w różnych dziedzinach życia, również w medycynie. Na przykład nanocząstki magnetyczne stosuje się w obrazowaniu MRI czy w hipertermii. Szczególnie obiecujące jest ich wykorzystanie jako nośniki leków w terapiach celowanych. Dzięki właściwościom magnetycznym nanocząstek, stosując odpowiednie sekwencje pól magnetycznych, można kontrolować ich ruch. Funkcjonalizowane nanocząstki mogłyby dostarczać lek bezpośrednio do miejsca choroby (stan zapalny, guz) omijając tkanki zdrowe. Wspomniane wcześniej właściwości magnetyczne nanocząstek można badać metodą elektronowego rezonansu spinowego (ESR). Otrzymuje się w ten sposób wiele cennych informacji zarówno o rdzeniu magnetycznym nanocząstki jak i jej powierzchni. Właściwości nanocząstek zależą od wielu czynników takich jak pokrycie, dołączony materiał, środowisko czy warunki zewnętrzne, w których się znajdują. Wszystkie te zależności można badać metodą ESR. Stosując tę metodę można również kontrolować jakość nanocząstek oraz śledzić ich starzenie i agregację. Szczególne znaczenie pod kątem zastosowania nanocząstek w terapiach celowanych ma zastosowanie ESR do monitorowania dyfuzji nanocząstek wymuszonej obecnością pola magnetycznego.
  11. /330/
    Date: Wednesday 2017.09.6
    Speaker: Dr Alexander Kvashnin
    Affiliation: Skolkovo Institute of Science and Technology, Moscow, Russia
    Title: Computational materials discovery in various dimensionalities
    Abstract: Computational materials discovery is a new field of science, and an ongoing scientific revolution. New methods have for the first time enable systematic discovery of superior materials on the computer – instead of the traditional laboratory-based trial-and-error approach. This approach allows scientists to predict and investigate new materials, new phenomena in various dimensionalities, starting from the bulk and moving towards the 2D materials, 1D materials and molecules, clusters. Here the recent research on the computational search for new functional materials will be discussed. Among the 2D materials, particular attention is drawn to such films of atomic thickness as graphene, its derivatives. In addition, many of non-carbon materials, which has no layered counterparts in bulk, are found to be layered graphitic-like in nanoscale. Such evidences related to silicon carbide, zinc oxide and aluminum nitride. In the field of bulk materials (single crystals, composites, etc.), the main direction of theoretical material science is search for crystal structure with optimal desired properties, such as hardness, band gap, dielectric constant, etc. Using the evolutionary algorithm implemented in the software package USPEX, it became possible to predict stable compounds, their crystal structure using only data on their chemical composition. In addition, we studied the surface reconstruction of rutile-like RuO2, especially the most stable (110) surface, which is highly important for catalysis, sensing and charge storage applications.
    Chair: Dr Piotr Graczyk
  12. /329/
    Date: Wednesday 2017.06.21
    Speaker: Prof. Sergey Tarapov
    (Corresponding member of the National Academy of Sciences of Ukraine)
    Affiliation: Institute for Radiophysics and Electronics of the NAS of Ukraine, V. N. Karazin Kharkiv National University Kharkiv, Ukraine
    Title: Magnetic Metamaterials and Electron Magnetic Resonance at Microwaves: Experiment, Fundamental and Design
    Abstract: The results of experimental study of fundamental features of magnetically controlled metamaterials at microwave band are under discussion. Among them are: (1) the transformation of right-handed medium into left-handed medium and electrodynamic analogs of Tamm states; (2) the left-handed properties (controlled negative refraction) of semiconductor–ferrite composites; (3) formation of backward wave in the chiral magnetoactive medium; and (4) photonic crystals and magnetophotonic crystals. The possible technological implementations of metamaterials are described. Besides the special experimental equipment, designed for study both magnetic microwave metamaterials and electron spin/magnetic resonance in nanocomposites both at room and very low temperatures (0.3-300 K) are presented. Also the results of Electron Spin Resonance experimental research of spin dynamics in magnetic nanodots and nanostrips ensembles at T = 4.2-300K are discussed.
  13. /328/
    Date: Wednesday 2017.06.14
    Speaker: Prof. IF PAN dr hab. Tomasz Sowiński
    Affiliation: Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland
    Title: Mass-imbalanced mixtures of several ultra-cold fermions in one-dimensional traps
    Abstract: With recent experiments on several particles confined in a one-dimensional optical traps quantum engineering has entered a completely new, so far unexplored, area of strongly correlated quantum systems. Apart from a few exceptions, it has commonly been assumed that particles of different kinds have the same mass and the main impact on properties of the system comes from an imbalance of the number of particles. In contrast, in my talk I will focus on the system of a few ultra-cold fermions of different masses. I will show that the mass difference between different fermionic components leads to the specific spatial fragmentation in one of the components. Although the mechanism predicted is universal with respect to the number of particles, the fragmentation occurs, depending on the shape of the confinement, for either the lighter or the heavier component. In consequence, the system may undergo a kind of critical transition that is induced by an adiabatic change of the external potential.
  14. /327/
    Date: Wednesday 2017.06.14
    Speaker: Dr Michał J. Michałowski
    Affiliation: Obserwatorium Astronomiczne, Wydział Fizyki, UAM
    Title: Dust in the distant Universe
    Abstract: I will summarize what we have learned about dusty galaxies at large distances from Earth. The characterization of their properties is crucial to understand the evolution of the Universe, because dust absorbed and re-emitted in the infrared 50% of stellar emission ever produced in the Universe. First, I will show my effort in obtaining the largest so far ( 2000 objects) sample of galaxies selected by their infrared emission. I will discuss their redshifts, stelar masses and star formation rates. These properties provide important tests of cosmological models. Then I will show how we can learn in what way the large masses of dust in the distant Universe were produced: either by asymptotic giant branch stars, by supernovae, or by dust grain growth in the interstellar medium. The knowledge of how early galaxies could produce their dust is important from the point of view of further evolution, because dust is enabling formation of molecular gas, the fuel for star formation.
  15. /326/
    Data: Piątek, 9 czerwca 2017
    Prelegent: Dr Jędrzej Kociński
    Afiliacja: Zakład Akustyki Pomieszczeń i Psychoakustyki, WF UAM
    Tytuł: Testy zrozumiałości mowy jako uniwersalne narzędzie do badania zmysłu słuchu oraz wybranych układów fizycznych
    Streszczenie: Ocena zrozumiałości mowy jest nie tylko narzędziem diagnostycznym wykorzystywanym w protetyce słuchu, ale może dostarczyć wielu istotnych informacji na temat funkcjonowania układu słuchowego człowieka, a także może być wykorzystana w badaniach innych procesów w centralnym układzie słuchowym. Co więcej, metody oceny zrozumiałości mowy posłużyć mogą także do analizy funkcjonowania układów fizycznych począwszy od aparatów słuchowych poprzez pomieszczenia, na różnego typu algorytmach przetwarzania sygnałów skończywszy.

    Przedstawione do oceny publikacje wskazują na uniwersalność badań wykorzystujących zrozumiałość mowy w ocenie funkcjonowania zarówno układu słuchowego, jak i centralnego układu nerwowego. Co więcej prace te potwierdzają istotność, a wręcz konieczność wykorzystywania testów zrozumiałości mowy do oceny innych układów, w których ta zrozumiałość gra istotną rolę, jak np. algorytmy separujące sygnały, czy pętle indukcyjne wykorzystywane do poprawy zrozumiałości mowy u użytkowników aparatów słuchowych. Testy te posłużyć mogą także do weryfikacji obiektywnych parametrów służących jako predyktory zrozumiałości mowy (np. Speech Transmission Index, STI) lub jej poprawy (np. poprawa stosunku sygnału do szumu, SNR). Warto podkreślić, że wyniki prac otrzymano stosując najnowsze i najdokładniejsze metody pomiaru zrozumiałości mowy wnosząc tym samym nowe dane zarówno pod względem jakościowym, jak i pod względem obszarów badawczych.
  16. /325/
    Date: Wednesday 2017.06.7 at 13:00
    Speaker: Prof. Oleksandr V. Dobrovolskiy
    Affiliation: Physics Department, V. N. Karazin Kharkiv National University, Ukraine, and
    Physikalisches Institut, Goethe University Frankfurt am Main, Germany
    Title: Focused electron beam-induced deposition of magnetic nanostructures
    Abstract: Focused electron beam induced deposition (FEBID) is a direct-write approach for the fabrication of 2D and 3D nanostructures in various materials research areas. These comprise superconductors, magnetic materials, multilayer structures, and various sensor applications. FEBID is based on the decomposition of organo-metallic precursor gas molecules which are injected into the chamber of a scanning electron microscope. The deposition of the material takes place at those points where the electron beam dwells for a longer time in accordance with a pre-defined pattern. A post-growth processing of FEBID structures allows one to modify their compositional, structural and magnetic properties. In this talk, a general introduction to the basics of FEBID will be given, with an outline of available FEBID materials. A particular focus will be on Co-based FEBID nanostructures and tuning their magnetic properties on the lateral mesoscale by an area-selective post-growth processing. Further, exemplary 3D FEBID nanostructures will be presented and the perspectives of their use in fluxonic, photonic, and magnonic metamaterials will be outlined.
  17. /324/
    Date: Friday 2017.06.2, 11:30
    Speaker: Prof. Ryszard Jankowiak
    Affiliation: Department of Chemistry and Department of Physics, Kansas State University, Manhattan, KS, USA
    Title: Excitonic structure and dynamics in various photosynthetic antenna protein complexes: hole-burning and modeling studies
    Abstract: [PDF]  Low temperature (high-resolution) hole-burning (HB) spectroscopy and modeling studies of various optical spectra of photosynthetic complexes provide new insight into excited state electronic structure and dynamics. The following complexes will be briefly discussed: 1) The CsmA– bacteriochlorophyll α complex from C. tepidum. In this case, in contrast to literature data, an alternative structure is proposed for the baseplate; 2) The FMO antenna complex from C. tepidum and its mutants. Using an experimentally determined shape for the spectral density for the lowest- energy state (Jph(ω)), simulated optical spectra are obtained from structure-based calculations for the FMO trimer. For higher energy pigments, the effect of a broader Jph(ω) shape with a different S factor and/or variable Γinh are also tested for comparison. I will demonstrate that in order to properly describe various low-temperature optical spectra, a downward uncorrelated excitation energy transfer (EET) between trimer subunits must to be taken into account. That is, after light induced coherences vanish within each monomer, uncorrelated EET between the lowest exciton levels of each monomer takes place due to static structural inhomogeneities in the trimer. The information gained provides new insight into disorder, excitonic structure, EET dynamics and mutation induced changes induced via site directed mutagenesis; and 3) The B800-850 LH2 antenna complex from Alc.vinosum, which exhibits an unusual spectral splitting of the B800 absorption band. Here, we propose that various protein conformations lead to either strong or weak hydrogen bonds between the protein and B800 pigments.
    Biography: Ryszard Jankowiak is a Distinguished Professor of Chemistry and Ancillary Distinguished Professor of Physics at Kansas State University, Manhattan, KS, USA. He is also affiliated with the Photosynthetic Antenna Research Center, Washington University, Saint Louis, MO. He has published over 230 papers in various areas of physical chemistry, toxicology, chemical carcinogenesis, physics, and biophysics. Currently he studies photosynthetic reaction centers and various antenna pigment complexes (including mutants) of green plants/algae and photosynthetic bacteria using solid-state low-temperature (laser-based) spectroscopies and theoretical modeling. Research Gate score: 43.2; over 5,340 citations. H INDEX 39. Contact phone numbers: +(785) 532- 6785 or +(785) 410-4163.
    Chair: Prof. UAM dr hab. Krzysztof Gibasiewicz
  18. /323/
    Date: Thursday 2017.06.01
    Speaker: Prof. Hendrik Ohldag
    Affiliation: A Distinguished Lecturer of the IEEE Magnetics (2017), SLAC National Accelerator Laboratory, Menlo Park, California, USA
    Title: Ultrafast and Very Small: Discover Nanoscale Magnetism With Picosecond Time Resolution Using X-Rays
    Abstract: Today’s magnetic device technology is based on complex magnetic alloys or multilayers that are patterned at the nanoscale and operate at gigahertz frequencies. To better understand the behavior of such devices one needs an experimental approach that is capable of detecting magnetization with nanometer and picosecond sensitivity. In addition, since devices contain different magnetic elements, a technique is needed that provides element-specific information about not only ferromagnetic but antiferromagnetic materials as well. Synchrotron based X-ray microscopy provides exactly these capabilities because a synchrotron produces tunable and fully polarized X-rays with energies between several tens of electron volts up to tens of kiloelectron volts. The interaction of tunable X-rays with matter is element-specific, allowing us to separately address different elements in a device. The polarization dependence or dichroism of the X-ray interaction provides a path to measure a ferromagnetic moment and its orientation or determine the orientation of the spin axis in an antiferromagnet. The wavelength of X-rays is on the order of nanometers, which enables microscopy with nanometer spatial resolution. And finally, a synchrotron is a pulsed X-ray source, with a pulse length of tens of picoseconds, which enables us to study magnetization dynamics with a time resolution given by the X-ray pulse length in a pump-probe fashion. The goal of this talk is to present an introduction to the field and explain the capabilities of synchrotron based X-ray microscopy, which is becoming a tool available at every synchrotron, to a diverse audience. The general introduction will be followed by a set of examples, depending on the audience, that may include properties of magnetic materials in rocks and meteorites, magnetic inclusions in magnetic oxides, interfacial magnetism in magnetic multilayers, and dynamics of nanostructured devices due to field and current pulses and microwave excitations.
    More information at www.ieeemagnetics.org 
  19. /322/
    Date: Wednesday 2017.05.31 at 13:00
    Speaker: Prof. Richard J. Spontak
    Affiliation: Departments of Chemical Biomolecular Engineering and Materials Science Engineering North Carolina State University Raleigh NC 27695
    Title: Biomimicry with Block Copolymers: Directed Self-Assembly via Crystallization or Chemical Coordination
    Abstract: Spontaneous self-assembly of block copolymer (BCP) molecules in a block-selective solvent typically results in the formation of micelles possessing a classical spherical morphology. Inclusion of a crystallizable block in the copolymer promotes crystallization-driven self-assembly (CDSA), yielding anisotropic cylindrical micelles that can, after additional processing, possess a remarkably narrow length polydispersity. Anisotropic nanoparticles prepared from BCPs are of growing importance as building blocks for the creation of a wide range of synthetic hierarchical materials. However, the assembly of such structural units is generally limited to the use of amphiphilic interactions. In addition to CDSA to generate single cylindrical micelles, reversible coordination-driven hierarchical self-assembly can be used to produce micron-scale fibers and macroscopic films based on the association of low-polydispersity cylindrical BCP micelles. In this case, coordination of palladium metal centers to phosphine ligands immobilized within the soluble coronas of BCP micelles is observed to induce intermicellar crosslinking, affording stable linear fibers comprised of micelle subunits in a staggered arrangement. The mean length of the fibers can be readily varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibers aggregate upon drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a significantly longer length scale. A comparable hierarchical self-assembly strategy yields toroidal micelles that combine to form micron-scale superstructures. Addition of a crystallizable BCP to a solution of a toroid-forming BCP results in the formation of toroidal multimicelles, as well as single-layer hexagonal arrays of connected toroids. By controlling the ability of the BCPs to form hydrogen bonds through the introduction of hydroxyl groups on the crystallizable BCP and the accompanying level of solvophobic interactions, the BCPs can spontaneously self-assemble to form 3D periodic mesoporous superstructures. Studies such as these demonstrate that self-assembly of BCPs into discrete, non-spherical nanostructures can be scaled from the "ground-up" to yield materials with intriguing morphologies and potentially unique properties.
  20. /321/
    Data: piątek 2017.05.26
    Prelegent: Dr Oskar Baksalary
    Afiliacja: Quantum Physics Division, Physics Faculty, AMU
    Tytuł: Rachunek macierzowy wobec zagadnień z zakresu fizyki - reprezentacje odwrotności Moore'a-Penrose'a
    Streszczenie: Pojęcie odwrotności Moore'a-Penrose'a macierzy odgrywa ważną rolę w rozmaitych dziedzinach nauki. Bodajże najlepiej znany przykład jego zastosowania dotyczy metody najmniejszych kwadratów wykorzystywanej w większości obszarów badań naukowych odwołujących się do metod matematycznych. Jednak przykłady zastosowań odwrotności Moore'a-Penrose'a obejmują także inne zagadnienia, z których wiele wywodzi się z fizyki. W trakcie seminarium przedstawione zostaną rezultaty odnoszące się do odwrotności Moore'a-Penrose'a rozmaitych funkcji macierzy ze szczególnym naciskiem położonym na alternatywne sposoby reprezentowania tego pojęcia. Wśród poruszonych zagadnień znajdą się m.in.: odwrotności Moore'a-Penrose'a macierzy zmodyfikowanej macierzą rzędu 1, odwrotność core (i jej związki z odwrotnościami Moore'a-Penrose'a, Botta-Duffina i grupową), a także unitarnie niezmiennicze miary rozseparowania przestrzeni wektorowych. W obrębie zainteresowania będą przy tym klasy macierzy hermitowskich, idempotentnych i EP.
  21. /320/
    Date: Thursday 2017.05.25
    Speaker: Dr Su-Yong Lee
    Affiliation: School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
    Title: Single-photon non-locality test using feasible measurement setups
    Abstract: We test non-locality of a single-particle under feasible measurements, such as on-off and homodyne detections along with displacement and squeezing operations. On-off detection exhibits the existence of intensity of light by its click event, and homodyne detection shows the information on the phase of light by measuring intensity difference. We find that a single-particle entangled state can violate the CHSH inequality up to 2.782 when all four measurements are squeezed-and-displaced on-off detections.
    Chair: Dr hab. Paweł Kurzyński
  22. /319/
    Date: Wednesday 2017.05.17 at 13:00
    Speaker: Prof. dr Mustafa Serkan Soylu
    Affiliation: Department of Physics, University of Giresun, Turkey
    Title: An example of combined experimental-theoretical characterization of metal (Nickel (II)) complex with neutral ligand
    Abstract: [PDF]  The term of computational chemistry may be defined as the mathematical description and numerical computation of molecular structures. The term computational chemistry is generally used when a mathematical method is sufficiently well developed that it can be automated for implementation on a computer. Computational chemistry has become a useful way to investigate materials that are too difficult to find or too expensive to purchase. It also helps chemists make predictions before running the actual experiments so that they can be better prepared for making observations. It’s also useful ways to explain of spectroscopic results of molecular structures. The mathematical description of the molecular structures based on the Quantum mechanics rules. Because of the Quantum mechanics (QM) is the correct mathematical description of the behaviour of electrons and thus of molecular structures. In theory, QM can predict any property of an individual atom or molecule exactly. In practice, the QM equations have only been solved exactly for one electron systems. A myriad collection of methods has been developed for approximating the solution for multiple electron systems. These approximations can be very useful, but this requires an amount of sophistication on the part of the researcher to know when each approximation is valid and how accurate the results are likely to be. In my presentation, I intend to give you some information about a few examples of our work entitled “Combined experimental–theoretical characterization of chelidamate nickel complex with 4-methylpyrimidine”. A new chelidamate complex of nickel (II) ion was synthesized and characterized by single-crystal X-ray diffraction, UV–Vis and FT-IR spectroscopy. Theoretical calculations have been carried out by using Hartree–Fock (HF)/6-31G (d) and Density Functional Theory (DFT)/6-31+G (d). HOMO–LUMO energies, absorption wavelengths and excitation energy were computed by time dependent DFT (TD-DFT) method with polarizable continuum model. The observed FT-IR vibrational frequencies are analysed and compared with theoretically predicted vibrational frequencies.
  23. /318/
    Data: piątek 2017.05.12, 12:00
    Prelegent: Dr Aleksandra Trzaskowska
    Afiliacja: Zakład Fizyki Kryształów, WF UAM
    Tytuł: Dyspersja fal powierzchniowych w strukturach fononicznych badana metodą wysoko rozdzielczej spektroskopii Brillouina
    Streszczenie: Przedstawiono wyniki badania wysokorozdzielczą spektroskopią Brillouina dyspersji fal powierzchniowych w różnego typu kryształach fononicznych. Powierzchniowe własności sprężyste badanych próbek symulowano, w każdym przypadku, metodą elementów skończonych (FEM). Dla jednowymiarowych kryształów fononicznych pokazano wpływ periodyczności sieci na amplitudę fal powierzchniowych. W przypadku kryształów dwuwymiarowych zaobserwowano istnienie przerwy energetycznej a w strukturach wyspowych wykazano także istnienie modów „oddychających". Ciekawe własności aplikacyjne obserwowano w przypadku zmodyfikowanej dwuwymiarowo struktury 1D.
  24. /317/
    Data: środa 2017.05.10 at 13:00
    Prelegenci: Mgr Justyna Łodyga i prof. UAM dr hab. Andrzej Grudka
    Afiliacja: Quantum Electronics Division, Physics Faculty, AMU
    Tytuł: Zmarszczki czasoprzestrzeni, czyli fale grawitacyjne
    Streszczenie: 11 lutego 2016 roku międzynarodowy zespół naukowców poinformował o pierwszym w historii zarejestrowaniu fal grawitacyjnych. Fale te zostały zarejestrowane w Stanach Zjednoczonych równocześnie przez dwa detektory LIGO (Laser Interferometer Gravitational-wave Observatory), oddalone od siebie o ponad 3 tys. kilometrów.

    Podczas seminarium, w elementarny sposób omówimy różnice między teorią grawitacji Newtona a elektrodynamiką. Następnie przedstawimy w jaki sposób Einstein zmodyfikował teorię Newtona i omówimy podstawowe eksperymenty potwierdzające jego teorię grawitacji. Wyjaśnimy, dlaczego w teorii tej, podobnie jak w elektrodynamice, występują rozwiązania falowe. Na koniec omówimy wspomniany na początku eksperyment, w którym zaobserwowano fale grawitacyjne.
  25. /316/
    Data: środa 2017.05.10, 11:00
    Prelegent: Dr Krzysztof Cichy
    Afiliacja: Instytut Fizyki Teoretycznej, Uniwersytet Goethego we Frankfurcie, Niemcy
    oraz Zakład Fizyki Kwantowej, WF UAM
    Tytuł: Chromodynamika kwantowa na sieci z fermionami twisted mass
    Streszczenie: Chromodynamika kwantowa (QCD) jest obowiązującą teorią oddziaływania silnego. W reżimie niskoenergetycznym stała sprzężenia QCD jest duża i nie jest możliwe zastosowanie rachunku zaburzeń. Jedynym podejściem dającym ilościowe przewidywania z pierwszych zasad jest sformułowanie QCD na Euklidesowej sieci czasoprzestrzennej oraz obliczenie odpowiednich całek po trajektoriach numerycznie, używając algorytmów Monte Carlo. Seminarium to poświęcone będzie wynikom uzyskanym przy użyciu jednej z najważniejszych dyskretyzacji działania fermionowego, tzw. twisted mass. Przedstawimy wnioski dotyczące nieperturbacyjnej renormalizacji, a także spektralnych, chiralnych i topologicznych własności QCD.
  26. /315/
    Date: Wednesday 2017.04.26 at 13:00
    Speaker: Dr Ravindra Chhajlany
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Control of many body features in synthetic and real materials: selected topics
    Abstract: Rapid and major advances in the field of ultracold gases in optical lattices as well as ultra-fast pump-probe spectroscopy in solids are allowing unprecedented control of strongly correlated quantum many body systems with light. In this talk we shall present two examples of such control. In the optical lattice setting, we describe a new system that can be implemented in current state-of-the-art experiments with two species of fermions and tuned to extreme parameter regimes. This system exhibits a combination of interesting features: hidden string order, hole superconducting correlations and non-trivial excitations. In the condensed matter settings, we outline a recent experiment demonstrating the switching of orbitally ordered domains in the prototypical manganite LSMO (La0.5Sr1.5MnO4) with non-resonant THz light and provide a simplified model description of the observed effect.
  27. /314/
    Date: Wednesday 2017.04.12, 14:00
    Speaker: Dr Joanna Raczkowska
    Affiliation: Wydział Fizyki, Astronomii i Informatyki Stosowanej, Uniwersytet Jagielloński, Kraków
    Title: Innovative polymer coatings for controlled interactions with proteins and cells
    (Innowacyjne pokrycia polimerowe do kontroli oddziaływań z białkami i komórkami)
    Abstract: [PDF]  In recent years the growing attention is paid to a broad interdisciplinary 'bio-interface science', on the border between physics and biology, focused at the design of novel, innovative coatings enabling to use polymer materials with the controlled physicochemical properties for biomedical applications. The biocompatibility of the material and possibility of its biomedical applications is determined by its interactions with biological material, dependent on physicochemical properties of the surface, such as chemical composition, wettability, topography or elasticity. In the lecture, the idea of controlling the physicochemical properties of the substrate in the way enabling controlled interactions between the polymer coatings and the biological material will be presented. The results of performed experiments regarding the impact of substrate elasticity on the behavior of cancerous cells at different stage of cancer progression as well as the design and complex characterization of thermoresponsive, intelligent polymer coatings with controlled physicochemical properties will be reported. Conducted studies cover numerous steps, including the design and fabrication of polymer coatings with controlled properties, their complex characterization, as well as biocompatibility tests for both, proteins and cells. The obtained results enable deeper understanding of the complex interactions on the bio-interface between the surface and biological material.
    Streszczenie: W ostatnich latach jednym z głównych kierunków rozwoju nauk z pogranicza fizyki polimerów, biologii i medycyny jest poszukiwanie innowacyjnych rozwiązań pozwalających na wykorzystanie pokryć polimerowych o kontrolowanych właściwościach fizykochemicznych do zastosowań biomedycznych. O możliwościach aplikacyjnych podłoża decyduje jego zdolność do oddziaływania z materiałem biologicznym, determinowana przez właściwości powierzchni, takie jak skład chemiczny, zwilżalność, topografia czy elastyczność. W referacie zostanie przedstawione zagadnienie możliwości kontroli właściwości fizykochemicznych podłoża w celu uzyskania kontrolowanych oddziaływań pokryć polimerowych z białkami i komórkami. Opisane zostaną wyniki badań dotyczących wpływu elastyczności podłoża na zachowanie komórek nowotworowych o różnym stopniu zaawansowania oraz tworzenia i kompleksowej charakterystyki termoprzełączalnych inteligentnych pokryć polimerowych. Badania te obejmowały szereg etapów, poczynając od zaprojektowania i wytworzenie podłoży o zadanych właściwościach, poprzez kompleksową charakterystykę ich właściwości fizykochemicznych aż do testów biokompatybilności, prowadzonych zarówno dla białek, jak i dla komórek. Otrzymane wyniki pozwalają na głębsze poznanie skomplikowanych oddziaływań zachodzących pomiędzy podłożem a materiałem biologicznym.
  28. /313/
    Date: Wednesday 2017.04.05, 14:00
    Speaker: Prof. Miroslav Holecek and mgr Milada Krejcova
    Affiliation: Faculty of Applied Sciences, Department of Mechanics, University of West Bohemia, Pilzno
    Title: Maxwell demon, Landauer principle, and stochastic processes focused on molecular motors
    Chair: dr hab. Przemysław Chełminiak
  29. /312/
    Date: Wednesday 2017.04.05, 12:00
    Speaker: Dr Pavel Baláž
    Affiliation: Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Prague, Czech Republic
    Title: Magnetic properties of Bi2Se3 3D topological insulator doped by Mn atoms: theory and numerical simulations
    Abstract: Electric conductivity [1] and ferromagnetic Curie temperature of bulk Mn-doped Bi2Se3 and Bi2Te3 3D topological insulators are systematically studied by means of atomistic Monte Carlo simulations. Exchange interactions between the Mn magnetic moments have been calculated using ab initio methods. Tight-binding linear muffin-tin orbital method has been employed, together with the coherent potential approximation to describe the high degree of disorder in the system. Spin-orbit interaction is included in the ground state calculation. In the studied materials Mn atoms might either replace a Bi atom (substitutional position) or fill an empty position in van Der Waals gap between the atomic layers (substitutional position). It has been shown that exchange interaction between Mn magnetic moments might lead to a ferromagnetic phase transition. The Curie temperature is shown to be significantly dependent on the concentration of Mn atoms in substitutional and interstitial positions.
    [1] K. Carva, J. Kudrnovský, F. Máca, V. Drchal, I. Turek, P. Baláž, V. Tkáč, V. Holý, V. Sechovský, J. Honolka, Phys. Rev. B 93, 214409 (2016).
  30. /311/
    Date: Friday 2017.03.31 at 13:00
    Speaker: M.Sc. Karam Chand
    Affiliation: University of New South Wales, Canberra Campus, Australia and Advanced Research Center, Saudi Aramco, Kingdom of Saudi Arabia.
    Title: Quantum channel capacity under realistic circumstances
    Abstract: Quantum channels can be used to transfer both classical and quantum information. The capacity of a quantum channel is defined by the upper bound of it transmission rate. The capacity improvement of a quantum channel remains an open question. In this presentation, I will discuss a systematic method to investigate quantum channel capacity in spectral domain under stringent constrained resources, particularly photons, which is then apportioned under more realistic circumstances. Here, a classical signal analysis methodology is used to match the power spectral density of the signal to the spectrum of a squeezed channel supported by a subthreshold optical parametric oscillator. Furthermore, using water-filling algorithm, I will define and declare the first time, the upper bound of the channel capacity of a quantum channel under realistic practical assumptions. Following on from that, I will establish the best signal-to-noise ratio and bit-error-rate that can be achieved for a bipolar non-return to zero digital signals imposed on the squeezed output of a sub-threshold optical parametric oscillator, for given fixed number of photons in the channel. For a range of parameters, I will establish the circumstances under which the squeezed channel can perform better than a classical channel (as supported by a coherent state). Using these techniques, I will optimize the capacity of a quantum channel for a given photon flux in the channel. This also provides the machinery needed to design experiments that would demonstrate quantum enhancement. Further discussion, if one considers mismatched parameter regime, in fact very importantly show how by increasing squeezing level decreases quantum enhancement. I will also discuss how to use these ranges of optimum parameters to design a quantum channel.
  31. /310/
    Date: Wednesday 2017.03.22, 12:00
    Speaker: Dr hab. Adam Sawicki
    Affiliation: Center for Theoretical Physics of the Polish Academy of Sciences, Warsaw
    Title: Universal quantum gates
    Abstract: I will consider the problem of deciding if a finite set of quantum one-qudit gates is universal, i.e if the generated group is either the special unitary or the special orthogonal group. To every gate I will assign its image under the adjoint representation. The necessary condition for the universality is that the only matrices that commute with all the adjoint representation matrices are proportional to the identity. If in addition there is an element in the considered group whose Hilbert-Schmidt distance from the centre is smaller than 1/√2, then the set of gates is universal. Using these I will present a simple algorithm that allows deciding the universality of any set of d-dimensional gates in a finite number of steps. Moreover, I will formulate the general classification theorem. This is a joint work with Katarzyna Karnas.
    Chair: Prof. UAM dr hab. Andrzej Grudka
  32. /309/
    Data: Środa 2017.03.22, 10:00
    Prelegent: Mgr Przemysław Sadowski
    Afiliacja: Instytut Informatyki Teoretycznej i Stosowanej PAN w Gliwicach
    Tytuł: Kwantowe wyszukiwanie z dodatkową wiedzą o sieci
    Streszczenie: Prezentowana praca jest poświęcona analizie modelu błądzenia kwantowego wzbogaconego o możliwość definiowania różnych rodzai krawędzi. Poszczególne rodzaje krawędzi definiowane są poprzez zróżnicowanie zmiany fazy następującej podczas przejścia daną ścieżką. Prezentujemy metody pozwalające lokalnie badać własności sieci oparte na rodzajach występujących krawędzi oraz sterować zachowaniem błądzenia w zależności od tych własności. W szczególności rozważamy problem przeszukiwania w przypadku gdy rodzaj krawędzi określa czy dany kierunek może prowadzić do szukanego wierzchołka.
    Przewodniczący seminarium: Dr hab. Paweł Kurzyński
  33. /308/
    Data: środa 2017.03.15, 12:00
    Prelegent: Dr Mikołaj Pochylski
    Afiliacja: Zakład Biofizyki Molekularnej, Wydział Fizyki, UAM
    Tytuł: Historia postępu w badaniach zjawiska rozpraszania Brillouina
    Streszczenie: Przewidziane blisko 100 lat, temu zjawisko rozpraszania Brillouina pozwoliło na połączenie dwóch wówczas niezależnych gałęzi fizyki: termodynamikę i optykę. Od tego czasu, systematyczny rozwój technik pomiarowych zamienił ciekawą koncepcję fizyczną w pełni rozwiniętą metodę spektroskopową wykorzystywaną w badaniach spontanicznych wzbudzeń akustycznych w materii skondensowanej.

    Podczas wystąpienia przedstawiona zostanie droga jaką przebyła metoda spektroskopii Brillouina, zaczynając od wyjaśnienia fizycznych podstaw zjawiska, które doprowadziły do jego teoretycznego przewidzenia. Zaprezentowany zostanie rozwój w konstrukcji wysoko-rozdzielczych spektrometrów optycznych, począwszy od pierwszych układów użytych do doświadczalnego potwierdzenia zjawiska rozpraszania Brillouina, aż po współczesne instrumenty wykorzystywane w fizykochemicznych badaniach materii skondensowanej. Omówiona zostanie również najnowsza konstrukcja spektrometru brillouinowskiego, dzięki której możliwy stał się szybki, bezkontaktowy i bezinwazyjny pomiar właściwości mechanicznych materii miękkiej, znajdujący zastosowanie w zagadnieniach biomedycznych.
  34. /307/
    Date: Friday 2017.03.10, 10.00
    Speaker: Prof. Michael Farle
    Affiliation: A Distinguished Lecturer of the IEEE Magnetics (2017), University of Duisburg-Essen, Germany, and Immanuel Kant Baltic Federal University, Russia
    Title: Functionalized Hybrid Nanomagnets: New Materials for Innovations in Energy Storage and Medical Theranostics
    Abstract: Imagine a future in which food is used to activate specific immune reactions in a human body based on an external noninvasive magnetic stimulus. Dream of a material that stores and releases energy reversibly by temperature changes between day and night. These visions may be realized by using magnetic nanoparticles that are functionalized to be biocompatible, environmentally stable and recyclable, self-healing, and low-cost.

    In this presentation I will discuss the basic concepts of magnetic nanomaterials and their magnetic properties with a focus on how to tune specific parameters in a controlled fashion to achieve the dreams of the future. I will highlight state-of-the-art experimental technologies that allow us to understand microscopic properties and interactions in relation to electronic structure changes caused by changes in size, shape, and composition of nanomaterials. Then I will discuss how this understanding is used when nanomagnets are functionalized for targeted drug delivery or composed to form macroscopic materials for new energetic applications like magnetic refrigeration. I will demonstrate that the seemingly complex behavior of hybrid metal/metal, metal/oxide, or oxide/oxide interface materials can be understood from the three fundamental interactions in magnetism: magnetic exchange interaction due to orbital overlap, spin-orbit interaction due to inner- and intra-atomic relativistic corrections (e.g., crystal field effects) and the long-range magnetic dipolar interaction. Several examples will be presented, including the formation of above-room-temperature ferromagnetic interface layers between low-temperature antiferromagnetic layers and the evolution of lattices of magnetic textures (skyrmions) in confined dimensions. The talk will end with an episode in the life of an imaginary golf-playing couple in the year 2040 who use their “Smart Magnet” (SMAG) phone to energize and heal their bodies on the green.
    Biography: Michael Farle received his Diploma in experimental physics, Doctorate, and Habilitation degrees from Freie Universität Berlin in 1984, 1989, and 1998, respectively. During this time he spent three and a half years as a senior researcher at Stanford University, California, and Université de Strasbourg, France. In 1999, he moved to Technische Universität Braunschweig, Germany, where he became a full professor. Since 2002, he has been working as a professor at the Universität Duisburg-Essen, Germany, where he has served as Vice-Rector for Research and Junior Scientific Staff. In 2016 he became, in addition, an adjunct professor at Immanuel Kant Baltic Federal University, Kaliningrad, Russia. Prof. Farle has published over 220 technical articles in peer-reviewed journals, including book chapters and review articles, and has given more than 60 invited presentations. He coordinated two European Research Networks and served as the vice-spokesman of Collaborative Research Center: Magnetic Heterostructures (SFB 491). Since 2014 he is chairman of the Magnetism Section of the German Physical Society. For many years he has been active on the program committees of several international conferences on magnetism. He is a member of the IEEE Magnetics Society, the German Physical Society, and is a co-editor of Materials Research Letters and Journal of Magnetism and Magnetic Materials. source: [IEEE Magnetics Society about the 2017 Distinguished Lecturer] 
    Chair: MK
  35. /306/
    Data: środa 2017.03.01, 12:00
    Prelegenci: Mgr Filip Berski i Prof. UAM dr hab. Piotr Dybczyński
    Afiliacja: Obserwatorium Astronomiczne, Wydział Fizyki, UAM
    Tytuł: Bliskie przejścia gwiazd koło Słońca w świetle pierwszych wyników misji Gaia
    Streszczenie: Od roku 1950 kiedy to Jan H. Oort sformułował swoją hipotezę o sferycznym rezerwuarze komet otaczającym Układ Słoneczny trwają badania nad bliskimi przejściami gwiazdowymi. Oort sugerował, że takie zbliżenia są jedynym źródłem komet długookresowych (LPC's) – dziś wiemy, że działają również inne mechanizmy. Jednak częstość występowania bliskich przejść gwiazdowych jest wciąż tematem dyskusji. Wynika to między innymi z faktu, że do niedawna badania gwiazd zbliżających się do Słońca w głównej mierze opierały się na danych zgromadzonych przez sondę Hipparcos w pierwszej połowie lat 90. ubiegłego wieku, na podstawie których powstał katalog zawierający wszystkie parametry astrometryczne dla około 120 000. We wrześniu ubiegłego roku został opublikowany pierwszy katalog oparty o dane zgromadzone przez sondę Gaia z pierwszych 14 miesięcy jej działania. Katalog ten zawiera niezbędne informacje dla ponad dwóch milionów gwiazd. Jednym z pierwszych wyników uzyskanych dzięki temu katalogowi jest udokładnienie parametrów przejścia gwiazdy Gliese 710, która po tej korekcie przejdzie nie 60 tys. AU od Słońca jak to wynikało z wcześniejszych badań a tylko około 13 tys. AU. Tak bliskie przejście gwiazdy spowoduje duże perturbacje w Obłoku Oort'a czego skutkiem może być nawet dziesięć nowych komet rocznie pochodzących z tej odległej części Układu Słonecznego.
    Przewodnicząca seminarium: Prof. UAM dr hab. Agnieszka Kryszczyńska
  36. /305/
    Date: Wednesday 2017.02.22, 12:00
    Speakers: Dr Michał Oszmaniec
    Affiliation: Acin's Group at the Institute of Photonic Sciences (ICFO) in Barcelona
    Title: Universal extensions of restricted classes of quantum operations
    Abstract: For numerous applications of quantum theory it is desirable to be able to apply arbitrary unitary operations on a given quantum system. However, in particular situations only a subset of unitary operations is easily accessible. This provokes the question of what additional unitary gates should be added to a given gate set in order to attain physical universality, i.e., to be able to perform arbitrary unitary transformation on the relevant Hilbert space. In this work, we study this problem for three paradigmatic cases of naturally occurring restricted gate sets: (A) particle-number preserving bosonic linear optics, (B) particle-number preserving fermionic linear optics, and (C) general (not necessarily particle-number preserving) fermionic linear optics. Tools from group theory and control theory allow to classify, in each of these scenarios, what sets of gates are generated, if an additional gate is added to the set of allowed transformations. This solves the universality problem completely for arbitrary number of particles and for arbitrary dimensions of the single-particle Hilbert space.
    After the presentation of these results, I will show they can be useful in the context of quantum metrology [1] and for the model of quantum computation based on fermionic linear optics [2,3].
    This talk is based on a joint project with Zoltan Zimboras (Freie Universitat Berlin).
    [1] M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acín, and M. Lewenstein, Phys. Rev. X 6, 041044 (2016)
    [2] Sergey Bravyi, Phys. Rev. A 73, 042313 (2006)
    [3] Fernando de Melo, Piotr Ćwikliński, Barbara M. Terhal, New J. Phys. 15 013015 (2013)
    Chair: Dr hab. Paweł Kurzyński
  37. /304/
    Data: piątek 2017.01.27, 12:00
    Prelegenci: Dr Przemysław Bartczak and M.Sc. Grzegorz Dudziński
    Afiliacja: Obserwatorium Astronomiczne, Wydział Fizyki, UAM
    Tytuł: Rekonstrukcja kształtów planetoid z obserwacji radarowych
    Przewodnicząca seminarium: Prof. Agnieszka Kryszczyńska
  38. /303/
    Date: Wednesday 2017.01.25, 12:00
    Speaker: Prof. Michał Banaszak
    Affiliation: High Pressure Physics Division, Physics Faculty, AMU
    Title: Artificial molecular machines revisited
    Abstract: The development and fabrication of mechanical devices powered by artificial molecular machines is one of the contemporary goals of nanoscience. Before this goal can be realized, however, we must learn how to control the coupling/uncoupling to the environment of individual switchable molecules, and also how to integrate these bistable molecules into organized, hierarchical assemblies that can perform significant work on their immediate environment at nano-, micro- and macroscopic levels. In this lecture we review some ideas for which the Nobel Prize in Chemistry was awarded in 2016.
  39. /302/
    Date: Wednesday 2017.01.18, 12:00
    Speaker: Prof. Piotr Tomczak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Kosterlitz-Thouless transition in 1D Heisenberg antiferromagnet: An evidence based on topological properties of the ground state
    Abstract: A Kosterlitz-Thouless phase transition in the ground state of an antiferromagnetic spin-1/2 Heisenberg chain with nearest and next-nearest neighbor interactions is re-investigated from a new perspective: A mapping of the components of the scalar product onto loops is found. One can classify these loops according to whether any two of them can be transformed into each other in a continuous way (i.e., whether they have the same winding number). A finite size scaling of the fidelity susceptibility and geometrical phase calculated in the ground state of the considered system within each class of above mentioned loops leads to the critical value of coupling constant and critical exponents with high accuracy.
  40. /301/
    Date: Friday 2017.01.13, 11:00
    Speaker: Prof. Tadeusz Domański
    Affiliation: Condensed Matter Theory Department, Marie Curie-Sklodowska University, Lublin
    Title: Majorana quasiparticles in nanoscopic superconductors
    Abstract: Recently there has been enormous interest in studying the Majorana fermions (identical with their own antiparticles) that can emerge as the effective quasiparticles in topological superconductors. They are appealing for the basic science and their non-Abelian character makes them promising for a brand new Majorana spintronics. So far the most convincing evidence for such exotic Majorana quasiparticles has been provided by tunneling measurements using, the Rashba chains brought in a contact with the s-wave superconducting samples (such as Pb). Independent experiments by groups in Delft, Princeton, Basel and Berlin have clearly indicated enhancement of the zero-bias STM conductance. Further efforts for detecting the Majorana fermions rely on novel methods, e.g. selective equal-spin Andreev reflection (SESAR), Josephson spectroscopy, fractional quantum interference etc. I shall describe main theoretical concepts beyond the Majorana-type quasiparticles, which can be regarded as mutations of the Shiba states of spinfull impurities in bulk superconductors. Next, I will illustrate non-local nature of such quasiparticles, discuss their fractionality (in comparison to ordinary electrons) and prove that they are not completely immune to disorder (despite a wide-spread belief). I will also comment on novel projects, related to localization of Majorana quasiparticles on interfaces or quantum defects.
    Chair: Prof. Ireneusz Weymann
  41. /300/
    Date: Wednesday 2017.01.11, 12:00
    Speaker: Prof. Jan Martinek
    Affiliation: Institute of Molecular Physics, Polish Academy of Sciences, Poznan
    Title: Topological phase transitions and topological phases of matter – Nobel in Physics 2016
    Chair: Prof. Antoni Wójcik
  42. /299/
    Date: Wednesday 2017.01.04, 12:00
    Speaker: Prof. Zbigniew Ficek
    Title: Beating the limit of Quantum Fluctuations
    Affiliation: National Centre for Applied Physics, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
    Abstract: All systems fluctuate and according to quantum physics fluctuations persist even if all sources of error have been eliminated. The fluctuations limit the sensitivity achieved by detectors for spectral resolution and hence they limit the accuracy to which measurements can be performed. Quantum physics imposes a limit on the fluctuations called the quantum limit of fluctuations. Fluctuations of all systems including light are subject to this limit, and it was long believed that this limit could not be suppressed. In the 1980s theoretical studies followed by experimental measurements showed that the quantum limit can be beaten using quantum technologies that employ quantum effects such as quantum interference, squeezing, and entanglement. In this talk I will review the efforts done by researchers in the field of quantum optics to search for methods to reduce or even completely suppress the undesirable effects resulting from the presence of quantum fluctuations. The talk is based on the content of a book, Z. Ficek and R. Tanaś, Quantum-Limit Spectroscopy, published by Springer in November 2016.
  43. /298/
    Date: Wednesday 2016.12.21, 12:00
    Speaker: Prof. R. Wojciechowski*, Dr hab. M. Wiesner#, Prof. A. Lehmann-Szweykowska*, and Prof. Michał Kurzyński*
    Affiliation: *Solid State Theory Division and #Crystals Physics Division, Faculty of Physics, AMU
    Title: Spontaneous and strain-mediated commensurate-incommensurate phase transformations in LiCsSO4 and similar materials
  44. /297/
    Date: Wednesday 2016.12.14, 12:00
    Speaker: Prof. Oksana Gorobets
    Affiliation: National Technical University of Ukraine “KPI” Kiev, Ukraine
    Title: Nonlinear solutions of the Landau-Lifshitz equations in antiferromagnetic materials
  45. /296/
    Date: Friday 2016.12.09, 11:30
    Speaker: Prof. Teruo Ono
    Affiliation: A Distinguished Lecturer of the IEEE Magnetics (2016), Kyoto University, Japan
    Title: Spin Dynamics in Inhomogeneously Magnetized Systems
    Abstract: Worldwide efforts are underway to create revolutionary and energy-efficient data storage technology such as magnetic random-access memory (MRAM). An understanding of spin dynamics in inhomogeneously magnetized systems is indispensable for further development of nanoscale magnetic memory. This lecture provides a clear picture of inhomogeneously magnetized systems, such as magnetic nanowires with domain walls and disks with magnetic vortices, and presents not only technological developments and key achievements but also the unsolved puzzles and challenges that stimulate researchers in the field. First, the basic concept of an inhomogeneously magnetized system is described by introducing a magnetic vortex structure in a magnetic disk. A magnetic domain wall in a magnetic nanowire is also provided as a typical example. The magnetic field-driven dynamics of these inhomogeneously magnetized systems are described to illustrate their uniqueness. Second, electric-current-induced dynamics of magnetic vortices and domain walls are described. One can flip the core magnetization in a magnetic vortex using electrical current excitation, and move a domain wall by current injection into a wire. The next part focuses on the applications of current-induced magnetization dynamics in devices. The basic operations of two kinds of magnetic memories—magnetic vortex core memory and magnetic domain wall memory—are demonstrated. The lecture describes not only the current understanding about inhomogeneously magnetized systems, but also unexpected features that have emerged. It concludes with prospects for future developments.

    Biography: Teruo Ono received the B.S., M.S., and D.Sc. degrees from Kyoto University in 1991, 1993, and 1996, respectively. After a one year stay as a postdoctoral associate at Kyoto University, he moved to Keio University where he became an assistant professor. In 2000, he moved to Osaka University where he became a lecturer and an associate professor. Since 2004, he has been working at Kyoto University, where he is now a professor. He has published over 280 technical articles in peer-reviewed journals, including book chapters and review articles, and has given more than 90 invited presentations at international conferences. He served as conference co-chair of the 8th International Symposium on Metallic Multilayers (MML) in 2013, and on the program committees of various international conferences on magnetism and spintronics. He is a member of the IEEE Magnetics Society and is an editor of the Japanese Journal of Applied Physics. source: [www.ieeemagnetics.org] 
  46. /295/
    Date: Wednesday 2016.11.16 at 13:30
    Speaker: Prof. Sylwester Porowski
    Affiliation: Instytut Wysokich Ciśnień PAN w Warszawie
    Title: Azotek galu GaN - od kryształów do struktur kwantowych
    Abstract: W prognozach głównych trendów rozwoju technologicznego i cywilizacyjnego w XXI wieku przewiduje się, że azotek galu (GaN), który jest stosunkowo nowym półprzewodnikiem, może odegrać rolę porównywalną z tą, jaką odegrał krzem w drugiej połowie XX wieku i bez którego trudno by było wyobrazić sobie obecnie funkcjonowanie świata. Nagroda Nobla z fizyki w 2014 r. dla I. Akasaki, H. Amano i S. Nakamury za skonstruowanie z GaN wydajnej diody emitującej światło niebieskie (blue LED) potwierdza trafność tych trendów. Wynalazek Noblistów pozwolił na dramatyczne zwiększenie efektywności zamiany energii elektrycznej na światło, co według szacunków amerykańskiego Departamentu Energii już w 2030 doprowadzi do zmniejszenia zużycia energii na oświetlenie w USA prawie o połowę. Na świecie badania azotku galu rozwijają się niezwykle dynamicznie i wiadomo już, że rewolucja w oświetleniu spowodowana wynalazkiem Noblistów jest dopiero początkiem przyszłych zastosowań tego półprzewodnika. Dlaczego jednak sukces tego półprzewodnika przyszedł tak późno? Które z jego własności o tym zadecydowały? Czy jest podobny do innych półprzewodników AIIIBV, czy też jest w nim jakaś tajemnica, która przez ponad 40 lat była barierą w praktycznym jego wykorzystaniu? Jakie to były bariery i jak zostały przełamane? W Polsce badania w tych dziedzinach rozwijają się bardzo intensywnie. Badania naukowe w zakresie fizyki i technologii tego stosunkowo nowego półprzewodnika są już obecnie prowadzone w 11 instytucjach naukowych. Powstały dwie firmy Ammono S. A. i TopGaN Sp. z o.o. prowadzące produkcję doświadczalną monokrystalicznych podłoży GaN oraz laserów niebieskich. Polska należy do elitarnej grupy krajów posiadających kompletną technologię produkcji niebieskich laserów (Japonia, Niemcy, USA, Polska). W prezentacji omówione zostaną niektóre wyniki polskich badań w dziedzinie w dziedzinie GaN oraz szanse na ich praktyczne wykorzystanie.
    Chair: MK
  47. /294/
    Date: Wednesday 2016.11.09, 12:00
    Speaker: Dr Michał Krupiński
    Affiliation: The H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Department of Materials Science, Kraków
    Title: Large Area Antidot and Dot Arrays with Perpendicular Magnetic Anisotropy
    Abstract: Recently, there has been growing interest in the fabrication, characterization, and modeling of patterned magnetic thin films due to their potential applications in the field of magnetic storage, sensors, radio frequency components, information processing, and magnonic crystals. This specific interest is primarily due to the possibility of controlling the magnetic properties by introducing in ferromagnetic material artificial defects such as antidots, dots or nonmagnetic inclusions arranged in ordered or disordered arrays. In particular, the hysteresis properties of such systems can be easily tailored by shape, size, and distance between the nanostructures as well as by arrays order and their symmetry. The talk will focus on the magnetic properties and switching behavior of well-ordered magnetic antidot and dot arrays consisting of Co/Pd thin films. The patterning effect as well as the influence of period and size on domain shape and domain wall behaviour will be discussed. Magnetic transition from antidot to dot regime will be also analysed.
    Chair: dr hab. Jarosław Kłos
  48. /293/
    Date: Tuesday 2016.11.08, 12:00
    Speaker: Dr Ra’anan I. Tobey
    Affiliation: Zernike Institute for Advanced Materials, University of Groningen, Netherlands
    Title: Transient Grating Spectroscopy in Magnetic Thin Films: Magnetoelastic Transients, Spin Wave Generation and Interference, and Driven Nonlinear Phenomena
    Abstract: Control of material properties is one of the driving forces in ultrafast optical sciences. The notion that light can influence intrinsic material parameters is founded on a wide range of experiments demonstrating optomagnetic control, light induced superconductivity, and the photo induced insulator to metal transition in a wide range of materials. A recent addition to the tool chest of control methodologies is the excitation of acoustic waves, and their affect on intrinsic materials properties; particularly the material magnetization via magnetostrictive effects. In this talk I will describe our recent efforts [1,2] to optically generate in-plane magnetoelastic waves in the test material nickel. Using a combination of the transient grating (TG) and Faraday techniques, we probe the magnetic dynamics of the intrinsically acoustic excitations. The dispersion characteristics of our excitations can be uniquely identified as arising from in-plane Rayleigh and longitudinal acoustic excitations while at particular values of applied external magnetic field, the acoustic excitation coherently couples to a k-vector tunable ferromagnetic resonance in the film. I will balance the talk between discussion of the experimental apparatus and its benefits as well as discussing the array of elastically actuated FMR, dipole-exchange spin waves, and nonlinearities that arise. I will also discuss open questions and potential collaborative work.

    [1] J. Janusonis et al., APL 106, 181601 (2015).
    [2] J. Janusonis et al., arXiv:1601.04350 (2016).
    Chair: dr hab. Jarosław Kłos
  49. /292/
    Date: Friday 2016.11.04, 12:00
    Speaker: Mgr inż. Łukasz Pawela
    Affiliation: Institute of Theoretical and Applied Informatics, Polish Academy of Sciences
    Title: Asymptotic distances of random quantum states and random quantum channels
    Abstract: Properties of random mixed states of dimension N distributed uniformly with respect to the Hilbert-Schmidt measure are investigated. We show that for large N, due to the concentration of measure, the trace distance between two random states tends to a fixed number ~D=1/4+1/π, which yields the Helstrom bound on their distinguishability. To arrive at this result we apply free random calculus and derive the symmetrized Marchenko-Pastur distribution, which is shown to describe numerical data for the model of coupled quantum kicked tops. Asymptotic value for the root fidelity between two random states, √F=3/4, can serve as a universal reference value for further theoretical and experimental studies. Analogous results for quantum relative entropy and Chernoff quantity provide other bounds on the distinguishablity of both states in a multiple measurement setup due to the quantum Sanov theorem. We study also mean entropy of coherence of random pure and mixed states and entanglement of a generic mixed state of a bi-partite system. For quantum channels, we show that their level density is also described by the Marchenko-Pastur distribution. This allows us to deduce some properties of the diamond norm of large dimensional quantum channels.
    Chair: Prof. UAM dr hab. Andrzej Grudka
  50. /291/
    Date: Wednesday 2016.10.26, 12:00
    Speaker: Dr hab. Katarzyna M. Rećko
    Affiliation: Faculty of Physics, University of Białystok
    Title: Magnetic structure and basic interactions of MFe4Al8 (M=Sc and U)
    Abstract: Physics of transition metals and physics of f-electron elements belong to permanently fascinating subject. The experimental and theoretical research groups are interested in the mechanisms of fundamental interactions between atoms, leading to the formation of a specific crystal structures, the conditions for the formation of magnetic moments in metals and basic interactions between magnetic moments in the conditions of metallic bonds. The importance of the symmetry as well as the nature of the magnetic interactions between even distant partners are discussed and illustrated by selected systems. The correlation between the alloy’s composition and their degree of order are taken into consideration. The aim of the research presented here was to uncover the specific mechanisms leading to frequently noncolinear and incommensurate magnetic ordering of the alloys based on metals with the typical weakly localized magnetic moments, i.e. the elements of so-called 3d block coupled through band electrons as for example in light Actinides – 5f. During the search of the mechanisms responsible for long-range magnetic ordering of intermetallic systems based on simple p– and d–electron metals, in which, after all there is no dominance of effects such as magnetocrystalline anisotropy, the main attention was devoted to the aspects of symmetry of periodic commensurate crystal structures as well as commensurate and incommensurate magnetic ones. For the sake of clarity, a brief overview of known mechanisms of direct, indirect and super- exchange interactions of the Fe atoms, which have in the neighborhood p, d or f–electrons is given together with the general review of elementary sources of anisotropy due to the components of the measured compounds. All of the presented papers concern the results of experiments performed with the use of non-polarized neutron beams in the scenario of elastic and coherent scattering. Analysis of data collected for high symmetry directions allow determination of the details of magnetic interactions of exchange constants derived within the Weiss' molecular field theory approximation of the crystal field or in the tensor resulting from a search of the exchange constants by Monte Carlo methods. Recent papers in this vein are trying to adopt the simplest models, namely the crystal field model in the conditions of the low recognition of the input anisotropy parameters of the commensurate UFe4Al8 and the distribution of magnetization in an incommensurate ScFe4Al8.
  51. /290/
    Date: Thursday 2016.10.20
    Speaker: Doc. Jan Soubusta
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Study of nonlinear magneto-optical effects
    Abstract: Nonlinear crystals are typically used when interaction of different colors of light is requested. In classical optics these nonlinear phenomena are used for second-harmonic generation, sum-frequency generation, optical parametric amplification or many other effects. In quantum optics, dealing with optical interaction on the level of individual photons, the most prominent process is spontaneous parametric down-conversion (SPDC). Influence of magnetic field on these nonlinear processes was not thoroughly tested yet. This topic deserves intensive study both from theoretical and experimental point of view, because the magnetic field can decrease the symmetry of the nonlinear crystal and so it may allow to use new types of phase-matching conditions. We started to test the SPDC process in BBO crystals. BBO is a trigonal (3m) negative uniaxial material. Nonlinear magneto-optic tensor of this material is not known and we can hardly predict it. According to our first theoretical derivation the efficiency of the nonlinear processes has to oscillate when rotating the magnetic-field orientation.
  52. /289/
    Date: Thursday 2016.10.20
    Speaker: Dr Antonín Černoch
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Construction of highly versatile four-photon source
    Abstract: We have constructed a four-photon source for quantum information processing experiments. In comparison to others implementation our source generates two different photon pairs - entangled, separable or completely mixed in polarisation.
  53. /288/
    Date: Thursday 2016.10.20
    Speaker: Dr Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Experimental measurement of the collectibility of two-qubit states
    Abstract: The talk will discuss the measurement of collectibility entanglement witness on several two-qubit states. I will present our experimental setup, the measurement procedure and then compare obtained data with theoretical prediction.
  54. /287/
    Date: Wednesday 2016.10.19, 12:00
    Speakers: Prof. Michał Kurzyński & Dr Przemysław Chełminiak
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: The very laws of dynamics do not determine organization of physical systems. What is information?
    Abstract: Self-organization in thermodynamics and quantum as well as classical mechanics is the result of spontaneous symmetry (ergodicity) breaking, i.e., a random choice in the past. Under specially tuned conditions, when the system reaches a critical dynamics, self-organization becomes hierarchical. The very self-organized criticality is possible only in open systems. We tested the hypothesis that the conformational transition networks of the natively disordered proteins have a self-organized critical structure. Using a formalism of the generalized fluctuation theorem, we shown that the biological molecular machines with such dynamics transduce not only energy but also organization, defined by the suitable physical variable. Like work and heat are changes in energy, information and entropy production/reduction are changes in this variable.
  55. /286/
    Date: Friday 2016.10.14, 12:00
    Speaker: Dr hab. Jarosław S. Kłos
    Affiliation: Zakład Fizyki Komputerowej, WF UAM
    Title: Symulacje komputerowe dendrymerów neutralnych i naładowanych
    Abstract: Dendrymery są polimerami zbudowanymi z łańcuchów liniowych (spejserów) połączonych sukcesywnie, generacja po generacji, w regularną, hierarchiczną strukturę drzewiastą. W zależności od panujących w roztworze warunków makrocząsteczki te są neutralne bądź uzyskują ładunek elektryczny. Ze względu na specyficzną, rozgałęzioną architekturę szkieletu molekularnego dendrymerów, oddziaływania objętości wykluczonej i elektrostatyczne mają duży wpływ na ich własności konformacyjne. Na seminarium zostaną przedstawione wyniki badań nad pojedynczymi, neutralnymi i naładowanymi dendrymerami z giętkimi spejserami, które przeprowadzono za pomocą gruboziarnistych symulacji komputerowych metodą Monte Carlo. Symulacje te pozwoliły na analizę rozmiaru i struktury wewnętrznej dendrymerów w szerokim zakresie liczby generacji i długości spejserów. Dla dendrymerów obdarzonych ładunkiem wykonane obliczenia umożliwiły obserwację i jakościowy opis efektu ich „puchnięcia” w warunkach neutralnego i niskiego pH.
  56. /285/
    Date: Friday 2016.10.14, 10:00
    Speaker: Dr hab. Arkadiusz Józefczak
    Affiliation: Zakład Akustyki Molekularnej, Instytut Akustyki, WF UAM
    Title: Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia
    Abstract: Ultrasonic hyperthermia is a method of cancer treatment in which tumors are exposed to an elevated cytotoxic temperature using ultrasound (US). In conventional ultrasonic hyperthermia, the ultrasound-induced heating in the tumor is achieved through the absorption of wave energy. However, to obtain appropriate temperature in reasonable time, high US intensities, which can have a negative impact on healthy tissues, are required. The effectiveness of US for medical purposes can be significantly improved by using the so-called sonosensitizers, which can enhance the thermal effect of US on the tissue by increasing US absorption. One possible candidate for such sonosensitizers are magnetic nanoparticles with mean sizes of 10-300 nm, which can be efficiently heated because of additional attenuation and scattering of US. Additionally, magnetic nanoparticles are able to produce heat in the alternating magnetic field (magnetic hyperthermia). The synergetic application of ultrasonic and magnetic hyperthermia can lead to a promising treatment modality. [A. Józefczak et al., App. Phys. Lett. 108, 263701 (2016)].
  57. /284/
    Date: Wednesday 2016.10.12, 12:00
    Speaker: Dr hab. inż. Bartłomiej Salski
    Affiliation: Instytut Radioelektroniki i Technik Multimedialnych, Politechnika Warszawska
    Title: Novel understanding of resonant modes in YIG microwave filters – experiments and electrodynamic study
    Abstract: Numerical solutions of coupled Maxwell and Landau-Lifshitz-Gilbert equations for a magnetized yttrium iron garnet (YIG) sphere acting as a one-stage filter will be discussed. The filter will be analysed using finite-difference time-domain technique. Contrary to the state of the art, it will be shown that the maximum electromagnetic power transmission through the YIG filter occurs at the frequency of the magnetic plasmon resonance with the effective permeability of the gyromagnetic medium , and not at a ferromagnetic resonance frequency. Such a new understanding of the YIG filter operation, makes it one of the most commonly used single-negative plasmonic metamaterials. The frequency of maximum transmission is also found to weakly depend on the size of the YIG sphere. An analytic electromagnetic analysis of resonances in a YIG sphere is performed for circularly polarized electromagnetic fields.
  58. /283/
    Date: Friday 2016.10.07, 12:00
    Speaker: Dr hab. Krzysztof Gibasiewicz
    Affiliation: Molecular Biophysics Division, Physics Faculty, AMU
    Title: Energy and electron transfer in photosynthetic proteins - fundamental and applied studies
    Abstract: During the lecture I will briefly present the results of my and my group’s studies being conducted within the last six years. Most of them comes from the fundamental experimental studies performed using the optical spectroscopic techniques on photosynthetic proteins isolated from bacteria, algae, and plants. These studies contributed, among others to understanding the role of the protein dynamics in intraprotein electron transport. I will also present our attempts to use the photosynthetic proteins in solar cells.
  59. /282/
    Date: Friday 2016.10.07, 10:00
    Speaker: Dr hab. Paweł Kurzyński
    Affiliation: Quantum Electronics Division, Faculty of Physics, Adam Mickiewicz University and Centre for Quantum Technologies, National University of Singapore
    Title: Indistinguishability, strong correlations and their dynamics in the quantum world
    Abstract: Quantum particles exhibit peculiar correlations that cannot be described by classical theories. These correlations are responsible for various physical phenomena and they lie at the heart of modern information theory. Additional complex features of quantum correlations are manifested when the underlying particles are fundamentally indistinguishable and when their dynamics occurs in interacting and open systems. In this talk I will present my recent results on how to describe, detect and model the evolution of quantum correlations in various scenarios. I will also discuss my future research directions related to this topic.
  60. /281/
    Date: Wednesday 2016.10.05, 10:00
    Speaker: M.Sc. Justyna Łodyga
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Measure-independent conditional uncertainty principle
    Abstract: The uncertainty principle, which states that certain sets of quantum-mechanical measurements have a minimal joint uncertainty, has many applications in quantum cryptography. But in such applications, it is important to consider the effect of a (sometimes adversarially controlled) memory that can be correlated with the system being measured. The information retained by such a memory can in fact diminish the uncertainty of measurements. Recently, different uncertainty relations in the presence of memory were formulated in terms of the von Neumann conditional entropy. However, the entropy is not the only measure that can be used to quantify conditional uncertainty. Here, we develop a general operational framework that formalizes the concept of conditional uncertainty in a measure-independent form. Our formalism is built around a mathematical relation that we call conditional majorization. We define and characterize conditional majorization and demonstrate the use of this framework by deriving measure-independent conditional uncertainty relation in a tripartite scenario. In particular, we provide a state-independent lower bound on the minimal joint uncertainty that two remote parties (Bob and Eve) have about the outcome of a given pair of measurements performed by a third remote party (Alice), conditioned on arbitrary measurements that Bob and Eve make on their own systems.
  61. /280/
    Date: Wednesday 2016.06.29, 12:00
    Speaker: Prof. Richard J. Spontak
    Affiliation: Department of Chemical & Biomolecular Engineering, and Materials Science & Engineering, North Carolina State University, Raleigh, U.S.A.
    Title: The Dawning of a New Age for Thermoplastic Elastomers as Functional Materials
    Abstract: With recent advances made in the design and development of multifunctional polymeric materials, elastomers derived from triblock copolymers are in a good position to meet contemporary materials challenges and explore new technological opportunities. In this spirit, we consider the versatility of thermoplastic elastomer (TPE) systems, which provide an attractive alternative to chemically cross-linked materials because of their ability to microphase-separate and form nanostructures connected by a physically cross-linked network capable of withstanding substantial deformation. We first consider the stimuli responsiveness of triblock copolymers in the presence of midblock-selective additives. Upon incorporation of a midblock-selective oligomer, the molecular network formed by such copolymers can be tunably swollen to yield highly elastic soft systems, which exhibit composition-tunable mechanical properties (including time-composition rheological equivalence), as well as remarkable electromechanical properties. The morphological features and mechanical properties of swollen TPE gel systems generated from commercial and model styrenic TPEs will be surveyed. These materials, subjected to electrical stimulation as electroelastomers (i.e., dielectric elastomers) between compliant electrodes, are shown to achieve actuation strains greater than 300% and electro­mechanical coupling efficiencies in excess of 90%. The electrostatic mechanism by which electroactuation proceeds, as well as comparisons with other materials, will be discussed. Unlike conventional dielectric elastomers composed of chemically cross-linked elastomers, these copolymer systems are easily processable and broadly tunable in terms of composition, concentration and molecular weight, and they exhibit little cyclic hysteresis. In the case of acrylic TPEs, electroactuation occurs without the need for mechanical prestrain (often required to thin specimens so that lower voltages can be used to achieve high fields). These same triblock copolymers can be designed in conjunction with liquid metals to yield ultrastretchable/flexible electronic wires and antennae capable of remaining conductive beyond 1000% strain, as well as with phase-change additives to impart high-fixity/recovery shape memory. Incorporation of a charged midblock permits addition of polar additives that can further extend the scientific and technological diversity of TPEs. Development of stimuli-responsive, hyperelastic and shape-recovering polymeric materials, such as those to be presented here, is critical for emerging applications such as (micro)robotics, microfluidics and various biomedical devices.
  62. /279/
    Date: Wednesday 2016.06.15, 12:00
    Speaker: Prof. Ireneusz Weymann
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Andreev transport in hybrid quantum dots
    Abstract: We will discuss the transport properties of quantum dots coupled to superconducting and normal electrodes, focusing on the transport regime where the current flows due to Andreev reflection. In the case of weak coupling between the leads and the dot, we show that Andreev current exhibits a nontrivial dependence on the bias and gate voltages, which is also reflected in magnetoresistive properties of the device. Moreover, we predict a zero-bias anomaly of the Andreev differential conductance in the parallel configuration of leads’ magnetizations, which is associated with a nonequilibrium spin accumulation in the dot triggered by Andreev processes. On the other hand, in the case of strong coupling between the leads and the dot, we study the influence of electron pairing on the Kondo state and show that the emerging Kondo resonance can be significantly enhanced by increasing the coupling to superconducting lead.
  63. /278/
    Date: Wednesday 2016.06.08, 12:00
    Speaker: Prof. Marek Cinal
    Affiliation: Institute of Physical Chemistry, Polish Academy of Science, Warsaw
    Title: Magnetic damping in metallic layered systems
    Abstract: Dynamic magnetic phenomena, such as magnetization switching by spin transfer torque and the current-induced motion of domain walls, are strongly affected by spin relaxation. The Landau-Lifshitz-Gilbert equation which describes magnetization dynamics and is used as the basis for micromagnetic simulations, accounts for spin relaxation by the inclusion of the phenomenological damping term. The microscopic origin of the Gilbert damping is the spin-orbit interaction which also plays the key role in other effects of high relevance to spintronic applications. The talk will present quantum mechanical calculations of the Gilbert damping constant in magnetic layered systems (ferromagnetic films, ferromagnet/nonmagnet bi-, tri-, and multilayers built of transition metals) within the torque-correlation model. It will be reported how the damping constant depends on the type of nonmagnetic layers and the geometric dimensions of the considered structures. The origin of such dependences, including nonlocal damping in magnetic trilayers, will be analyzed using the spatial decomposition of the damping constant. In particular, the conditions for the enhancement of the Gilbert damping will be discussed.
  64. /277/
    Date: Monday 2016.06.06, 12:00
    Speaker: Dr Felix Pollock
    Affiliation: School of Physics & Astronomy, Monash University, Australia
    Title: How often does nature forget? The characterisation and statistics of non-Markovian quantum processes
    Abstract: In all but the most trivial open quantum process, some amount information about a system's state will be `remembered' by its environment, influencing the system's future evolution. However, in practice, the assumption of environmental `forgetfulness' or Markovianity is almost always made. This is partly for practical reasons - until now there has been no unified framework to describe the most general non-Markovian quantum dynamics - but also remarkably, because the Markovian assumption appears to be valid in many cases. I will present a new scheme for operationally characterising non-Markovian quantum processes, which both gives a theoretical understanding of such processes and provides a recipe for reconstructing them experimentally. Moreover, this scheme yields a natural measure on the space of of all processes, which I will use to ask the question: how Markovian is nature on average?
  65. /276/
    Date: Wednesday 2016.05.25, 12:00
    Speaker: M.Sc. Marcin Jarzyna
    Affiliation: Faculty of Physics, University of Warsaw
    Title: Superadditivity in classical communication from a quantum parameter estimation perspective
    Abstract: We point out a contrasting role the entanglement plays in communication and estimation scenarios. In the case of communication it brings benefits both at the detection and input stages, the facts known as output and input super-additvity respectively. On the other hand, in estimation it is only the entanglement of the input probes that enables performance enhancement and we do not observe output super-additivity. We identify a regime where a connection between concepts crucial to the two fields is demonstrated. This allows us to shed new light on the problem of super-additivity in communication.
  66. /275/
    Date: Tuesday 2016.05.17, 12:00
    Speaker: Prof. Keith E. Gubbins
    Affiliation: Department of Chemical Biomolecular Engineering, North Carolina State University, Raleigh, U.S.A.
    Title: Confinement-induced high pressure phases in nanopores: Can the pressure be in the megabar range?
    Abstract: [PDF]  There is an abundance of anecdotal evidence that nanophases adsorbed within nanoporous materials can exhibit high pressures as a result of the confinement [1,2]. For example, phase changes and chemical reactions that only occur at high pressures in the bulk phase occur in the confined phase at bulk phase pressures that are orders of magnitude lower. The pressure in the pore is a second order tensor, and for simple pore geometries has both a normal pressure component (normal to the walls) and one or more tangential components (parallel to the walls). For simple fluids in pores that are up to a few nanometers in width, molecular simulations show that both the normal and tangential pressures can be locally very high (thousands or tens of thousands of bars) in the pore, even though the bulk phase in equilibrium with the pore is at a pressure of one bar or less. The cause of these high in-pore pressures will be discussed, and where possible comparison with experimental results will be made [3]. When the molecules in the confined nanophase react with each other chemically it may be possible to achieve even higher tangential pressures, in the megabar range. Evidence for this is provided by recent experiments on sulfur (an insulator at ambient conditions) in narrow single-walled carbon nanotubes, carried out by Kaneko and coworkers [4]. They find that the sulfur atoms within the pore covalently bond to form a one-dimensional phase that is metallic. In the bulk phase sulfur forms a metallic phase only at pressures above 95 GPa. In our recent molecular dynamics simulations of this system we find that the sulfur atoms are covalently bonded in the pore and that they experience tangential pressures in excess of 100 GPa as a result of the strong confinement [5].

    [1] Yun Long, Jeremy C. Palmer, Benoit Coasne, Małgorzata Śliwinska-Bartkowiak and Keith E. Gubbins, “Pressure enhancement in carbon nanopores: A major confinement effect”, Physical Chemistry Chemical Physics, 13, 17163-17170 (2011).
    [2] Yun Long, Jeremy C. Palmer, Benoit Coasne, Małgorzata Śliwinska-Bartkowiak, George Jackson, Erich A. Müller and Keith E. Gubbins, “On the Molecular Origin of High Pressure Effects in Nanoconfinement: Effects of Surface Chemistry and Roughness”, Journal of Chemical Physics, 139, 144701 (2013).
    [3] M. Śliwinska-Bartkowiak,H. Drozdowski, M. Kempinski, M. Jazdzewska, Y. Long, J.C. Palmer and K.E. Gubbins, „Structural Analysis of the Behavior of Water Adsorbed in Activated Carbon Fibers”, Physical Chemistry Chemical Physics, DOI: 10.1039/C2CP22111J (2012).
    [4] Y. Fujimori, A. Morelos-Gómez, Z. Zhu, et al., “Conducting Linear Chains of Sulphur Inside Carbon Nanotubes”, Nature Comm., 4, DOI 10.1038/ncomms3162 (2013).
    [5] K.E. Gubbins, C.A Addington and J.M. Mansell, to be published.
    Chair: Prof. Małgorzata Śliwińska-Bartkowiak
  67. /274/
    Date: Thursday 2016.05.12, 12:00
    Speaker: Dr Maria Rosário Correia
    Affiliation: Auxiliary Professor of Physics Department of University of Aveiro, Researcher at I3N Associated Laboratory-Aveiro, Departmental coordinator of Erasmus+ and Campus Europae
    Title: Raman Spectroscopy in the study of structural and optical properties of different semiconductor nanostructures
    Abstract: For desired applications, a deep knowledge of the materials optical properties should be thoroughly investigated to improve their efficiency and device development. The Raman spectroscopy has been proved to be a powerful nondestructive technique that enables the investigation of the structural, electronic and optical properties of semiconductors nanostructures. In this talk an overview of the fundamental theoretical aspects of Raman scattering in will be given. The potentialities of the technique on the characterization of different semiconductor structures, will discussed based on cases study. The effect of the strain and compositional effects on the optical phonons of semiconductors based alloys, doping effects on the polar optical phonons, resonant effects, and confined effects in nanostructures are highlighted.
    Chair: Prof. Krzysztof Grygiel
  68. /273/
    Date: Wednesday 2016.05.11, 12:00
    Speaker: Prof. Marcus Münzenberg
    Affiliation: Department of Physics, Ernst-Moritz-Arndt-University, Greifswald, Germany
    Title: Ultrafast dynamics of spins and spin currents: magnetic storage and spintronic THz emitter
    Abstract: [PDF]  Magnetization manipulation is an indispensable tool for both basic and applied research. I will discuss some of the knobs to tune dynamics at ultrafast time scales. The dynamics of the response depends on the energy transfer from the laser excited electrons to the spins within the first femtoseconds. This determines the speed of the ultrafast magnetization: if the electrons are driven to a strong excitation density, a second slower process is found. This slowdown is a signature of the intrinsic ferromagnetic electron correlations in a ferromagnet. One possibility of control is to shape the properties of the electronic system. A special material of interest for magnetic storage development is FePt. This material allows an interesting modification of its density of states: Pt alloying increases the magnetic anisotropy and reduces the number of states at the Fermi level making it “more noble”. Consequently, the electron temperature shoots to higher values above the Curie temperature, a precondition for all-optical writing [1,2]. On the other side due to the non-equilibrium electron distribution, also ultrafast currents are generated and contribute to the laser driven spin dynamics. Similarly, to shaping the density of states in the first example, adjacent layers of a noble metals like Pt, Au or transition metals like W, Ta, Ru can shape the THz spin currents and convert ultrafast laser-driven spin currents via the ultrafast spin-Hall effect into a charge current burst. This opens a way towards novel THz spintronic devices: optimizing thicknesses and layers, we can realize efficient metallic THz spintronic emitters of ultra-broadband terahertz radiation competing with state-of-art photo-conductive switches THz emitters used for airport security [3,4].

    [1] J. Mendil, P. C. Nieves, O. Chubykalo-Fesenko, J. Walowski, M. Münzenberg, T. Santos, S. Pisana, Sci. Rep. 4, 3980 (2014).
    [2] U. Atxitia, O. Chubykalo-Fesenko, J. Walowski, A. Mann, and M. Münzenberg, Phys. Rev. B 81, 174401 (2010).
    [3] T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarskyy, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, M. Münzenberg, Nature Nanotech. 8, 256 (2013).
    [4] T. Seifert, et al. arXiv:1510.03729
    Chair: dr hab. Jarosław W. Kłos
  69. /272/
    Date: Wednesday 2016.05.04, 12:00
    Speaker: Dr Michał Mruczkiewicz
    Affiliation: Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
    Title: Particular Properties of Spin Waves in Magnonic Crystals
    Abstract: In the presentation I will show the results of investigation on spin waves in periodic ferromagnetic structures (magnonic crystals). The patterning at nanoscale permits to alter the propagation of spin waves and modify their properties. The focus of study is put on the following topics related to spin waves properties: i) standing spin wave formation in magnonic crystals ii) metamaterial properties for electromagnetic waves propagating through magnonic crystal, iii) nonreciprocal dispersion of spin waves and iv) collective dynamical skyrmion excitations in the arrays of magnetic dots.
  70. /271/
    Date: Wednesday 2016.04.20, 10:00
    Speaker: Prof. Antoni Wójcik
    Affiliation: Zakład Elektroniki Kwantowej, Wydział Fizyki UAM
    Title: Klasyczne splątanie czyli poplątanie pojęć
    Abstract: Seminarium będzie kontynuacją zeszłorocznego seminarium profesora Ryszarda Tanasia, na którym zaprezentowane zostały wyniki dotyczące tzw. klasycznego splątania. Chciałbym przedstawić ujednolicony i uproszczony model kilku różnych eksperymentów (Phys. Rev. Lett. 88 (2002) 097902, Sci.Rep. 5 (2015) 9175, arxiv: 1406.3338, arxiv: 1511.02265, arxiv: 1511.08144), których wyniki autorzy interpretują w kategoriach nieklasycznych korelacji klasycznych obiektów. Prosty model pozwala na krytyczne odniesienie się do takich interpretacji i pozwala lepiej zrozumieć sens mierzonych parametrów.
  71. /270/
    Date: Monday 2016.04.18, 12:00
    Speaker: Dr Maciej Bilicki
    Affiliation: Sterrewacht Leiden, Universiteit Leiden, Netherlands
    Title: Observational cosmology with the largest surveys of galaxies
    Abstract: One of the pillars of the standard cosmological model is the observed distribution of galaxies on the largest scales, from our cosmic neighbourhood to the farthest possible distances. I will shortly describe how our knowledge of this distribution is being gathered thanks to galaxy surveys, with a short historical summary as well as the current status and future prospects. I will also mention examples of cosmological information that can be derived from such data and finally I will present my own and my collaborators' work on such surveys, with an emphasis on data sets covering the full extragalactic sky.
    Chair: Dr Agata Karska
  72. /269/
    Date: Wednesday 2016.04.13, 12:00
    Speaker: Prof. Tomasz Stobiecki
    Affiliation: Katedra Elektroniki, Akademia Górniczo-Hutnicza w Krakowie
    Title: Nanourządzenia elektroniki spinowej: magnetyczne złącza tunelowe i spin-torque oscylatory
    (przegląd badań prowadzonych na AGH)
    Abstract: [PDF]  W referacie omówię wyniki badań prowadzonych w Katedrze Elektroniki AGH nad magnetycznymi złączami tunelowymi z anizotropią magnetyczną w płaszczyźnie i prostopadłą, zwracając szczególną uwagę na prąd krytyczny potrzebny do przełączenia magnetyzacji i stabilność termiczną złącza. Na przykładzie magnetorezystancyjnych nanoelementów (AMR, GMR i TMR), działających w oparciu o efekt diody spinowej przedyskutuję wzbudzenia jednorodnych modów FMR i fal spinowych.
  73. /268/
    Date: Wednesday 2016.04.6, 12:00
    Speaker: Prof. Andrzej Wawro
    Affiliation: Institute of Physics of the Polish Academy of Sciences, Warsaw
    Title: Cienkowarstwowe nanokropki magnetyczne indukowane strukturyzowanym podłożem
    Abstract: [PDF]  Wykorzystując samoorganizujący się wzrost wysp Au o rozmiarach kilkudziesięciu nanometrów na powierzchni warstwy Mo [1] oraz silną zależność anizotropii magnetycznej ultracienkiej warstwy Co od rodzaju bufora, na którym jest ona osadzana, wytworzono w systemie MBE (molecular beam epitaxy) układ epitaksjalnych kropek magnetycznych [2, 3]. Kropki stanowi ta część warstwy Co, która jest osadzona na powierzchni wysp Au. Są one otoczone matrycą – warstwą Co osadzoną bezpośrednio na powierzchni Mo, pomiędzy wyspami Au. W zależności od grubości warstwy Co kropki i matryca charakteryzują się różnymi wzajemnymi kierunkami namagnesowania. Szczególna uwaga poświęcona jest konfiguracji, w której kropki są namagnesowane prostopadle do płaszczyzny warstwy, a namagnesowanie matrycy leży w jej płaszczyźnie. Stan remanencyjny układu oraz procesy przemagnesowania kropek badane są przy pomocy techniki magnetooptycznej (PMOKE) oraz mikroskopii sił magnetycznych (MFM). Magnetyczny jednodomenowy charakter w dużym zakresie rozmiarów kropek wynika z wysokiej jakości ich struktury krystalicznej. Skorelowano wielkość pola przełączania magnetycznego kropek z ich rozmiarami. Przeprowadzono symulacje mikromagnetyczne ilustrujące procesy przemagnesowania kropek oraz profile namagnesowania [4]. Symulacje te wykonano dla rozmiarów i kształtów kropek obserwowanych w eksperymencie. Poddano również analizie wpływ wewnętrznej struktury kropek typu core/edge. Zaproponowano diagram fazowy stanów magnetycznych i mechanizmów przemagnesowania kropek w funkcji parametrów opisujących ich strukturę.

    [1] A. Wawro et al., Nanotechnology 21 (2010) 335606.
    [2] A. Wawro et al., Europhys. Lett. 89 (2010) 37003.
    [3] A. Wawro et al., Phys. Rev. B 83 (2011) 092405.
    [4] E. Milińska and A. Wawro, J. Appl. Phys. 116 (2014) 193905.
  74. /267/
    Date: Wednesday 2016.03.23, 12:00
    Speaker: Prof. Igor Lyubchanskii
    Affiliation: Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine and Department of Physics and Technology, Donetsk National University
    Title: Cascading processes in the nonlinear diffraction of light by standing acoustic waves
    Abstract: The contribution of two types of cascading process to the nonlinear optical diffraction of electromagnetic waves from a standing acoustic wave in a GaAs crystal is theoretically studied. The first type of cascading process results from second-harmonic generation followed by linear acousto-optical diffraction, while the second type involves linear acousto-optical diffraction from the standing acoustic wave and subsequent sum-frequency generation. In contrast to the third, direct, nonlinear acousto-optical diffraction process we previously investigated, the photoelastic interaction between electromagnetic and acoustic waves is here linear. We establish the rules governing the cascading processes and show that in most cases the output signal simultaneously results from two or even three of the possible nonlinear diffraction mechanisms. However, we demonstrate that a careful choice of the incidence angles of the incoming electromagnetic waves, of the polarization combinations of the incoming and diffracted waves, and of the type of acoustic wave (longitudinal or transverse) makes it always possible to distinguish between the direct and either of the two cascading processes.
  75. /266/
    Date: Wednesday 2016.03.9, 12:00
    Speaker: Prof. Joanna Trylska
    Affiliation: Centre of New Technologies, University of Warsaw
    (Centrum Nowych Technologii Uniwersytetu Warszawskiego)
    Title: Molecular dynamics simulations of ribosomal RNA
    Abstract: RNA has a complicated tertiary architecture and its internal dynamics is often related to function. To investigate the flexibility of RNA molecules we apply molecular dynamics simulations using different approximations; from all-atom representation in explicit solvent to simplified coarse-grained models. I will present examples of applications of molecular dynamics simulations to ribosomal RNA and experiments to determine thermodynamics of various ribosomal RNA fragments.
  76. /265/
    Date: Thursday 2016.03.3, 16:00
    Venue: Seminar room in Nano-Bio-Med Centre
    Speaker: Prof. Kwong-Yu Chan
    Affiliation: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
    Title: Polyelectrolyte Threaded in Metal-Organic Framework: A Lattice Boltzmann Material?
    Abstract: A new concept of structuring fixed charges in the nanoscale for optimum ion exchange performance is introduced. Crystalline porous charge exchange materials such as zeolites are inflexible and are restricted to cation exchange. Polymer resins have irregular porous structures. Fixed charges hidden by hydrophobic forces are exposed only after swelling in aqueous immersion. Threading polyelectrolyte chains into metal organic frameworks (MOF) form a superior ion exchange material that possesses advantages of both ceramic and polymeric domains. We report two new composites of polyelectrolytes synthesized within a MOF structure [1, 2].
    Cation exchange function is provided by sodium poly(4-styrene sulfonate) threaded in MIL-101 denoted as NaPSS MIL-101.[1] It is synthesized directly with polymerization in situ of the MOF, as shown in Figure 1. The NaPSS MIL-101 polyelectrolyte threaded in MOF has high surface area of 1850 m2/g and a large specific volume 0.85 mL/g. Figure 2(a) compares the ion adsorption kinetics to commercial ion-exchange resin IR-120. Excellent selectivity based on charge is demonstrated when NaPSS MIL-101 is immersed into a solution of two organic dyes, as shown in Figure 2(b). The anionic Acid Blue 9 is excluded though it has significant van der Waals affinity to high surface porous materials.Another example of polyelectrolyte synthesized in MOF is demonstrated by anionic polyvinyl benzyl trimethylammonium hydroxide (PVBTAH) threaded in ZIF-8 (PVBTAH ZIF-8), with structure shown in Fig. 3 [2].
    The high porosity, high surface area, uniform and ordered structure of metal organic frameworks provide fast reversible ion transport in a rigid nanoporous structure. On the other hand polyelectrolyte chains have their charges well separated and organized by the MOF framework, with reversible and local flexibility for ion-exchange function, as illustrated in Figure 3. This is analogous to the Lattice-Boltzmann model of discretizing and localizing dynamics of polymeric chains over a grid.

    [1] Liang Gao, Chi-Ying Vanessa Li, and Kwong-Yu Chan, "Polystyrene Sulfonate threaded in MIL-101Cr(III): a Cationic Polyelectrolyte Synthesized Directly into a Metal-Organic Framework", Chem. Mater. DOI: 10.1021/cm504623r. Publication Date (Web): April 30, 2015.
    [2] L. Gao, C.Y. V. Li, K.Y. Chan, and Z.N. Chen, "Metal-Organic Framework Threaded with Aminated Polymer Formed in Situ for Fast and Reversible Ion Exchange", J. Am. Chem. Soc. 136 (2014) 7209-7212.
    Chair: Prof. Stefan Jurga
  77. /264/
    Date: Wednesday 2016.02.10, 12:00
    Speaker: Dr hab. Izabela Szafraniak-Wiza
    Affiliation: Institute of Materials Science and Engineering, Poznań University of Technology
    Title: Ferroelectric perovskites for modern electronics
    Abstract: Ferroelectric materials offer a wide range of useful properties such as spontaneous polarization, pyroelectric, piezoelectric, and electro-optic effects that can be applied in non-volatile memories, actuators, transducers, and thermal sensors. From technological point of view several important issues concerning applications of ferroelectrics (like size effects, one dimensional structures, lead-free materials, multiferroic bismuth ferrite) are important and will be presented in this talk. Perovskites and perovkite-like compounds are conventionally obtained by solid-state reactions or wet-chemistry. The methods are related to high production costs and have serious disadvantages. A much less expensive alternative to the chemistry-based techniques is a direct synthesis from respective oxides at room temperature via mechanically triggered chemical reaction. The room temperature synthesis lowers the fabrication costs, eliminates the undesirable losses of volatile elements and enables the control of chemical and stoichiometry composition. The method has been recently used to obtain nanocrystalline electroceramic materials of perovskite structure like BiFeO3, PZT, Ba(Ti,Ca)O3, Ba(Fe1/2Nb1/2)O3, Bi3TiNbO3. The influence of the mechanochemical synthesis or mechanical activation on the final properties of the nanopowders and/or ceramics (obtained from those powders) will been discussed.
  78. /263/
    Date: Friday 2016.01.29, 12:00
    Speaker: Prof. Jan Perina Jr.
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Science of the Czech Republic, Olomouc, Czech Republic
    Title: Coherence and dimensionality of twin beams generated from depleted pump fields
    Abstract: Using the model of parametric interaction based on the spatio-spectral Schmidt modes and generalized parametric approximation, we analyze coherence and mode structure of ultra-intense twin beams generated in the regime with pump depletion. We show that the increase of spatial and spectral coherence with the increasing pump power observed for moderate powers is replaced by the decrease for the pump powers at which pump depletion occurs. This behavior of coherence is opposed to that exhibited by the number of spatio-spectral modes effectively constituting the twin beam. The conditions for maximal coherence are analyzed considering pump-beam parameters (spectral width, transverse radius). The existence of additional coherence maxima occurring at even higher pump powers is predicted and explained by the oscillatory evolution of the modes' populations. Comparison with the experimental results is discussed.
  79. /262/
    Date: Wednesday 2016.01.27, 12:00
    Note: A short tutorial on "How to apply for ERC grants" will follow at 14:30.
    Speaker: Dr Stefan Gillessen
    Affiliation: Max-Planck-Institut für extraterrestrische Physik, Garching, Germany
    Title: The Galactic Center: A unique astrophysical laboratory
    Abstract: [PDF]  Located at 8kpc only, the Galactic Center allows studying a galactic nucleus in unparalleled detail. With the advent of high-resolution, near-infrared instrumentation in the last decade it became possible to follow individual stellar orbits around the radio source Sgr A* with orbital periods as short as 12 years. The orbits provide compelling evidence for the massive black hole paradigm. The next generation near-infrared instrument GRAVITY aims at interferometrically combining the light of the four telescopes of ESO's VLT. The higher resolution will allow monitoring stellar orbits with orbital periods of 1 year only, and the relativistic prograde periastron precession gets accessible. The astrometric accuracy of GRAVITY is of order of the event horizon size of Sgr A*. This means that we might have access to measuring the spin of Sgr A*. In the past few years the small gas cloud G2 has been approaching Sgr A*. We were able to follow the tidal evolution of G2 for a decade, beautifully showing how the object got stretched ever more and how it passed the point of closest approach in 2014. The cloud is a unique probe of Sgr A*'s atmosphere, and we have observational hints that gas passing so close to Sgr A* experiences a drag force.

    Recommended popular articles:
    Gas cloud in the galactic centre 
    ERC Starting Grant for Stefan Gillessen 
    Obiad czarnej dziury szybko się zbliża 
    Chair: Dr Agata Karska
  80. /261/
    Date: Wednesday 2016.01.13, 12:00
    Speaker: Dr Agata Karska
    Affiliation: Astronomical Observatory of AMU
    Title: Interstellar molecules: A key to understand how stars like our Sun form
    Abstract: Stars form continuously in the dense and cold molecular clouds in our Galaxy. At the earliest stages of their formation, the proto-stars are surrounded by large amounts of dust and gas which make them invisible in the optical light. The most useful are in fact far infrared wavelengths containing the maximum of the dust emission and the key molecular transitions. The latter are a powerful tool to investigate the physical conditions of the gas and thus the physical phenomena at play during the star formation. In my talk, I will present the state-of-the-art spectroscopy of star forming regions from the Herschel Space Telescope. I will show how the observations of interstellar molecules such as water and carbon monoxide help astronomers to understand the physics of essentially hidden stages of star formation.

    Popular articles in Polish:
    Na początku jest woda 
    Zanim zabłysną 
    Astronomka z Poznania asystuje przy narodzinach gwiazd 
  81. /260/
    Date: Friday 2016.01.8, 12:00
    Speaker: Dr Koji Maruyama
    Affiliation: Osaka City University, Osaka, and Waseda University, Tokyo, Japan
    Title: Hamiltonian identification under limited access with minimal pre-knowledge
    Abstract: In order to control a quantum system, we need the full information on its Hamiltonian. Yet, how can we know all the entries of a Hamiltonian matrix, especially when the system is large and our access is limited? The problem of Hamiltonian identification under limited access has recently been studied quite actively. Here, after reviewing our results, we ask a more ambitious question along the same lines; what if we don’t know anything about the system and we still attempt to estimate its Hamiltonian through a small gateway? We shall discuss how we can probe such an ‘untouchable’ system E through a small gateway system S, paying a close attention to the equivalence class induced by the limitedness of access. The insight obtained hereby would open up a possibility of controlling a large quantum system with only a few parameters.
  82. /259/
    Date: Friday 2016.01.8, 10:00
    Speaker: Dr Koji Maruyama
    Affiliation: Osaka City University, Osaka, and Waseda University, Tokyo, Japan
    Title: Maxwell’s demon and the physics of information
    Abstract: The paradox of Maxwell’s demon is probably the most famous example, in which physics (particularly thermodynamics) and the concept of information are linked. The tricky point of this paradox is in the necessity of the quantitative consideration of information acquisition by measurement. The related argument strengthened our notion that information processing is physical, and formed a firm basis of the science of quantum information. We will review the history of the efforts to resolve the paradox, the final exorcism by Landauer and Bennett, as well as some interesting consequences of the 2nd law [1].

    [1] Koji Maruyama, Franco Nori, and Vlatko Vedral, Rev. Mod. Phys. 81, 1 (2009) .
  83. /258/
    Date: Thursday 2016.01.7
    Speaker: Dr Koji Maruyama
    Affiliation: Wolfram Research, Japan
    Title: Introduction to Mathematica 10 - the wonderland of computer algebra system
    Abstract: Mathematica is a software that was originally developed for researchers in mathematics and physics. Since its first release 26 years ago, it has evolved so greatly that it can now be applied to virtually everything, such as data visualisation, image processing, financial engineering, machine learning, etc., to name a few. We will cover as many functions it has as possible to impress you, and will answer any questions.
    The Mathematica notebook of this presentation can be downloaded from https://download.wolfram.com/?key=62BX94 
  84. /257/
    Date: Thursday 2015.12.10, 12:00
    Speaker: Dr Joachim Gräfe
    Affiliation: Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany
    Title: Static and Dynamic X-Ray Microscopy for Magnetic Nanostructures
    Abstract: Magnetic nanostructures, that are patterned on the length scale of the dipole and exchange interaction, have gained significant scientific interest in the past years [1-6]. These nanostructures have great potential for technological applications in data processing and storage, and spintronics [1-6]. However, the measurement of their microscopic magnetisation behaviour is challenging. For this task we use a combination of fast MOKE based first-order reversal curve (FORC) measurements, that we recently developed [7], and x-ray microscopy with XMCD contrast at our own endstation MAXYMUS@BESSY. FORC allows the magnetic separation of individual magnetisation reversal processes without the need for high lateral resolution. X-ray microscopy on the other hand yields a detailed nanoscopic image of the magnetisation and allows the observation of magnetisation dynamics on a picosecond timescale. To showcase the capabilities of these two powerful methods an antidot lattice (ADL) based magnonic crystal is discussed, among others. FORC and static x-ray imaging provide a detailed insight into the very complex and orientation dependent magnetisation reversal processes of ADL samples. The full magnetisation reversal is achieved by a combination of several reversible and irreversible steps that could not have been distinguished by conventional magnetometry. Subsequently, the time resolution capabilities of x-ray microscopy are leveraged to directly observe the individual spin wave modes in the magnonic crystal in the range from 250 MHz up to 8 GHz. Finally, the understanding of the static and dynamic magnetisation behaviour of these magnonic crystals allows tuning the magnon propagation length within the ADL in a range from 0.5 to 15 µm, thus, realising a simple spin wave filter.

    [1] Lenk, B. et al.: Phys. Rep. 507 (2011), 107
    [2] Haiming, Y. et al.: Nat. Commun. 4 (2013), 2702
    [3] Heyderman, L. J. et al.: Phys. Rev. B 73 (2006), 214429
    [4] Schwarze, T.; Grundler, D.: Appl. Phys. Lett. 102 (2013), 22
    [5] Manzin, A.; Bottauscio, O.: J. Phys. D - Appl. Phys. 45 (2012), 095001
    [6] Haering, F. et al.: Nanotechnology 24 (2013), 055305
    [7] Gräfe, J. et al.: Rev. Sci. Instr. 85 (2014), 023901
  85. /256/
    Date: Wednesday 2015.12.9, 12:00
    Speaker: Prof. Oksana Gorobets
    Affiliations: Institute of Magnetism, National Academy of Sciences of Ukraine, Kiev, Ukraine
    and National Technical University of Ukraine. Kiev, Ukraine
    Title: Effects of magnetic field at metal-aqueous electrolyte interface
    Abstract: The seminar will be focused on the magneto-hydrodynamic stirring of electrolyte in the combined electric and magnetic fields. We will present the estimations of the order of magnitude of the gradient magnetic force, gradient paramagnetic force, Lorentz force and damping force acting on ions embedded in aqueous electrolytes. The focus will be given to influence of magnetic field on the effectively para- and diamagnetic products of electrochemical reactions and the effects of phase separation under inhomogeneous magnetic field and Earth gravitation will be discussed. We will discuss also the influence of stray magnetic field of the ferromagnetic electrodes on a deposit structure and electrokinetic effects under inhomogeneous magnetic field.
  86. /255/
    Date: Friday 2015.12.4, 12:00
    Speaker: Prof. Manfred Albrecht
    Affiliation: Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany
    Title: Future concepts and materials for magnetic data storage
    Abstract: [PDF]  Due to the increasing demand in high-density recording media, magnetic thin films with high magnetic anisotropy are widely studied in order to overcome the superparamagnetic effect. To fulfill the requirements of thermal stability, hard magnetic alloys, i.e. FePt alloys in the L10 phase are promising candidates as storage layer. However, owing to the large magnetic anisotropy, the magnetic field required to reverse the magnetization of the media may become higher than the field provided by a conventional recording head. To solve this, so-called writeability issue, the concepts of exchange-coupled composite (ECC) media as well as bit patterned media based on L10 FePt [1] were suggested, which will be discussed in this presentation. Furthermore, ultrafast magnetization switching is at the heart of both modern information storage technology and fundamental science. In this regard, it was recently observed that ultra-fast magnetization reversal processes can be induced by circularly polarized laser pulses in amorphous ferrimagnetic GdFeCo alloy thin films [2]. This novel observation resulted in a broad range of exciting and challenging fundamental questions, and may enable new applications based on ultra-fast spintronics. An overview of our activities on all-optical switching in amorphous ferrimagnetic Tb-Fe alloy films [3-5] will be presented.

    [1] C. Brombacher, M. Grobis, J. Lee, J. Fidler, T. Eriksson, T. Werner, O. Hellwig, and M. Albrecht, Nanotechnology 23, 025301 (2012).
    [2] C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, Phys. Rev. Lett. 99, 047601 (2007).
    [3] A. Hassdenteufel, B. Hebler, C. Schubert, A. Liebig, M. Teich, M. Helm, M. Aeschlimann, M. Albrecht, and R. Bratschitsch, Advanced Materials 25, 3122 (2013).
    [4] C. Schubert, A. Hassdenteufel, P. Matthes, J. Schmidt, M. Helm, R. Bratschitsch, and M. Albrecht, Appl. Phys. Lett. 104, 082406 (2014).
    [5] A. Hassdenteufel, J. Schmidt, C. Schubert, B. Hebler, M. Helm, M. Albrecht, and R. Bratschitsch, Phys. Rev. B 91, 104431 (2015).
  87. /254/
    Date: Wednesday 2015.11.25, 12:00
    Speaker: Dr Andriy Serebryannikov
    Affiliation: Zakład Fizyki Nanomateriałów, Wydział Fizyki UAM
    Title: Hybrid propagation, scattering, reflection and absorption regimes in advanced photonic structures
    Abstract: The talk is dedicated to the hybrid propagation, scattering, reflection, and absorption regimes that can be obtained in the advanced but still simple photonic structures and their microwave prototypes. Various manifestations of the diffraction inspired asymmetric transmission, a general phenomenon arising when using linear, isotropic, passive materials together with spatial inversion symmetry breaking, will be considered in the different structures, which include photonic crystal gratings, gratings made of ultralow-index materials, gratings based on hole-array metamaterials, and thin metallic gratings with a single subwavelength hole. The basic scenarios of directional selectivity achievable with the aid of these structures and their possible applications will be discussed. Then, the attention will be paid to ultrathin chiral metamaterials based on the coupled arrays of subwavelength resonators, which enable efficient polarization conversion and relevant channel and direction selectivity. The next topics will include reflection-enhanced absorption in photonic crystals made of polar dielectrics, multiple slow waves in graded-index photonic crystals, invisibility obtainable using high-index shells, and surface plasmons in deep annular-hole arrays. Finally, the transmission-mode spatial (angular) filtering in regular photonic crystals will be discussed alongside the reflection-mode spatial filtering, blazing, and splitting in thin reflector-backed gratings.
  88. /253/
    Date: Wednesday 2015.10.28, 12:00
    Speaker: Dr Michał Studziński
    Affiliation: Uniwersytet Gdański, Krajowe Centrum Informatyki Kwantowej w Gdańsku
    Title: Group representation approach to universal quantum cloning machines
    Abstract: Quantum information cannot be copied perfectly, in contrast with information from the "classical world". In other words, one is not able to copy perfectly an arbitrary quantum state. In terms of monogamy, if one wants to prepare some number of copies of the initially unknown quantum state, fidelities of cloning cannot be all equal to 1, there is a trade-off. This basic feature is known as ’no-cloning theorem’ and was recognized by Wootters, Zurek and Dieks. But still there is possibility for imperfect cloning. Using group-theory formalism, we show that the allowed region for fidelities can be expressed in terms of overlaps of pure states with irreducible representations of the partially transposed permutation operators. Additionally, it is sufficient to take pure states with real coefficients only, which makes calculations simpler. To obtain the allowed region, we make a convex hull of possible ranges of fidelities related to a given irreducible representations.
    Chair: Prof. Andrzej Grudka
  89. /252/
    Date: Wednesday 2015.10.21, 12:00
    Speaker: Prof. Andrzej Grudka
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Do black holes create polyamory?
    Abstract: Of course not, but if one believes that information cannot be destroyed in a theory of quantum gravity, then we run into apparent contradictions with quantum theory when we consider evaporating black holes. Namely that the no-cloning theorem or the principle of entanglement monogamy is violated. Here, we show that neither violation need hold, since, in arguing that black holes lead to cloning or non-monogamy, one needs to assume a tensor product structure between two points in space-time that could instead be viewed as causally connected. In the latter case, one is violating the semi-classical causal structure of space, which is a strictly weaker implication than cloning or non-monogamy. This is because both cloning and non-monogamy also lead to a breakdown of the semi-classical causal structure. We show that the lack of monogamy that can emerge in evaporating space times is one that is allowed in quantum mechanics, and is very naturally related to a lack of monogamy of correlations of outputs of measurements performed at subsequent instances of time of a single system. This is due to an interesting duality between temporal correlations and entanglement. A particular example of this is the Horowitz-Maldacena proposal, and we argue that it need not lead to cloning or violations of entanglement monogamy.
    Chair: dr Karol Bartkiewicz
  90. /251/
    Date: Wednesday 2015.10.14, 12:00
    Speaker: Dr Ronan Lefort
    Affiliation: Université de Rennes 1, France
    Title: Confinement-induced nano-segregation of amphiphilic binary liquids
    Abstract: Environment care has now become a global societal challenge, on which physics and chemistry can turn to be leading actors and innovation leaders, especially in the domains of energetic transition, green nanoscience or ecomaterials. As an example, a great attention has been recently paid to the control of volatile organic compounds (VOCs) in home and working environments. Breakthroughs in the captation of VOCs have been achieved thanks to the mastering of novel porous nanomaterials, able to selectively filter or coadsorp molecular species. However, several scientific locks remain, related to the intricate balance of amphiphilic interactions and hydrogen-bond structures responsible for the behaviour of gaseous or liquid mixtures in nanopores. The physical parameters governing the nanostructures and the molecular dynamics of complex binary liquids confined in porous solids remain essentially unknown. We present here a general view of a model molecular binary system made of a ternary alcohol and an aprotic liquid, confined inside nanoporous silicas or carbons. Through a global experimental approach, we detail how the subtle balance of hydrophilic or -phobic interactions with interfaces in a nanoporous solid can lead to surprising nanostructures in the binary, and strongly affect both the hydrogen bonds network and the molecular dynamics of the system. We tentatively propose general routes for controlling coadsorption and/or nanofiltration of these complex binaries by tailoring specific nanoporous interfaces.
    Chair: Dr hab. Jacek Kubicki
  91. /250/
    Date: Friday 2015.10.09, 10:00
    Speaker: Prof. Yuri Oganessian
    Affiliation: Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Dubna, Russia
    Title: Discovery of Super Heavy Elements
    Abstract: One of the fundamental outcomes of the modern nuclear theory of is the prediction of the "stability islands" in the domain of the hypothetical super heavy elements. The enhanced stability has been expected for the deformed nuclei near Z=108 and N=162, yet much stronger effect has been predicted for heavier spherical nuclei close to the shells Z=114 and N=184. The talk is devoted to the experimental verification of these predictions – the synthesis and study of both the decay and chemical properties of the new elements.
        The synthesis of the heaviest nuclei with high neutron excess has been carried out in the fusion reactions of U and the isotopes of man-made elements: from Np up to Cf with the Ca-48 projectiles in 2000-2015. The decay properties of the 52 synthesized nuclei – the isotopes of elements 104-118 - obtained in 48Ca-induced reactions presents direct experimental evidence of the existence of the super heavy nuclei that considerably expand the Periodical Table of the chemical elements.
        Simultaneously in the chemical studies of elements 112-114 by methods of absorption gas chromatography the influence of the “relativistic effect” on the chemical properties of the super heavy elements was obtained for the first time. The possibilities of further theoretical and experimental investigations in close collaboration with many European and American laboratories connected with construction in Flerov Laboratory “Super Heavy Element Factory” are also discussed.
        In the talk are used the results obtained in FLNR (JINR, Dubna) in collaboration with LLNL, (Livermore, USA), ORNL (Oak-Ridge, USA), and Vanderbilt University (Nashville, USA), Texas A M University (College Station, USA) as well as GSI (Darmstadt, Germany), PSI (Villigen, Switzerland) and RIKEN (Tokyo, Japan).
    Dodatkowe informacje: Profesor Oganessian należy do liderów w skali światowej w dziedzinie wytwarzania i badania własności fizycznych i chemicznych super ciężkich pierwiastków. Super ciężkie jądra atomowe tych pierwiastków stanowią obiekt zaawansowanych badań teoretycznych i eksperymentalnych prowadzonych w najlepszych centrach badawczych - głównie w Dubnej, USA i Niemczech. Profesor jest świetnym wykładowcą potrafiącym z pasją przedstawiać najnowsze wyniki badań.
    Chair: prof. Wojciech Nawrocik
  92. /249/
    Date: Wednesday 2015.10.7, 12:00
    Speaker: Dr Kenneth P. Mineart
    Affiliation: Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, USA
    Title: Understanding and Controlling the Morphology of a Midblock-Sulfonated Block Ionomer
    Abstract: Block copolymers containing ionic pendant groups, or block ionomers, have become increasingly popular due to their potential application as fuel cell and water desalination membranes, as well as components in photovoltaic devices and polymeric actuators. Block ionomers hold promise in these applications because of their inherent ability to form separate ionic and nonpolar microdomains at nanoscale dimensions. Segregation of ionic and nonpolar segments enables simultaneous water, or ion, transport and mechanical robustness. This is especially true when ionic segments are located in the midblock of a multiblock copolymer. The ionic and nonpolar blocks are, however, highly incompatible, which can lead to long-term metastable morphologies. While thermal annealing is typically used to refine block copolymer self-assembly to equilibrium structures, most block ionomers have inaccessible glass transition temperatures, thereby making thermal annealing ineffective. The establishment of morphological control in block ionomers represents the main challenge preventing widespread use. Here, we explore a variety of nanostructures formed during solution casting and then investigate a facile means by which to equilibrate the morphological behavior of a midblock-sulfonated pentablock ionomer. A combination of transmission electron microscopy and tomography (TEM/T) and small-angle X-ray scattering (SAXS) are used to probe nanostructural features present in films produced from different casting strategies. Results indicate that solvent-templating of nano-features following solution casting is prominent, but that subsequent solvent vapor annealing can be effective in equilibrating the morphology. To the best of our knowledge, these results provide the first evidence of morphological control/refinement in a block ionomer of commercially relevant molecular weight.
    Chair: Prof. Adam Patkowski
  93. /248/
    Date: Tuesday 2015.09.08, 12:00
    Speaker: Dr Paweł Zawadzki
    Affiliation: Oxford University, UK
    Title: Mechanisms of bacterial chromosome repair and segregation studied by smFRET and Super-Resolution microscopy
    Abstract: The single-molecules techniques are revolutionizing our understanding of biological processes and molecular mechanisms used by individual protein machines. I will introduce smFRET method and show how it was used to “observe” multiple conformational changes within recombination complex, acting in late stages of bacterial chromosome segregation, directly showing how recombination is activated and regulated. On the other hand, the real challenge in biology is to observe how individual proteins perform their function within living cell. I will present super-resolution microscopy and the ways I explore it to understand how individual UvrA and UvrB initiate pathway of DNA repair. I will show how these novel biophysical methods are changing our understanding of DNA repair process.
    Chair: Prof. Jacek Gapiński
  94. /247/
    Date: Monday 2015.07.13, 12:00
    Speaker: Prof. Keith E. Gubbins
    Affiliation: Department of Chemical Biochemical Engineering, North Carolina State University, Raleigh, USA
    Title: Corresponding States Theory for Thin Adsorbed Films
    Chair: Prof. Małgorzata Śliwińska-Bartkowiak
  95. /246/
    Date: Friday 2015.07.3, 12:00
    Speaker: Dr Ken Onda
    Affiliation: Interactive Research Center of Science, Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
    Title: Photoinduced Dynamics in Organic Solid Materials Studied by Time-resolved Infrared Vibrational Spectroscopy
    Abstract: Recently photoinduced dynamics in organic solid materials have attracted more attention in terms of not only the fundamental physics but also the application to low-cost photo-electronic devices. However, photoinduced processes in organic materials are more complicated than those in inorganic solid materials due to their flexible and soft structures [1]. Time-resolved infrared vibrational spectroscopy is one of the ideal tools for studying these dynamics because a vibrational peak is sensitive to both local charge and structure in an organic solid material. We applied this method to the photoinduced phase transition in organic crystals and found that the different dynamics of charge and structure accompanied by the phase transition [2-4]. We also studied the initial photoexcited processes in metal complexes including a spin crossover complex and found the state which has not observed by the other methods [5]. Moreover, we confirmed that the results obtained by time-resolved vibrational spectroscopy is in good agreement with those by more structure sensitive time-resolved method, that is, time-resolved electron diffraction [6].
    [1] K. Onda, et al. Acc. Chem. Res. 47, 3494 (2014).
    [2] Y. Matsubara, et al. J. Phys. Soc. Jpn. 80, 124711 (2011).
    [3] N. Fukazawa, et al. J. Phys. Chem. C 116, 5892 (2012).
    [4] N. Fukazawa, et al. J. Phys. Chem. C 117, 13187 (2013).
    [5] T. Mukuta, et al. Inorg. Chem. 53, 2481 (2014).
    [6] M. Gao, et al. Nature, 496, 343 (2013).
    Chair: Dr hab. Jacek Kubicki
  96. /245/
    Date: Wednesday 2015.06.24, 12:00
    Speaker: Dr Felix Pollock
    Affiliation: Monash University in Melbourne, Australia
    Title: What a biased two-level system can tell you about its environment
    Abstract: Quantum process tomography (QPT), the full experimental determination of a quantum process, is usually used for benchmarking known systems. Here, I show how, by applying a large, controllable external bias, QPT of a two-level probe system can be used to determine a great deal about an unknown environment – including properties of its state and spectrum. The protocol I will discuss relies on few assumptions and could thus be applied to many systems of experimental interest, such as Bose-Einstein condensates, superconducting circuits and atoms in optical cavities. Within this talk, I will also discuss how one can do tomography for processes with initial correlations and hence those which are non-Markovian.
    Chair: Dr Karol Bartkiewicz
  97. /244/
    Date: Wednesday 2015.06.10, 12:00
    Speaker: Dr Fabrice Herpin
    Affiliation: University of Bordeaux, France
    Title: Results from the Herschel Space Observatory mission
    Abstract: The mission of the ESA Herschel satellite was completed in April 2013 after quite 4 years of activity. However, the incredible results of this far-infrared space observatory continue to revolutionize our view of the Universe. In particular, our knowledge of our Galaxy, of the stars and of our solar system has made significant progress thanks to the work carried out with this telescope, especially by the european teams. The formation mechanisms and the evolution of stars, of a few solar masses or greater, have revealed themselves a little more precisely: thanks to Herschel images and spectroscopic observations we now have a more global view of the genesis of stars and of their chemistry. The first complete observations of the water molecule allowed us to estimate the very significant amounts of water that exist in any planetary system in formation, but also to address the crucial question of the origin of water (and therefore life) on our own Earth.
    Chair: Dr Agata Karska
  98. /243/
    Date: Tuesday 2015.06.02, 12:00
    Speaker: Prof. Ryszard Tanaś
    Title: Can Bell’s inequalities be violated with classical fields?
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Abstract: Recently a number of papers appeared in which the notion of "classical entanglement" and its role in optical processes has been discussed. There are some experimental results already published showing that "classical entanglement" is sufficient to violate Bell’s inequalities. This can have important implications for commonly accepted interpretation of some physical phenomena. The talk is aimed to present some of these, still controversial, results.
  99. /242/
    Date: Tuesday 2015.05.26, 12:00
    Speaker: Prof. Nitash Balsara
    Position: Charles W. Tobias Chair in Electrochemistry
    Affiliation: Chemical and Biomolecular Engineering, University of California, Berkeley, USA and Lawrence Berkeley National Laboratory
    Title: Batteries and Biofuels in the Clean Energy Landscape
  100. /241/
    Date: Wednesday 2015.05.20, 12:00
    Speaker: Dr Mirosław Łabuz
    Affiliation: Wydział Matematyczno-Przyrodniczy, Katedra Fizyki Teoretycznej, Uniwersytet Rzeszowski
    Title: Internal parity symmetry and degeneracy of Bethe Ansatz strings in the isotropic heptagonal magnetic ring
    Abstract: The exact Bethe eigenfunctions for the heptagonal ring within the isotropic XXX model exhibit a doubly degenerated energy level in the three-deviation sector at the centre of the Brillouin zone. I will demonstrate an explicit construction of these eigenfunctions by use of algebraic Bethe Ansatz, and point out a relation of degeneracy to parity conservation, applied to the configuration of strings for these eigenfunctions. Namely, the internal structure of the eigenfunctions (the 2-string and the 1-string, with opposite quasimomenta) admits generation of two mutually orthogonal eigenfunctions due to the fact that the strings which differ by their length are distinguishable objects.
  101. /240/
    Date: Wednesday 2015.05.13, 12:00
    Speaker: M.Sc. Tomasz Wasak
    Affiliation: Katedra Optyki Kwantowej i Fizyki Atomowej, Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego
    Title: Cauchy-Schwarz inequality and particle entanglement
    Abstract: The creation of ensembles of entangled particles triggered the studies of fundamental aspects of quantum mechanics. The ability to generate non-classical correlations between atoms opened the possibility for their practical applications in non-trivial ways, for example in quantum computation or ultra-precise metrology. However, before the implementation stage, we must first make sure that the entanglement is present in the system, which is often a difficult task.
    In this seminar I will present the experiments that were conducted to verify existence of non-classical correlations in ultracold atomic systems. Then I provide a simple and experimentally accessible criterion for particle entanglement in many-body systems. This is based on a violation of the Cauchy-Schwarz inequality for the second order correlation function. It applies to any system of identical bosons with either fixed or fluctuating number of particles, provided that there is no coherence between different number states.
  102. /239/
    Date: Wednesday 2015.05.06, 12:00
    Speaker: Dr Paweł Jakubczyk
    Affiliation: Wydział Matematyczno-Przyrodniczy, Katedra Fizyki Teoretycznej, Uniwersytet Rzeszowski
    Title: Entanglement of magnons in the Heisenberg XXX chain
    Abstract: I will present very simple analytical formulas for calculation of multipartite and bipartite entanglement of one-magnon states in quantum spin systems. Regarding the multipartite entanglement I will present formulas for global entanglement and N-concurrence and show that they are mutually related. In the bipartite case, I will give formulas for I-concurrence and negativity, and show that they are also scalable. For one-magnon Schur-Weyl states I will show that the bipartite entanglement structure is completely coded in the corresponding Young tableau.
  103. /238/
    Date: Wednesday 2015.04.29, 12:00
    Speaker: Prof. Piotr Śniady
    Affiliation: Faculty of Mathematics and Computer Science, AMU
    Title: Joys and sorrows of a quantum computer owner (Radości i smutki z posiadania komputera kwantowego)
    Abstract: Some problems (such as factorization of large numbers into a product of primes) which seem to be difficult for a classical computer turned out to be very simple for a quantum computer. Is it a general pattern or are there some problems which are too difficult even for quantum computers?
  104. /237/
    Date: Tuesday 2015.04.21, 12:00
    Speaker: Prof. K. Guslienko
    Affiliation: Universidad Del Pais Vasco/ Euskal Herriko Unibertsitatea (UPV/EHU), San Sebastian, Spain
    Title: Collective vortex excitations in magnetostatically coupled dot clusters
    Abstract: Low frequency gyrotropic dynamics (100 MHz range) in arrays of the interacting magnetic vortex state dots are considered. The interdot dynamical magnetostatic interactions are accounted in the form of explicit multipole decompositions on the inverse dot center-to-center distance. Particular case of the dot clusters consisting of 3 or 4 laterally placed cylindrical ferromagnetic dots on a nonmagnetic substrate in the form of equilateral triangles or squares is calculated. The eigenfrequencies of collective magnetic vortex oscillations are calculated analytically and compared with recent experiments conducted on the clusters of permalloy dots.
  105. /236/
    Date: Tuesday 2015.04.14, 12:00
    Speaker: Dr V. Kruglyak
    Affiliation: University of Exeter, Exeter, UK
    Title: Towards graded-index magnonics: Steering spin waves in networks of magnonic waveguides
    Authors: C. S. Davies,1 A. Francis,1 A. V. Sadovnikov,2 S. V. Chertopalov,3 M. T. Bryan,4 S. V. Grishin,2 D. A. Allwood,4 S. A. Nikitov,2,5 Yu. P. Sharaevskii2, and V. V. Kruglyak1
    1School of Physics, University of Exeter, Stocker road, Exeter, EX4 4QL, United Kingdom
    2Laboratory "Metamaterials," Saratov State University, Saratov 410012, Russia
    3Donetsk National University, 24 Universitetskaya Street, Donetsk, 83001, Ukraine
    4Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, United Kingdom
    5Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Science, Moscow 125009, Russia
    Abstract: [PDF]  The spin-wave dispersion is inherently complex and anisotropic, depending on both several magnetic parameters of the magnonic medium and the angle between the spin-wave vector and effective magnetic field. We have used time-resolved scanning Kerr microscopy and micromagnetic simulations to study the propagation of spin waves across Permalloy and yttrium-iron-garnet (YIG) waveguides, arranged to form junction structures and biased asymmetrically. We demonstrate that the non-uniformity of the internal magnetic field and magnetization inherent to patterned magnetic structures can create a medium of graded refractive index for propagating magnetostatic waves and can be used to steer their propagation in magnonic architectures. The character of the non-uniformity can be tuned and potentially programmed using the applied magnetic field. Thus, our findings suggest a possibility of a novel reconfigurable computing and / or signal processing technology based on the principles of the graded-index magnonics. [PDF] 
  106. /235/
    Date: Tuesday 2015.03.31, 14:00
    Speaker: Prof. Dr Peter Laggner
    Affiliation: Director of the Nanosystem Solutions Bruker AXS, Karlsruhe, Germany
    Title: Advanced Laboratory SAXS Technology. Bruker Instrumentation and Applications
    Chair: Prof. Maciej Kozak
  107. /234/
    Date: Wednesday 2015.03.25, 10:00
    Speaker: Dr inż. Piotr Kuświk
    Affiliation: Zakład Cienkich Warstw, Instytut Fizyki Molekularnej PAN w Poznaniu
    Title: Magnetyczne układy cienkowarstwowe o lokalnie modyfikowanych właściwościach i ich zastosowania
    Abstract: Magnetyczne układy warstwowe i wytwarzane z nich nanostruktury są przedmiotem badań wielu laboratoriów. Zainteresowanie tymi układami wynika z licznych, już zrealizowanych oraz perspektywicznych, zastosowań. Dotyczą one głównie technologii informatycznych oraz różnego typu elementów spintronicznych. Szczególnie interesujące są takie układy warstwowe, w których lokalna modyfikacja właściwości magnetycznych w płaszczyźnie warstw prowadzi do uzyskania specyficznej struktury magnetycznej, której realizacja w układach jednorodnych nie jest możliwa.
    Omówionych zostanie kilka przykładów modyfikacji anizotropii lub oddziaływania w układach warstwowych wykazujących anizotropię prostopadłą (Au/Co/Au, Pt/Co/Pt). Zmiany anizotropii w płaszczyźnie struktur uzyskiwano poprzez wytwarzanie warstw z kontrolowanym gradientem grubości (warstwy klinowe) lub w wyniku bombardowania jonowego. Bombardowanie warstw Au/Co jonami He lub Ar przez maski utworzone z regularnej dwuwymiarowej sieci nanokulek polistyrenowych, pozwoliło wytworzyć jednorodną sieć sztucznych domen umieszczonych w matrycy o kontrolowanych właściwościach magnetycznych [1]. Takie struktury są interesujące ze względu na możliwość wykorzystania do zapisu informacji. Uzyskanie monotonicznych zmian anizotropii lub oddziaływania międzywarstwowego pozwala na realizację procesu przemagnesowania poprzez, kontrolowaną jednorodnym polem magnetycznym, propagację pojedynczej prostej ściany domenowej [2-3]. Taki kontrolowany ruch ściany domenowej znajduje szereg potencjalnych zastosowań np., jako sensory magnetooporowe [3] lub układy typu lab-on-a-chip wykorzystujące pole rozproszone nad ściana domenową do transportu funkcjonalizowanych cząstek magnetycznych.
    [1] P. Kuświk inni, Nanotechnology 22, 095302 (2011); Nanotechnology 23, 475303 (2012).
    [2] M. Urbaniak i inni, Phys. Rev. Lett. 105, 067202 (2010).
    [3] M. Matczak i inni, J. Appl. Phys. 114, 093911 (2013); Nanoscale Research Letters 9, 395, (2014); Appl. Phys. Lett. 100, 162402 (2012).
  108. /233/
    Date: Wednesday 2015.02.25, 12:00
    Speaker: Dr Anna Kowalewska-Kudłaszyk
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Entanglement evolution in nonlinear quantum scissors systems
    Abstract: We deal with the models of nonlinear quantum oscillators, described by the Kerr-like nonlinearities. The oscillators can interact with each other and with external environment in various ways. Such models are usually associated with optical nonlinear couplers and discussed in the context of the properties of light they generate [1]. The Kerr-like models discussed here can be treated, under some conditions, as nonlinear quantum scissors, because of their ability to limit substantially the number of states which are essential in the system's dynamics [2,3]. Moreover, this mechanism leads to creation of 2-qubit, 2-qutrit or qutrit-qubit systems for the discussed models. We will present the necessary conditions for creation maximally or almost maximally entangled states within such systems. Additionally, we will present different types of disentanglement in amplitude and phase damping reservoirs. For the models considered here we can observe asymptotic entanglement decay, death or entanglement revival. The conditions for such behavior will be presented.
    [1] J. Perina Jr., J. Perina, Progr. in Opt. 41, 361, (2000).
    [2] W. Leoński and A. Kowalewska-Kudłaszyk, Progress in Optics, 56 131 (2011).
    [3] A. Kowalewska-Kudłaszyk and W. Leoński, JOSA B, 31, 1290 (2014).
  109. /232/
    Date: Wednesday 2015.02.11, 12:00
    Speaker: Dr Pavel Baláz
    Affiliation: Polish Academy of Sciences, Institute of Molecular Physics, Poznań, Poland
    and A. Mickiewicz University, Faculty of Physics, Division of Mesoscopic Physics, Poznań, Poland
    Title: Spin current assisted magnetization dynamics in exchange coupled magnetic layers
    Authors: Pavel Baláz and Józef Barnaś
    Abstract: It has been shown experimentally, that when two magnetic layers are separated by a thin nonmagnetic one there is an exchange (RKKY) coupling between the magnetic layers, which oscillates between ferromagnetic and antiferromagnetic types when thickness of the spacing layer is changed [1]. Exchange coupled magnetic layers have a vast range of applications in spintronics with number of advantages over single magnetic layers. In magnetic spin valves they are utilized not just like current polarizers with negligible stray field but also as composite free layers offering novel possibilities of manipulation with magnetic moments by means of spin transfer torque. Thus, in the talk, current-induced switching of composite free layers with antiferromagnetic interlayer coupling shall be reviewed [2]. On the other hand, spin waves in layered magnetic structures have been extensively studied, both experimentally and theoretically, in the 80-ties and 90-ties of the past century [3]. Very recently a possibility of spin current induced spin wave excitation in magnetic insulators have been demonstrated [4]. Therefore, in the second part of the talk, influence of spin pumping and spin current on the spin wave spectra of two exchange coupled ferromagnetic insulators shall be discussed.
    This work has been carried out within the Project NANOSPIN PSPB-045/2010 supported by a grant from Switzerland through the Swiss Contribution to the enlarged European Union.
    [1] S. S. P. Parkin, N. More, and K. P. Roche, Phys. Rev. Lett. 64, 2304 (1990).
    [2] P. Baláz, J. Barnaś, Phys. Rev. B 88, 014406 (2013).
    [3] M. Vohl, J. Barnaś, and P. Grünberg, Phys. Rev. B 39, 12003 (1989); J. Barnaś and P. Grünberg, J. Magn. Magn. Mater. 82, 186 (1989).
    [4] Y. Kajiwara et al., Nature 464, 262 (2010).
  110. /231/
    Date: Wednesday 2015.02.4, 12:00
    Speaker: Dr Olga Malinkiewicz
    Affiliation: Saule Technologies Sp. z o.o., Warszawa
    Title: Unique properties of halide perovskites
    Abstract: Hybrid organic-inorganic perovskites have been rediscovered recently as great absorbers in solar cells. In these materials the combination of organic and inorganic components leads to a material that is both low-cost, solution processable and an excellent, crystalline semiconductor. Particularly the solar cell efficiency, now close to 20%, has triggered a huge research activity on otherwise rather conventional devices. In this short talk I will try to answer what is the origin of the unique properties of halide perovskites?
    Dodatkowe informacje: Dr Olga Malinkiewicz zajmuje się badaniami nad fotoogniwami perowskitowymi, będącymi od dwóch lat najbardziej obiecującym materiałem do konstrukcji nowej generacji baterii słonecznych. Podczas swojego pobytu na Uniwersytecie w Walencji dr Malinkiewicz odniosła spektakularny sukces, opracowując nową metodę wytwarzania fotoogniw perowskitowych na elastycznym podłożu i w niskich temperaturach. Odkrycie to, szeroko komentowane w polskich mediach,  zostało opublikowane w zeszłym roku w czasopiśmie Nature Photonics,  a sama autorka uzyskała za nie wiele prestiżowych wyróżnień dla młodych naukowców. Po powrocie do Polski dr Olga Malinkiewicz założyła firmę Saule Technologies, której celem jest komercjalizacja elastycznych fotoogniw perowskitowych.
    Przyjazd dr Olgi Malinkiewicz do Poznania jest związany z planami współpracy z grupą zajmującą się badaniami fotowoltaicznymi na Wydziale Fizyki UAM. Dr Malinkiewicz poszukuje także młodych, zdolnych osób do prowadzenia badań nad wytwarzaniem fotoogniw perwoskitowych, dlatego w szczególny sposób zapraszamy na seminarium studentów oraz doktorantów z fizyki i chemii.
  111. /230/
    Date: Wednesday 2015.01.28, 12:00
    Speaker: Prof. Michał Kurzyński
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Do biological molecular machines act as Maxwell's demons?
    Authors: Michał Kurzyński and Przemysław Chełminiak
    Abstract: In the intention of its creator, Maxwell's demon was thought to be an intelligent being, able to perform work at the expense of the entropy reduction of a closed operating system. The perplexing notion of the demon's intelligence was formalized in terms of memory and information processing by Szilard and subsequent followers, who pointed out that, in order for the total system to obey the second law of thermodynamics, the entropy reduction should be compensated for by, at least, the same entropy increase, related to the demon's information gain on the operating system's state. A non-informational formulation of the problem was proposed by Smoluchowski and popularized by Feynman as the ratchet and pawl machine, which can operate only in agreement with the second law. A. F. Huxley and consequent followers adopted this way of thinking to suggest numerous thermal ratchet mechanisms for the protein molecular machines' action, but no entropy reduction takes place for these models. More general models of protein dynamics have been put forward with a number of intramolecular states organized in a network of stochastic transitions. Here, the computer model of such a network is investigated, displaying, like networks of the systems biology, a transition from the fractal organization on a small length-scale to the small-world organization on the large length-scale. This model, when allowing work performance in a variety of ways, obeys the generalized fluctuation theorem with entropy reduction and is able to explain a surprising observation to Yanagida and co-workers that the myosin II head can take several steps along the actin filament per ATP molecule hydrolysed. From a broader perspective, the supposition that (i) a similar mechanism of action is characteristic for most intrinsically disordered proteins and (ii) this is the reason for most protein machines to operate as dimers or higher organized structures could be of especial importance.
  112. /229/
    Date: Wednesday 2015.01.21, 12:00
    Speaker: M.Sc., Eng. Bartłomiej Streszewski
    Affiliation: Faculty of Nonferrous Metals, AGH University of Science and Technology in Kraków
    Title: Kinetics of gold nanoparticles formation in aqueous and microemulsion systems
    Abstract: This work presents the results of kinetic measurements of the Au(III) chloride complex ions reduction with hydrazine and of the gold nanoparticles formation in aqueous solution and in microemulsion system of H2O/CTAB/alcohol/hexane. The dynamics of the gold nanoparticles formation in aqueous solution was studied using UV-Vis spectrophotometry, DLS and TEM methods. Nucleation and autocatalytic growth rate constants were determined by using the modified Finke Watzky model. The TEM measurements and hydrodynamic radius time evolution have revealed that the nanoparticles are unstable and grow until they reach a submicron size. The growth is triggered by the autocatalytic reduction of Au(I) ions on the surface of the growing particle and aggregation followed by chemical reaction limited by the Ostwald repining. Stabilization of gold nanoparticles can be provided by conducting their synthesis in reverse micelles. During the synthesis micelles act as nanoreactors and soft templates for the growing particles. The influence of the molar ratios: w = nH2O:nCTAB and p = nalc:nCTAB of the Au(III) ion initial concentration and the presence of different alcohols (butanol, pentanol, hexanol or heptanol) as cosurfactants on the formation kinetics and the nanoparticle morphology were studied. The particles with the smallest polydispersity are formed at a low Au(III) ion concentration and at for low w parameter or in the presence of alcohols with longer hydrocarbon chain. The particle growth is limited by the diffusion of the monomers between the micelles, which can be caused by a low Au(III) ion occupancy per a single micelle and/or a slow intermicellar exchange rate.
  113. /228/
    Date: Wednesday 2015.01.14, 12:00
    Speaker: Prof. Ryszard Krzyminiewski
    Affiliation: Zakład Fizyki Medycznej UAM
    Title: Terapia protonowa
    Abstract: Przedstawiony zostanie wpływ promieniowania jonizującego na tkankę biologiczną i jego wykorzystanie w podstawowej radioterapii nowotworów. Omówione będą sposoby generowania strumienia protonów oraz zalety i wady zastosowania wiązki protonów w leczeniu nowotworów. Pokazane zostaną przykłady ośrodków medycznych w Szwajcarii, Niemczech i Polsce stosujących w praktyce klinicznej terapię protonową. Zaprezentowane zostaną własne wstępne wyniki badań wpływu wiązki protonowej na nanoleki stosowane w terapii nowotworów.
  114. /227/
    Date: Wednesday 2014.12.17, 12:00
    Speaker: Dr Jan Chwedeńczuk
    Affiliation: Katedra Optyki Kwantowej i Fizyki Atomowej, Instytut Fizyki Teoretycznej Uniwersytetu Warszawskiego
    Title: Interferometry with independently prepared Bose-Einstein condensates
    Abstract: Whenever the value of an unknown parameter θ is extracted from a series of experiments, the result is inevitably burdened by the uncertainty ∆θ. If the system, which is the subject of measurement consists of unentangled particles, this uncertainty is bounded by the shot-noise limit. To overcome this limitation, it is necessary to use a properly entangled state, which is usually prepared in a dedicated procedure. We show that quantum correlations arising from the indistinguishability of bosons are a sufficient resource for the sub-shot-noise interferometry. To this end, we consider an interferometer, which operates on two independently prepared Bose-Einstein condensates with fluctuating numbers of particles. We calculate the sensitivity obtained from the measurement of the number of atoms and compare it with the ultimate achievable bound. Our main conclusion is that even in presence of major atom number fluctuations, an interferometer operating on two independent condensates can give very high precision. These observations indicate a new possibility for an interferometer operating below the shot-noise limit.
  115. /226/
    Date: Wednesday 2014.12.10 at 13:00
    Speaker: M.Sc. Krzysztof Wójcik
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Transport properties of T-shaped double quantum dots
    Abstract: In my presentation I will mention transport properties of two quantum dots, coupled to two leads in, so called, T-shaped configuration. This mean, that one of the dots is embedded between the leads, while the second is not directly coupled to the leads, but coupled to the first dot. We restrict ourselves to the linear response regime. Nevertheless, the physics of such a system is still very reach and includes the two-stage Kondo effect (the conductance is enhanced below the Kondo temperature, but becomes suppressed at even lower temperatures) and Fano-like interference effects, resulting in a sharp dip in the conductance vs. gate voltage dependence. Moreover, both effects are strongly influenced by the presence of magnetism: either in the form of magnetic field, or encapsulated in ferromagnetic leads. In particular, the second stage of the Kondo effect can be suppressed (that is, the usual Kondo effect restored), and a perfect spin polarization of the conductance can be obtained due to the spin-dependent Fano anti-resonance condition. I will explain these effects, with stress put on the case of ferromagnetic leads (results were obtained with I. Weymann, ZFMezo, UAM). To resolve properly all the many-body correlations, we employed the Numerical Renormalization Group method.
  116. /225/
    Date: Thursday 2014.11.27, 12:00
    Speaker: Dr Tomasz Paterek
    Affiliations:
    1. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanynag Technological University, Singapore
    2. Centre for Quantum Technologies, National University of Singapore
    Title: Physics research and studies at Singapore’s NTU
    Abstract: This talk will be devoted to physics research and facilities at Nanyang Technological University (NTU) in Singapore and stipends it offers to undergraduate students (internships) and PhD students. I hope this will be of interest to faculty members who would like to collaborate with Singapore's scientists as well as students who would like to pursue their postgraduate career at NTU.
    Chair: Prof. Antoni Wójcik
  117. /224/
    Date: Wednesday 2014.11.26, 12:00
    Speaker: Dr Tomasz Paterek
    Affiliations:
    1. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanynag Technological University, Singapore
    2. Centre for Quantum Technologies, National University of Singapore
    Title: Quantum biology
    Abstract: With growing evidence of quantum effects in more and more complex systems it becomes legitimate to ask if alive matter can be influenced or take advantage of quantum features. Such questions are studied in a newly emerging field of quantum biology. Two examples will be discussed in more detail where quantum coherence may play a role to speed up biologically relevant process (photosynthesis) or even enable it (magneto-reception). Finally, I will describe our planned experiments on insects and how they are related to quantum biology.
  118. /223/
    Date: Thursday 2014.10.23
    Speaker: Dr Jacek Gąsiorowski
    Affiliation: Semiconductor Physics, Technische Univeristät Chemnitz, 09107 Chemnitz, Germany
    Title: Organic semiconductors - from light harvesting to solar fuels
    Abstract: During the past two decades thin film photovoltaic cells based on solution processable organic semiconductors attracted much attention as possible cheap energy harvesting systems. They are envisaged as feasible alternative to conventional inorganic technologies. One great advantage of the organic photovoltaic is that their morphological and photophysical properties can be easily modified by tailoring the molecular structure. Therefore, a great effort is made for the synthesis and characterization of new organic materials, small molecules and polymers. Another big advantage of the organic semiconductors is their mechanical flexibility. Optimisation of the polymer molecules from the fundamental core of this push-pull polymer have since gone on to produce single junction organic photovoltaic device with power conversion efficiency of 9%. The rapid increase in the light harvesting efficiency was also followed by the approaches in using solar energy for application in chemical reduction. Here, a particularly interesting approach is to use solar energy for the chemical and electrochemical reduction of CO2 to hydrocarbons as well as for the artificial photosynthesis.
    Chair: Prof. Małgorzata Śliwińska-Bartkowiak
  119. /222/
    Date: Thursday 2014.10.23
    Speaker: Prof. Dr Georgeta Salvan
    Affiliation: Semiconductor Physics, Technische Univeristät Chemnitz, 09107 Chemnitz, Germany
    Title: Magneto-optical Kerr Effect Spectroscopy of Organic/Ferromagnetic Heterostructures
    Abstract: Phthalocyanines and porphyrins find nowadays a variety of applications from pigments to organic electronics and, more recently, spintronics. This diversity of application potential stems from the large flexibility of their molecular structure. We focus on the room temperature magneto-optical activity of phthalocyanines and porphyrins deposited on ferromagnetic substrates (Co, Ni, and LSMO) as model heterostructures for organic spintronics. The magnetic properties of the heterostructures are assessed by magneto-optical Kerr effect (MOKE) magnetometry. Variable angle spectroscopic ellipsometry (VASE) in combination with MOKE spectroscopy investigations are performed to extract the (magneto-) optical properties of the heterostructures. From the degree of anisotropy of the optical constants the molecular orientation can be determined. This allows to systematically investigate the influence of the substrate magnetization direction onto the molecular arrangement.
    Chair: Prof. Małgorzata Śliwińska-Bartkowiak
  120. /221/
    Date: Wednesday 2014.10.8, 12:00
    Speaker: M.Sc. Michał Mruczkiewicz
    Affiliation: Zakład Fizyki Nanomateriałów, Wydział Fizyki UAM
    Title: Particular Properties of Spin Waves in Magnonic Crystals: Negative Refractive Index, Nonreciprocity and Damping
    Abstract: I am presenting the results of investigation of spin wave properties in periodic ferromagnetic structures (one-dimensional magnonic crystals). The main attention of research was put on development of numerical methods and analysis of spin waves properties that are important for designing a functional device. Three subjects of spin waves properties were studied and they can be classified as: i) influence of damping on standing spin wave formation ii) metamaterial properties for electromagnetic waves propagating through magnonic crystal and iii) nonreciprocal dispersion of spin waves. In particular I have shown the analysis of the influence of the damping factor on the spectrum of ferromagnetic resonance, the influence of metallic overlayer on the damping, influence of structural parameters of magnonic crystals on the magnetic permeability function of metamaterial based on the crystal. I have also presented a detailed analysis of symmetry breaking of the dispersion relation of spin waves propagating in the ferromagnetic films in contact with metal. The numerical calculation were confronted with measured data, when available, and agreement between them was shown.
  121. /220/
    Date: Monday 2014.09.1
    Speaker: Dr Bartłomiej Graczykowski
    Affiliation: Phononic and Photonic Nanostructures Group, Catalan Institute of Nanotechnology and Nanoscience (ICN2), Campus de la UAB - Edifici ICN2, 08193-Bellaterra (Barcelona), Spain
    Title: Acoustic phonon propagation in Si membranes and nanostructures
    Abstract: Studies on the phonon engineering have been gaining importance in recent 20 yr. Previous research has shown that phonon dispersion relation can be significantly modified by means of phononic crystals (PnCs) [1-3], spatial confinement [4-5], or external stress field [6-7]. Phononic crystals are in general materials with one- (1D), two-, or three-dimensional periodicity in their elastic properties. PnCs exhibit the modification of the phonon dispersion and possible complete frequency band gaps due to Bragg reflections or/and local resonances, which can be controlled by geometry and material properties. Another approach to modify the phonon dispersion relies on spatial confinement. Here, the dynamic behaviour at reduced characteristic dimensions has been found to be completely different than for bulk materials. I will report on experimental (Brillouin light scattering) and theoretical (finite element method) evidence of both phononic properties (zone folding, band gap and local resonance) and phonon confinement in one-dimensional Si surface PnCs and two-dimensional Si membrane based PnCs. Additionally, I will discuss the influence of the phononic patterning and phonon confinement on thermal properties (Raman thermometry) and potential applications of PnCs in thermoelectric devices.
    [1] N. Gomopoulos, D. Maschke, C. Y. Koh, E. L. Thomas, W. Tremel, H.-J. Butt, and G. Fytas, Nano Lett. 10, 980 (2010).
    [2] B. Graczykowski, S. Mielcarek, A. Trzaskowska, J. Sarkar, P. Hakonen, and B. Mroz, Phys. Rev. B 86, 085426 (2012).
    [3] B. Graczykowski, M. Sledzinska, N. Kehagias, F. Alzina, J. S. Reparaz, C. M. Sotomayor Torres, APL 104, 123108 (2014).
    [4] V. A. Fonoberov and A. A. Balandin, Nano Lett. 5, 1920 (2005).
    [5] J. Cuffe, E. Chvez, A. Shchepetov, P.-O. Chapuis, E. H. El Boudouti, F. Alzina, T. Kehoe, J. Gomis-Bresco, D. Dudek, Y. Pennec, B. Djafari-Rouhani, M. Prunnila, J. Ahopelto, and C. M. Sotomayor Torres, Nano Lett. 12, 3569 (2012).
    [6] A. Alofi and G. P. Srivastava, Phys. Rev. B 87, 115421 (2013).
    [7] B. Graczykowski, J. Gomis-Bresco, F. Alzina, J. S. Reparaz, A Shchepetov, M Prunnila, J Ahopelto, C.M. Sotomayor Torres, New J. Phys. 16, 073024 (2014).
  122. /219/
    Date: Wednesday 2014.07.02
    Speaker: Prof. Maciej Kozak
    Title: Time-resolved SAXS studies of human cystatin C - first observation of radiation induced domain swapping
    Authors: Maciej Kozak1, Michał Taube1, Magdalena Murawska1, Aneta Szymanska2, Anders Grubb3
    1Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
    2Department of Medicinal Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
    3Department of Clinical Chemistry, Lund University, Lund, Sweden
    Abstract: Damaging effects of synchrotron radiation were observed for the wide range of biological samples, ranging from protein crystals to biological cells and tissues [1,2]. Most often these damages were manifested as radiolysis of the tested molecules. However, so far were not observed any conformational changes (such as domain swapping) in the protein structures induced by the synchrotron radiation.
    The aim of this study was to observe the early stages of dimerization of human cystatin C (HCC) via the domain swapping mechanism. The time-resolved small angle scattering experiments were performed using synchrotron radiation on P12 BioSAXS beam line with very short acquisition time (50 ms) at PETRA III synchrotron (DESY Hamburg). Solution scattering data were subjected to detailed analysis by using SVD methods and MCR-ALS as well as the shape determination. Besides the monomeric forms of human cystatin C, also fractions of dimers and higher oligomeric forms of HCC formed even after 50-ms exposure were identified. In addition we showed directly for first time that the formation of human cystatin C oligomers and fibryls was directly preceded by the formation of domain swapped dimer.
    [1] Borek, D.; Dauter, Z.; Otwinowski, Z. (2013) J. Synchr. Rad. 20, 37-48.
    [2] Chen, Heyu; He, Xin; Sheng, Caibin; Ma, Yingxin; Nie, Hui; Xia, Weiliang; Ying, Weihai (2011) Int. J. Physiol. Patophysiol. Pharmacol. 3, 243-248.
  123. /218/
    Date: Tuesday 2014.07.01
    Speaker: Prof. Maciej Radosz
    Affiliation: Soft Materials Laboratory, University of Wyoming, U.S.A.
    Title: Multiblock micelle and dendrimer carriers for cancer drugs
    Abstract: Toxic hydrophobic drugs can be delivered to cancer tissue using benign nano-sized carriers made of block copolymers, dendrimers, or dendrimer-in-liposome particles. Polymeric carriers prepared via micellization in non-aqueous near-critical solvents, referred to as Near-Critical Micellization, have been demonstrated to lead to a much higher drug loading, by as much as a factor of three and to inhibit its premature release. This will be illustrated with examples for PEG-b-PLLA-b-PCL nanoparticles loaded with a model cancer drug paclitaxel. Such triblock nanoparticles are found to be not only solvent-free and paclitaxel-rich, which reduces the body exposure to the excipients, but also nearly burst-release-free, which enhances their therapeutic efficacy. Dendrimer-in-liposome carriers, in turn, provide a unique opportunity to address two other, seemingly contradictory drug-delivery requirements, namely a large size and hence good stability while in circulation but small size and hence rapid diffusion while penetrating the tumor tissue.
  124. /217/
    Date: Wednesday 2014.06.18
    Speaker: Dr Artur Barasiński
    Affiliation: Institute of Physics, University of Zielona Góra
    Title: Generation of maximally entangled states in optical supperlattices
    Abstract: We discuss a model with ultra-cold atoms confined in optical superlattices. In particular, we study the ground-state properties of our system. Applying model involving spin-1 bosons trapped in a double-well potential, we quantify the bipartite entanglement between particles. Depending on the external magnetic field and biquadratic interactions different phases of magnetic order are realized and hence, various phases of the system's entanglement. We show that changing the values of the parameters determining superlattices, we can switch the system among various maximally entangled states. What is important, our model seems to be a good candidate for practical realization of the device which can be a switchable tool for generation on demand of such a states.
    [1] A. Barasiński, W. Leoński, T. Sowiński, to appear in JOSA B (2014).
  125. /216/
    Date: Wednesday 2014.06.11
    Speakers: Prof. Bogusław Mróz and M.Sc. Piotr Graczyk
    Affiliation: Zakład Fizyki Kryształów, WF UAM
    Title: On the strong elasto-magnetic coupling in ferromagnetic thin film sputtered onto ferroelastic substrate
    Abstract: The influence of substrate ferroelastic phase transition on the magnetization of ferromagnetic thin film was investigated. Two different ferroic materials have been used: ferroelastic/ferroelectric Gd2(MoO4)2 and pure ferroelastic LiCsSO4 as a substrates. A nickel and permalloy thin films, with the different thickness from 10 to 100 nm were used.
    Our measurements showed strong magnetization change at Curie point, which reflect the temperature changes of spontaneous deformation of the samples.
    A strain-driven spin reorientation transitions were described theoretically using a magnetic domain theory. It was shown that magnetization reorientations occurs due to magnetoelastic contribution to free energy and thus affect total magnetization value of a sample. Results of our simulations were found to be in good agreement with the experiments.
    The preliminary results of Brillouin scattering on spin waves propagating in our samples will be shown.
  126. /215/
    Date: Wednesday 2014.06.11
    Speaker: Dr Mieczysław Torchała
    Affiliation: Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
    Title: Studying protein-protein binding funnels with SwarmDock Server and RaTrav
    Abstract: Protein-protein interactions drive many of the biological functions of the cell. Any two proteins have the potential to interact; however, whether the interactions are of biological significance is dependent on a number of complicated factors. Thus, modelling the three-dimensional structure of protein-protein complexes is still considered to be a complex endeavour. In addition to correct protein-protein complex 3D structure returned by the algorithm, equally important is dynamics of binding, i.e., how proteins find their binding partners in the multidimensional space of conformational transitions and how their binding partners, upon complex formation, sample binding funnels, i.e. what is the structure of conformational states space and in which manner proteins change their conformations when traversing this network. We recently released two freely available tools: SwarmDock Server (a web service for the flexible modelling of protein-protein complexes) [1] and RaTrav (a tool for calculating mean first-passage times) [2]. In this talk we share our experience related to conformational state network generation, its structure and dynamics. We successfully applied occupancy probabilities to distinguish between false positive and true positive protein-protein binding funnels [3]and mean first-passage times to find the favourable path and limiting transitions in the true positive protein-protein binding funnel [2].
    [1] M. Torchala, I.H. Moal, R.A.G. Chaleil, J. Fernandez-Recio, P.A. Bates, 'SwarmDock: a server for flexible protein-protein docking', Bioinformatics 29, 807-809 (2013).
    [2] M. Torchala, P. Chelminiak, M. Kurzynski, P.A. Bates, 'RaTrav: a tool for calculating mean first-passage times on biochemical networks', BMC Syst. Biol. 7, 130 (2013).
    [3] M. Torchala, I.H. Moal, R.A.G. Chaleil, R. Agius, P.A. Bates, 'A Markov-chain model description of binding funnels to enhance the ranking of docked solutions', Proteins: Structure, Function, and Bioinformatics 81, 2143-2149 (2013).
  127. /214/
    Date: Tuesday 2014.06.10
    Speaker: M.Sc. Mikołaj Lasota
    Affiliation: Faculty of Physics, Astronomy and Applied Informatics, Nicolaus Copernicus University, Toruń
    Title: Elementary linear optics quantum repeater links with realistic single photon sources
    Abstract: I study operation of realistic elementary quantum repeater links constructed using multiple single photon sources, quantum memories, linear optics, and heralding detectors. Two schemes are considered. The first one is the well established one-photon scheme which produces a photon in a delocalized superposition state between two quantum repeater nodes, each of them fed with one single photon at the input. The second one is a linear optics analog of the robust scheme based on interfering two Stokes photons emitted by atomic ensembles, which does not require phase stability between the repeater nodes. Imperfect photon sources are assumed, generating outputs with both vacuum and multiphoton contributions. I find conditions for the source photon statistics that guarantee generation of entanglement in the relevant qubit subspaces and compare it with classicality criteria. I also quantify the amount of entanglement that can be produced with imperfect single photon sources, optimized over setup parameters, using as a measure entanglement of formation. Finally, I discuss verification of the generated entanglement by testing Bell's inequalities.
  128. /213/
    Date: Monday 2013.06.09
    Speaker: Prof. Keith E. Gubbins
    Affiliation: Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A.
    Title: Wetting at the Nano-Scale
    Abstract: At the macro-scale the extent to which a liquid wets a solid substrate is usually described in terms of the contact angle, θc, and the surface tensions involved. Depending on the liquid and substrate, the system is described as amphiphilic ('wetting', θc < 90o) or amphiphobic ('non-wetting', θc > 90o). Such a description has a number of limitations; in particular, it breaks down for sufficiently small nano-scale systems, and is limited to describing liquid, as opposed to gaseous or solid, adsorbed films. At a more fundamental level, wetting is determined by the competition between the adsorbate-substrate intermolecular forces and the adsorbate-adsorbate forces. Through a corresponding states analysis of the statistical mechanical description of such wetting systems it is possible to define a microscopic wetting parameter, aw, that is a measure of wetting that applies at all scales and for any kind of adsorbed film (gas, liquid or solid) [1,2].
    We illustrate the usefulness of this wetting parameter by considering the properties of a nano-phase confined within a porous material. In this case the dimensionless pore width, pore shape and wetting characteristics of the confined phase are of particular importance. Examples drawn from both experiment and molecular simulation studies will be presented for phase separations, selective adsorption in the case of mixtures, and pressure enhancement, with emphasis on simple pore geometries. These examples illustrate the central role played by wetting, and also the breakdown of some concepts and macroscopic laws, such as Gibbs' surface thermodynamics for nano-phases confined within small pores.
    [1] R. Radhakrishnan, K.E. Gubbins and M. Śliwińska-Bartkowiak, "Global Phase Diagrams for Freezing in Porous Media", Journal of Chemical Physics, 116, 1147-1155 (2002).
    [2] Keith E. Gubbins, Yun Long and Małgorzata Śliwińska-Bartkowiak, "Thermodynamics of Confined Nano-Phases", Journal of Chemical Thermodynamics, 74, 169-183 (2014).
  129. /212/
    Date: Wednesday 2014.06.4
    Speaker: Dr Mirosław Łabuz
    Affiliation: Department of Theoretical Physics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszów
    Title: String hypothesis for short Heisenberg magnets
    Abstract: It is well known, that exact Bethe Ansatz solutions for the Heisenberg eigenproblem of a linear magnetic chain base upon the hypothesis of strings. This hypothesis is presumed to work in the thermodynamic limit N→∞, but it works pretty well also in the finite case. I present some details of analysis performed for short magnetic chains. In particular, I exploit Galois symmetry associated with the secular eigenproblem in determining rigged string configurations.
  130. /211/
    Date: Thursday 2014.05.29
    Speaker: B.Sc. Justyna Łodyga
    Affiliation: Zakład Elektroniki Kwantowej, WF UAM
    Title: Simple single-shot protocol for encoding and decoding an unknown qubit state into various topological codes
    Abstract: I present a general scheme for encoding and decoding an unknown qubit state into various topological codes for quantum error correction. I illustrate this method by means of Kitaev planar code, where qubits are arranged in a two-dimensional array on a surface of nontrivial topology. I also show that in the noisy scenario (when state preparation and measurements are faulty) an analytical bound for the fidelity of a quantum communication can be easily provided following the scheme and is of order of noise acting on a single physical qubit, in a large code size limit.
  131. /210/
    Date: Wednesday 2014.05.28
    Speaker: B.Sc. Justyna Łodyga
    Affiliation: Zakład Elektroniki Kwantowej, WF UAM
    Title: Introduction to quantum error correction codes
    Abstract: Protecting quantum information from errors due to decoherence and other quantum noise is crucial for fault-tolerant quantum computation. In order to do quantum information processing reliably in the presence of noise, the theory of error-correcting codes has been developed. These codes work by encoding quantum states in a special way that make them resilient against the effects of noise, and then decoding when it is wished to recover the original state. I start my presentation with comprehensive introduction to quantum error correction theory. Then, I carry on with short description of topological quantum error-correcting codes, an important class of quantum codes.
  132. /209/
    Date: Thursday 2014.05.22
    Speaker: Dr Andrii Chumak
    Affiliation: Fachbereich Physik and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
    Title: Magnons as an alternative to a charge current
    Abstract: With conventional CMOS technology data is carried by flows of electrons that generate heat which is responsible for the device's power consumption. An alternative to this principle is the employment of other particles or quasi-particles as information carriers which are subject to dissipation to a lesser degree than electrons. I will show that eigen excitations of magnetic media - magnons can be used for this role.
    In my talk, after an introduction on spin waves and their quanta magnons, I will concentrate on the artificial magnetic materials with periodically-modulated magnetic properties - magnonic crystals. Several different designs of macro- and micro-scaled magnonic crystals will be discussed [1-3]. In the second part of the talk, the magnon-based data processing elements will be shown: time reverser of microwave pulses [4] and magnon transistor. These proof of concept devices are made out of an insulator in order to exclude any motion of free electrons and are based on magnonic crystals. The time reverser is based on a dynamic magnonic crystal: a crystal with properties that can be varied using external controls on a very fast time scale. We have shown that a wave packet, while being reflected by the dynamic crystal, reverses its time profile [4]. The magnon transistor is the device operational principle of which is based on the control of magnons by magnons. It was realized through an enhancement of nonlinear magnon interactions in a magnonic crystal. We have shown that the transistor allows for the design of all-magnon logic gates as well as for enhancement of magnonic signals. The final part of the talk will be devoted to the miniaturization issues of the insulator-based magnonics. Very recently we have studied spin-wave excitation and propagation in an insulator yttrium-iron-garnet spin-wave waveguide of micrometer sizes [5]. These results represent a valid step towards the nano-scaled particle-less technology in which information is carried and processed by magnons rather than by electrons.
    [1] A.V. Chumak, et al., Phys. Rev. Lett. 108, 257207 (2012).
    [2] A.V. Chumak, et al., Appl. Phys. Lett. 95, 262508 (2009).
    [3] B. Obry, et al., Appl. Phys. Lett. 102, 202403 (2013).
    [4] A.V. Chumak, et al., Nat. Commun. 1:141 doi: 10.1038/ncomms1142 (2010).
    [5] P. Pirro, et al., Appl. Phys. Lett. 104, 012402 (2014).
  133. /208/
    Date: Tuesday 2014.05.20
    Speaker: Prof. Nobuyuki Imoto
    Affiliation: Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
    Title: Two-state formalism
    Abstract: A procedure to obtain the expectation value of an arbitrary observable is referred to as "state." Usually, such "state" has one-to-one correspondence to the quantum state of the physical system. In some cases, however, we know not only the prepared quantum state but also the post-selected state, which we actually see. If we estimate the measurement result performed by the third party intermediately, such mathematical "state" contains two physical states: initial and final states. Sometimes, we can precisely estimate the value of the conjugate observables regardless with his/her choice [1]. The "state" of course depends on the measurement, but the expression becomes simple for the weak measurement and strong measurement. For the weak measurement, it becomes the weak value [2], which exhibits interesting properties in paradoxical situations [3,4].
    [1] K. Shimizu, et. al.: Phys. Rev. A 84, 022308 (2011).
    [2] Y. Aharonov, et. al.: Phys. Rev. Lett. 60, 1351 (1988).
    [3] Y. Aharonov, et. al.: Phys. Lett. A 301, 130 (2002).
    [4] J. S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102, 020404 (2009);
        K. Yokota et. al., New J. Phys. 11, 033011 (2009).
  134. /207/
    Date: Thursday 2014.05.15
    Speaker: Dr Karol Załęski
    Affiliation: Centrum NanoBioMedyczne UAM
    Title: Properties of magnetic Heusler alloys - experimental and theoretical approach (part II)
    Abstract: Heusler alloys are a class of materials with diverse physical properties and many potential applications. Depending on their specific composition they can exhibit half-metallic ferromagnetism (full spin polarization at the Fermi level), magnetic shape memory (martensitic transformation in a ferromagnetic state), among others. The Heusler alloys Ni-Mn-Sn belong to a family of magnetic shape memory alloys. This magnetostructural transformation leads to magnetocaloric effect, modification of exchange coupling, large magnetoresistance, etc. The comprehensive experimental investigation of magnetic, transport and structural properties of Ni-Mn-Sn thin films was undertaken as well as ab initio calculations. It was shown that the local atomic configuration affects on magnetic properties. The estimated values of the martensitic transformation temperature and Curie (Néel) temperature were collected in the form of phase diagram.
  135. /206/
    Date: Wednesday 2014.05.14, 12:00
    Speaker: Dr hab. Genowefa Ślósarek
    Affiliation: Zakład Biofizyki Molekularnej, Wydział Fizyki UAM
    Title: Denaturacja i agregacja białek (Denaturation and aggregation of proteins)
    Abstract: Z chwilą, gdy rozwinęły się badania nad przyczyną chorób wywołanych przez amyloidy, rozbudowane zostały również badania podstawowe dotyczące procesu agregacji białek. Wykazano szybko, że proces agregacji występuje stosunkowo często i generalnie może to być proces odwracalny (w niektórych przypadkach in vivo) lub nieodwracalny (także w szczególnych przypadkach zmian fizjologicznych). Powstające agregaty mają często formę uporządkowanych, regularnych struktur. Wykazano także, że proces agregacji ściśle wiąże się z denaturacją cząsteczek białkowych.
  136. /205/
    Date: Thursday 2014.05.8
    Speaker: Dr Karol Załęski
    Affiliation: Centrum NanoBioMedyczne UAM
    Title: Properties of magnetic Heusler alloys - experimental and theoretical approach (part I)
    Abstract: Heusler alloys are a class of materials with diverse physical properties and many potential applications. Depending on their specific composition they can exhibit half-metallic ferromagnetism (full spin polarization at the Fermi level), magnetic shape memory (martensitic transformation in a ferromagnetic state), among others. The Heusler alloys Ni-Mn-Sn belong to a family of magnetic shape memory alloys. This magnetostructural transformation leads to magnetocaloric effect, modification of exchange coupling, large magnetoresistance, etc. The comprehensive experimental investigation of magnetic, transport and structural properties of Ni-Mn-Sn thin films was undertaken as well as ab initio calculations. It was shown that the local atomic configuration affects on magnetic properties. The estimated values of the martensitic transformation temperature and Curie (Néel) temperature were collected in the form of phase diagram.
  137. /204/
    Date: Tuesday 2014.04.29, 12:00
    Speaker: Prof. Robert Hołyst
    Affiliation: Dyrektor Instytutu Chemii Fizycznej PAN w Warszawie
    Title: Artificial and biological engines
    Abstract: I will discuss two issues related to the performance of artificial and biological engines. Three cases will be presented: ferroelectric liquid crystal monolayer performing continuous rotation in a monolayer of 3nm size powered by the flux of water; ATP as a biological pump powered by the flux of protons and finally kinesin motion along microtubules. In these three cases we will discuss the power of such engines and their resistance to thermal noise and local energy barriers induced by crowding by linear polymers.
  138. /203/
    Date: Wednesday 2014.04.23, 12:00
    Speaker: Dr hab. Jarosław S. Kłos
    Affiliation: Zakład Fizyki Komputerowej, Wydział Fizyki UAM
    Title: Simulations of neutral and charged dendrimers
    Abstract: We study the properties of neutral and charged dendrimers with flexible spacer-chains of various lengths and explicit counterions using Monte Carlo simulations based on the bond fluctuation model. For neutral dendrimers with the excluded volume interactions our simulations confirm the theoretical prediction for the scaling behavior of the dendrimer size. For charged dendrimers the full Coulomb potential is taken into account with the reduced temperature τ as the main control parameter. Our simulations show an interplay of counterion condensation, trapping of counterions inside the dendrimer's volume and counterion evaporation into the solution which give rise to a non-monotonous electrostatic swelling of the molecule with τ. To explain the swelling effect we apply a Flory-type argument where both trapped but non-condensed counterions and uncompensated charges due to counterion evaporation are included. This model properly reflects the swelling behavior with respect to temperature, pH and spacer-length variation, though quantitatively underestimates it.
  139. /202/
    Date: Wednesday 2014.04.16
    Speaker: Dr Maciej Misiorny
    Affiliations: (1) Forschungszentrum Jülich, Peter Grünberg Institut, Theoretical Nanoelectronics Division (PGI-2), 52425 Jülich, Germany and (2) Mesoscopic Physics Division, Physics Faculty, AMU.
    Title: Spintronic magnetic anisotropy
    Abstract: Experimental techniques nowadays allow for detailed transport measurements of individual atoms [1] or molecules [2,3] that exhibit magnetic anisotropy. The superparamagnetism of these systems, i.e. the preferential alignment of their spins along an easy axis, is a useful effect for nanoscale applications as it prevents undesired spin reversal. It has been suggested [4], and also experimentally proven for magnetic atoms [5], that spin-polarized currents can be employed to control the magnetic state of such systems assuming a given, intrinsic anisotropy. Furthermore, it has been also demonstrated that magnetic anisotropy can play a major role in formation of the Kondo effect in nanoscopic systems [1,3]. However, the spintronic transport also changes the magnetic anisotropy that it tries to probe and therefore these two cannot be treated separately. In fact, we have recently shown that any spin-isotropic high-spin quantum dot coupled to ferromagnets can acquire superparamagnetic properties in a spintronic way, i.e. from the outside via an effective quadrupolar exchange field [6]. The talk will review various theoretical aspects of transport through nanoscopic systems displaying magnetic anisotropy, with the main emphasis on how the flow of spin-polarized current through such a molecule/adatom can induce the magnetic anisotropy.
    [1] A.F. Otte et al., Nature Phys. 4, 847 (2008).
    [2] H.B. Heersche et al., Phys. Rev. Lett. 96, 206801 (2006); A. Zyazin et al., Nano Lett. 10, 3307 (2010); E. Burzuri et al., Phys. Rev. Lett. 109, 147203 (2012).
    [3] J.J. Parks et al., Science 328, 1370 (2010).
    [4] M. Misiorny and J. Barnaś, Phys. Rev. B 75, 134425 (2007); Phys. Rev. Lett. 111, 046603 (2013).
    [5] S. Loth et al., Nature Phys. 6, 340 (2010).
    [6] M. Misiorny, M. Hell and M. Wegewijs, Nature Phys. 9, 801 (2013).
  140. /201/
    Date: Thursday 2014.04.10
    Speaker: Prof. Jean-Claude S. Levy
    Affiliation: Matériaux et Phénome`nes Quantiques, Université Paris, France
    Title: Magnetic structures of 2D/3D nanoparticles
    Abstract: Magnetic nanoparticles have many applications, from printing to medical treatments, electronic memories and radio frequency devices, but their magnetic structure is still not well known. After a short review of one century of observations of magnetic domains in magnetic particles and magnetic nanoparticles especially on 2D particles, comments will be given on last twenty years of numerical simulations. A short review of the magnetic dynamics of such particles and nanoparticles will also be given. Then analytic considerations on magnetic structures of 2D and 3D nanoparticles will be reported as well as basic models for the magnetic structure of small enough nanoparticles. Finally recent numerical results on the magnetic structure of 2D and 3D nanoparticles and their dynamics will be given.
  141. /200/
    Date: Tuesday 2014.04.8
    Speaker: Prof. Yuri Gorobets
    Affiliation: Institute of Magnetism, National Academy of Sciences of Ukraine, Kiev, Ukraine
    Title: Biogenic nanomagnetism
    Abstract: The lecture contains the review of the experimental data about the biogenic magnetic nanoparticles (BMNs) in different organisms. The BMNs became the object of intensive research since 1975 when the BMNs were detected in magnetotactic bacteria (MTB) for the first time. The literature data about the proteins of the so-called magnetosome island of MTB will be represented concerning the process of biomineralization of BMNs. The physiological origin of BMNs, their possible functions in multi-cellular organisms and interrelation with the number of human diseases will be considered on the basis of the bioinformatics methods and magnetochemical effects.
  142. /199/
    Date: Wednesday 2014.04.2
    Speaker: Dr Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Efficient Amplification of Photonic Qubits by Optimal Quantum Cloning
    Abstract: We demonstrate a phase-independent quantum amplifier of a polarization qubit which can outperform the heralded qubit amplifier [S. Kocsis et al., Nature Physics 9, 23 (2013)]. It employs the multi-functional cloner in 1 to 2 copying regime, capable of providing approximate copies of qubits given by various probability distributions, and is optimized for distributions with axial symmetry. The direct application of the proposed solution is possible in quantum technologies, doubling the range where quantum information is coherently broadcast. It also outperforms natural nonlinear amplifiers that use stimulated emission in bulk nonlinear materials. We consider the amplifier to be an important tool for amplifying quantum information sent via quantum channels with phase-independent damping.
  143. /198/
    Date: Wednesday 2014.03.26
    Speaker: Dr Krzysztof Dobek
    Affiliation: Quantum Electronics Division, Faculty of Physics, AMU
    Title: New approaches in tunable optics
    Abstract: During the talk I will present modern techniques that allow to actively controlling the optical properties of a single optical element e.g. the lens focal length. First I will show widely used macroscopic devices, used for instance in astronomy, then emerging microscopic devices developed recently. Finally, I will present our efforts in the development of a flexible focal length device, whose operation is based on a new thermo-optical technique.
  144. /197/
    Date: Wednesday 2013.03.19
    Speaker: Prof. Mirosław Dudek
    Affiliation: Institute of Physics, University of Zielona Góra
    Title: Mean field method with space dependent order parameter
    Abstract: A new and efficient algorithm for the mean-field approximation is presented, in which we do not need to solve explicitly the self-consistent condition. This algorithm is a modification of the Metropolis algorithm which is often used in Monte Carlo simulations.
  145. /196/
    Date: Wednesday 2014.03.12
    Speaker: Prof. Michał Banaszak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: From Fractal Chaos to Regular Patterns and Vice Versa. Self-Organisation in Spatial Systems
    Abstract: This study offers a new perspective on the spatial impacts generated by cities or urban agglomerations. These impacts can range from chaotic to fully ordered. We demonstrate that cities produce a wealth of gravitational attractors whose size and shape depend on the resistance of space emerging inter alia from transport friction costs. This finding offers original insights into the complex evolution of spatial systems and appears to be consistent with the principles of central place theory known from spatial sciences and geography. Our approach is dynamic in nature and forms a generalization of hierarchical principles in geographic space.
  146. /195/
    Date: Wednesday 2014.03.5
    Speaker: Prof. Grzegorz Pawłowski
    Affiliation: Zakład Stanów Elektronowych Ciała Stałego, WF UAM
    Title: Zastosowanie środowiska ALPS (2.1) do obliczeń w układach silnie skorelowanych
    Abstract: W ramach wykładu zaprezentowana zostanie najnowsza wersja 2.1.1 środowiska Algorithms and Libraries for Physics Simulations (ALPS) [1] wraz z jego zastosowaniami. ALPS jest projektem typu open source rozwijanym od roku 2004 przez międzynarodową grupę fizyków teoretyków specjalizujących się w badaniu układów silnie skorelowanych [2].
    Wszystkie elementy pakietu wykorzystują wspólny format danych zapisanych w języku XML. Na tym poziomie przeprowadzenie symulacji nie wymaga znajomości programowania w języku C++, w jakim zostały napisane biblioteki obliczeniowe i główne aplikacje.
    Gotowe programy obejmują implementacje najważniejszych algorytmów dla modeli kwantowych na sieci, jak np.: klasyczne i kwantowe Monte Carlo (spinMC, QMC) w wersji lokalnej i klasterowej, kwantowe symulacje typu Wanga-Landaua (QWL), dokładna i pełne diagonalizacja (ED), macierz gęstości grupy renormalizacji (DMRG) czy dynamiczne pole średnie (DMFT).
    Zawarte w projekcie biblioteki stanowią ramy do rozwoju własnego oprogramowania z wykorzystaniem obliczeń równoległych typu openMPI na różnych platformach sprzętowych i systemowych.
    W nowej wersji 2 oprogramowania ALPS uwzględniono wykorzystanie standardu HDF5 do zapisu i zarządzania danymi, użycie specjalistycznych narządzi do analizy wyników napisanych w języku Python oraz integrację pracy całego systemu w środowisku do wizualizacji procesów obliczeniowych VisTrails.
    Wykład uzupełniony będzie o liczne przykładowe obliczenia.
    [1] http://alps.comp-phys.org;
    [2] B.Bauer et al. (ALPS collaboration), "The ALPS project release 2.0: open source software for strongly correlated systems", J.Stat.Mech. P05001 (2011).
  147. /194/
    Date: Thursday 2014.02.27
    Speaker: Dr Ryszard Gieniusz
    Affiliation: Uniwersytet w Białymstoku
    Title: Fale spinowe w strukturyzowanych warstwach granatów
    Abstract: Przedstawione zostaną wybrane efekty zachowania się fal spinowych w strukturyzowanych warstwach granatu itrowo-żelazowego. Omówione będzie oddziaływania fal spinowych z: (i) pojedynczym otworem - zjawisko dyfrakcji fal spinowych; (ii) linią otworów - efekt całkowitego wewnętrznego odbicia tych fal; (iii) dwuwymiarową sieci otworów. Badania wykonano z wykorzystaniem: (i) klasycznego spektrometru nieelastycznego rozpraszania światła Brillouina (BLS) z rozdzielczością czasową i przestrzenną w konfiguracji odbiciowej i transmisyjnej, (ii) mikroskopu BLS pracującego w konfiguracji odbiciowej z rozdzielczością przestrzenną do ok. 300 nm; (iii) spektrometru FMR. Wyniki eksperymentalne interpretowano korzystając między innymi z modelowania mikromagnetycznego. Dodatkowo przedstawione będą, planowane do dalszych badań, nowe struktury magnoniczne w oparciu o naświetlane jonami magnetyczne nanostruktury.
  148. /193/
    Date: Wednesday 2014.02.26 at 13:00
    Speaker: Prof. Dagomir Kaszlikowski
    Affiliation: Centre for Quantum Technologies, National University of Singapore
    Title: The triangle principle: new approach to non-classical correlations
    Abstract: We study an application of an information-theoretic distance between two measurements to investigate non-classical correlations. We postulate the triangle principle, which states that any information-theoretic distance is well defined on any pair of measurements, even if these measurements cannot be jointly performed. As a consequence, the triangle inequality for this distance is obeyed for any three measurements. This simple principle is valid in any classical realistic theory, however it may not hold in quantum theory. It leads to derivation of certain inequalities whose violations are indicators of non-classicality. Some of these inequalities formally look the same as those found in the literature on local realism and non-contextuality but we also derive completely new inequalities. We also show that our geometrical approach naturally implies monogamy of non-classical correlations.
  149. /192/
    Date: Monday 2014.02.24
    Speaker: Prof. Peter Nijkamp
    Affiliation: Professor of Regional Economics and Economic Geography at the Vrije Universiteit, Amsterdam, the Netherlands, a fellow of the Tinbergen Institute and President of the Governing Board of the Netherlands Research Council (NWO).
    Title: Virtual reality: The death of distance revisited.
  150. /191/
    Date: Wednesday 2014.02.19
    Speaker: Dr Paweł Kurzyński
    Affiliation: Centre for Quantum Technologies, National University of Singapore and Faculty of Physics, Adam Mickiewicz University
    Title: How to test indistinguishability of particles
    Abstract: My talk will consist of two parts. First, we propose a test to measure the bosonic and fermionic quality of particles with respect to physical operations of single-particle addition and subtraction. We apply our test to investigate bosonic properties of composite particles made of an even number of fermions and suggest its experimental implementation. Next, we show that under certain assumptions one can derive a variant of Specker's non-contextual inequality for a system of three indistinguishable bosonic particles. The inequality states that the sum of probabilities of three pairwise exclusive events is bounded by one. This inequality cannot be violated using standard quantum mechanical projectors and cannot be violated by independent distinguishable particles. On the other hand, due to bosonic properties this bound is violated up to 3/2. We also argue that the violation of this inequality can be considered as a test of bosonic nature.
  151. /190/
    Date: Wednesday 2014.02.12
    Speaker: Prof. Jacek Gapiński
    Coauthors: Prof. Adam Patkowski and Prof. Gerhard Naegele
    Affiliation: Zakład Biofizyki Molekularnej, Wydział Fizyki UAM
    Title: Struktura, dynamika i krystalizacja układów koloidalnych typu Yukawy. Część II.
    (Structure, dynamics and crystallization of Yukawa type colloidal systems. Part II.)
    Abstract: In the preceding talk, prof. Adam Patkowski explained the methods and tools which have been used to calculate the pair correlation function g(r) and the structure factor S(q) of colloidal systems with Yukawa-type interactions. Using these tools we managed to calculate the freezing lines of such systems both using experimentally measurable parameters and generalized parameters. In the latter case a master curve was obtained. In this part I am going to discuss the information accessible from the pair correlation function g(r) which describes the local structure of colloidal systems. In particular, I will show such parameters as the number of nearest neighbors, mean nearest neighbor distance, position of the maximum of g(r), and peak position of S(q). Conclusions drawn from the values obtained at freezing lines will be extended to colloidal systems in fluid state, leading to surprising results concerning the local structure of strongly interacting colloids.
  152. /189/
    Date: Wednesday 2014.02.5
    Speaker: Prof. Adam Patkowski
    Affiliation: Zakład Biofizyki Molekularnej, Wydział Fizyki UAM oraz Centrum NanoBioMedyczne UAM
    Title: Struktura, dynamika i krystalizacja układów koloidalnych typu Yukawy. Część I.
    (Structure, dynamics and crystallization of Yukawa type colloidal systems. Part I.)
    Abstract: Oddziaływania w zawiesinach naładowanych koloidów opisane są przez efektywną energię oddziaływań dwójkowych typu Yukawy: u(r)/kBT ∼ AZ2exp(−κr)/r, gdzie A jest stałą układu, κ−1 - długością ekranowania Debye'a, Z - efektywnym ładunkiem cząstki. Uporządkowanie bliskiego zasięgu w układach koloidalnych może być mierzone przy pomocy: dwójkowej funkcji rozkładu radialnego g(r), średniej odległości najbliższych sąsiadów rn i ich liczby Nn. Ostatnie dwie wielkości mogą być obliczone z funkcji g(r). Uporządkowanie dalekiego zasięgu w układach koloidalnych mierzone jest przez zależny od wektora rozpraszania q statyczny czynnik struktury S(q), który może być zmierzony w eksperymencie rozpraszania światła lub nisko-kątowego rozpraszania promieni rentgena (SAXS). Punkt krystalizacji układu koloidalnego dany jest przez kryterium Hansena-Verleta (HV): S(qm)=3. Dynamika układu koloidalnego charakteryzowana jest przez krótko-czasowy współczynnik dyfuzji kolektywnej DC(q), określony jako: DC(q)=D0H(q)/S(q), gdzie D0 jest wartością dla nieskończonego rozcieńczenia układu, a H(q) jest zależną od q funkcją hydrodynamiczną. Wykazaliśmy, przy pomocy statycznego (SAXS) i dynamicznego (XPCS) rozpraszania rentgenowskiego promieniowania synchrotronowego, że modele teoretyczne dla S(q) - równanie całkowe Rogersa-Younga (RY), oraz dla DC(q)-model δγ, dobrze opisują dane doświadczalne uzyskane dla naładowanych koloidów w całym zakresie ciekłym [1]. Stosując model δγ przeanalizowaliśmy zachowanie funkcji hydrodynamicznej H(q) [2], a przy pomocy równania całkowego RY oraz kryterium HV uzyskaliśmy również krzywą krystalizacji [3] dla naładowanych koloidów typu Yukawy w szerokim zakresie ładunku, rozmiarów i stężenia koloidów i stężenia dodanej soli. Ostatnio badaliśmy także punktu krystalizacji.
    [1] J. Gapinski, A. Patkowski, A. J. Banchio, J. Buitenhuis, P. Holmquist, M. P. Lettinga, G. Meier and G. Nägele, J. Chem. Phys. 130 (2009) 084503.
    [2] J. Gapinski, A. Patkowski and G. Nägele, J. Chem. Phys. 132 (2010) 054510.
    [3] J. Gapinski, G. Nägele, and A. Patkowski, J. Chem. Phys. 136 (2012) 024507.
  153. /188/
    Date: Wednesday 2014.01.29
    Speaker: Dr Sławomir Mamica
    Affiliation: Zakład Fizyki Nanomateriałów, Wydział Fizyki UAM
    Title: Spin-wave spectra of two-dimensional circularly magnetized nanodots and nanorings
    Abstract: The properties of small magnetic dots are the object of increased interest because of their rich physics and potential applications in a variety of fields, such as data storage and information processing, single magnetic nanoparticle sensing and trapping, microwave-frequency oscillators, or frequency multiplication. The physical phenomena observed in small magnetic dots are related to their minute dimensions, ranging from tens of nanometers to a few micrometers, and the competition between the long-range dipolar interaction and the short-range exchange interaction. In small magnetic dots their concurrence leads, among other effects, to a rich spectrum of stable and metastable magnetic configurations, including vortex states. The chirality and polarity of the vortex are potential information carriers and can be switched with external magnetic field, electric current, or microwave radiation. An important role in magnetization switching, as well as in the stability of magnetic configurations, is played by spin-wave excitations. Moreover, the role of thermally excited spin waves in magnetization switching proves very important even in particles smaller than the exchange length.
    In this work we use a microscopic theory taking into account the dipolar and nearest-neighbour exchange interactions for exploring spin-wave excitations in two-dimensional magnetic dots in the vortex state. Normal modes of different profiles are observed: azimuthal and radial modes, as well as fundamental (quasiuniform) and highly localized modes. We examine the dependence of the frequencies and profiles of these modes on the dipolar-to-exchange interaction ratio and the size of the dot. Special attention is paid to some particular modes, including the lowest mode in the spectrum and the evolution of its profile, and the fundamental mode, the frequency of which proves almost independent of the dipolar-to-exchange interaction ratio. Finally, we study the hybridization of the modes, show the multi-mode hybridization and explain the selection rules.
    [1] S. Mamica et al., J. Phys. D, accepted (2013).
    [2] S. Mamica, J. Appl. Phys., accepted (2014).
  154. /187/
    Date: Tuesday 2014.01.21
    Speaker: Prof. Andrzej Sikorski
    Affiliation: Zakład Teorii Biopolimerów, Wydział Chemii Uniwersytetu Warszawskiego
    Title: The properties of adsorbed polymers
    Abstract: The properties of polymer films formed by adsorbed or tethered chains are important for practical reasons (lubrication, colloidal stabilization, chromatography etc.) and interesting from the theoretical point of view. The adsorption of homo- and copolymers on homogenous and patterned surfaces was a subject of our studies. We employed computer simulations of idealized models as a main tool. The coarse-grained models of macromolecules were designed for this purpose. The properties of the system studied were determined using some versions of the Monte Carlo method. The influence of the temperature, the strength of the adsorption, the sequence of mers, patterns on the surface and the macromolecular architecture on the properties of chains were studied. The results were discussed and compared to other simulations results, theoretical predictions and real experiments.
  155. /186/
    Date: Wednesday 2014.01.15
    Speaker: Dr Sławomir Mamica
    Affiliation: Zakład Fizyki Nanomateriałów, Wydział Fizyki UAM
    Title: Stability of the in-plane vortex state in two-dimensional magnetic nanodots and nanorings
    Abstract: A major scientific interest of magnetic nanodots and nanorings lies in the concurrence of the exchange and dipolar interactions. In a variety of systems, long-range interactions have led to a number of interesting findings. However, the concurrence of short-range and long-range interactions proves particularly interesting. Also the magnetic vortex state stems from the competition between the long-range dipolar interaction and the short-range exchange interaction. On the other hand, studies of the possible stable and metastable magnetic configurations in magnetic nanorings are of major importance regarding to the potential applications which extend from data processing and high-density magnetic random access memory (MRAM) elements to microwave frequency oscillators and single magnetic nanoparticle sensors.
    In this work we study two-dimensional nanodots and nanorings composed of elementary magnetic moments arranged in sites of a square lattice. Using a microscopic approach that takes into account the dipolar and nearest-neighbour exchange interactions, we calculate the spin-wave frequencies and profiles to draw conclusions regarding the stability of the assumed magnetic configuration. We show that, in contrast to square rings, in circular rings the exchange-driven reorientation is sensitive to both the external and internal sizes of the ring. We associate this behaviour with the delocalized character of the lowest spin-wave excitation, and show that, consequently, the in-plane vortex state can be stabilized even in the case of strong exchange interactions.
    [1] S. Mamica et al., J. Nanopart. Res. 13, 6075 (2011).
    [2] S. Mamica et al., J. Appl. Phys. 112, 043901 (2012).
    [3] S. Mamica, J. Appl. Phys. 113, 093901 (2013).
  156. /185/
    Date: Wednesday 2014.01.08
    Speaker: Dr Ewa Banachowicz
    Affiliation: Zakład Biofizyki Molekularnej, Wydział Fizyki UAM
    Title: Struktura przestrzenna zdenaturowanych białek badana metodami Monte Carlo
    Abstract: Struktura białek od dziesięcioleci stanowi przedmiot dociekań naukowców z różnych dziedzin. Dzięki znajomości przestrzennej budowy cząsteczek biologicznych łatwiej jest przewidzieć i zrozumieć ich funkcję. We współczesnej farmacji rozwiązanie struktury tak zwanego białka docelowego (targetu) jest podstawą zaprojektowania skutecznego i specyficznie działającego leku. Rozwinięto zatem wysokorozdzielcze techniki eksperymentalne pozwalające z dokładnością do pojedynczego atomu określić przestrzenne rozmieszczenie wszystkich jego elementów. Na tej podstawie powstała hipoteza o uporządkowanej i stosunkowo sztywnej budowie białek. Okazało się jednak, że pośród białek, którym przypisano kluczową rolę w procesach biologicznych wiele posiada budowę „wewnętrznie nieuporządkowaną”. Struktura białka zdenaturowanego (rozplecionego w określonych warunkach), podobnie jak struktura giętkich nieuporządkowanych wewnętrznie białek, nie może być ustalona ani za pomocą rentgenografii strukturalnej ani spektroskopii NMR. Zależność promienia bezwładności od masy oraz czynnik kształtu otrzymywane z badań niskokątowego rozpraszania neutronów i promieniowania rentgenowskiego dla roztworów tych białek wskazują na strukturę kłębka statystycznego. Nie wyjaśniają jednak w jaki sposób kłębek statystyczny może w specyficzny sposób oddziaływać z innymi białkami, tworząc aktywne biologicznie kompleksy. Nie jest też do końca jasne, w jaki sposób swobodny, losowo ułożony łańcuch przechodzi do formy uporządkowanej. Łańcuchy białkowe są polimerami o dość złożonej budowie. Każdy mer jest jednym z 20 aminokwasów i może mieć inne własności fizyczne - inny ładunek, objętość lub długość łańcucha bocznego - niż jego sąsiad. Kolejność merów decyduje o lokalnych własnościach łańcucha głównego i wyklucza pewne grupy konformacji. Symulacje Monte Carlo swobodnie błądzącego łańcucha białkowego reprezentowanego przez pełno-atomowy model w sieci FCC mają ułatwić odpowiedz na pytania: (1) czy zdenaturowane i wewnętrznie nieuporządkowanie białka rzeczywiście mają strukturę kłębka? (2) jak rozmiar łańcuchów bocznych może wpłynąć na strukturę całej cząsteczki? oraz (3) jakie oddziaływania determinują ewentualną strukturę lokalną?
  157. /184/
    Date: Tuesday 2013.12.17, 10:00
    Speaker: Prof. Maciej Lewenstein
    Affiliation: ICREA Research Professor at ICFO (Institut de Cie`ncies Foto`niques), Barcelona, Spain.
    Title: Report from the frontiers of atomic, molecular and optical physics and quantum information
    Abstract: In my lecture I will talk about some hot topics of AMO and QI by presenting examples of several lines of research, concentrating on theoretical and experimental challenges. The particular subjects will include: a) quantum simulators, i.e. systems capable of simulation of non-trivial and hard to treat quantum many body problems; b) novel kind of numerical and theoretical approaches to many body systems (tensor network states), employing the role of entanglement in many body problems; c) hybrid systems, combining nano-physics with quantum optics.
  158. /183/
    Date: Wednesday 2013.12.11
    Speaker: Dr Sławomir Mamica
    Affiliation: Zakład Fizyki Nanomateriałów, Wydział Fizyki UAM
    Title: On the three-dimensional magnetoferritin-based magnonic crystals. Perspectives for the magnonic band gap tailoring
    Abstract: Magnetic nanoparticles (NPs) have been intensively studied because of their unusual physical properties as well as promising applications in a wide variety of fields that range from medicine to nanoelectronics. In this study we consider the use of biomimetic NPs of the very numerous magnetoferritin superfamily as the basis for the realization of 3D magnonic crystals in which the interparticle space is filled with a ferromagnetic material. The use of protein cages as reaction chambers for the production of NPs has a number of advantages. One of them is a high level of homogeneity of the NPs in terms of size and shape, determined by the internal surface of the protein cage. Another major advantage of biomimetic NPs from the point of view of this study is the possibility of producing highly ordered 3D structures by self-assembly [1].
    We use the plane wave method to demonstrate that the introduction of a ferromagnetic matrix can lead to the opening of a complete band gap, referred to as a magnonic band gap, in the spin-wave spectrum. We use a model based on a homogeneous medium with effective parameters to interpret the characteristics of the obtained spin-wave spectra in the long wave limit. We also study in detail the width of the band gap and its central frequency versus the matrix material and the lattice constant. The occurrence of a maximum width in the lattice-constant dependence is shown to be closely related to the specific behaviour of the dynamic magnetization profiles of the lowest excitations in the spin-wave spectrum. On the basis of our results we determine the conditions conducive to the occurrence of a complete magnonic band gap. We also show that the crystallographic structure and the lattice constant of the crystals produced by the protein crystallization technique are almost optimized for the occurrence of a magnonic band gap [2,3].
    [1] O. Kasyutich et al., J. Appl. Phys. 105, 07B528 (2009).
    [2] S. Mamica et al., Phys. Rev. B 86, 144402 (2012).
    [3] S. Mamica, J. Appl. Phys. 114, 043912 (2013).
  159. /182/
    Date: Wednesday 2013.12.04
    Speaker: Dr Aleksandra Trzaskowska
    Affiliation: Zakład Fizyki Kryształów, Wydział Fizyki UAM
    Title: Periodic nanostructures on silicon surface
    Abstract: During the seminar experimental and theoretical study of the phononic band gap in the hypersonic range for thermally activated surface acoustic waves will be presented. Two dimensional phononic crystals have been studied by the Surface Brillouin Light Scattering. The experiment was performed on the (001) surface of the silicon loaded with two-dimensional square and hexagonal lattice of pillars of different height (100 or 150 nm). It will be presented a new type of surface modes which are related to phononic effects and mechanical eigenmodes of pillars. The experimental data will be compared with results of theoretical modeling by the Finite Element Method.
  160. /181/
    Date: Friday 2013.11.29
    Speaker: Prof. Maciej Kozak
    Affiliation: Macromolecular Physics Division, Physics Faculty, AMU
    Title: SOLARIS - new light for Polish science
    Abstract: In December 2011 was initiated in Kraków the construction of the first Polish synchrotron - The National Synchrotron Radiation Centre SOLARIS. The energy parameters of SOLARIS (1.5 GeV) allow planning of beam lines utilising the synchrotron radiation from infrared to hard X-rays range. Two beamlines - UARPES (Ultra Angle Resolved Photoemission Spectroscopy) and PEEM/XAS (Photoemission Electron Microscopy/X-ray Absorption Spectroscopy) are currently under construction. Four other new beamlines (IR spectroscopy, XAS/EXAFS spectroscopy, Soft X-ray spectroscopies and multipurpose station - macromolecular crystallography/small angle X-ray scattering/powder diffractometry) are now at different stages of conception and design. First research using synchrotron radiation in SOLARIS can start at the beginning of 2015. The lecture summarized the progress of the construction of the first Polish synchrotron and research opportunities offered.
  161. /180/
    Date: Wednesday 2013.11.27
    Speaker: Dr Tomasz Sowiński
    Affiliation: Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland and Center for Theoretical Physics of the Polish Academy of Sciences, Warsaw, Poland
    Title: Spontaneous breaking of the time-reversal symmetry in optical lattices
    Abstract: The ground-state properties of bosons loaded into the p-band of a one dimensional optical lattice is studied. It is shown that the phase diagram of the system is substantially affected by the anharmonicity of the lattice potential. In particular, for a certain range of tunneling strength, the full many-body ground state of the system becomes degenerate. In this region, an additional symmetry of the system, namely the parity of the occupation number of the chosen orbital, is spontaneously broken. The state with nonvanishing staggered angular momentum, which breaks the time-reversal symmetry, becomes the true ground state of the system.
  162. /179/
    Date: Wednesday, 20 November 2013
    Speaker: Dr hab. Konstantin Tretiakov
    Affiliation: Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań
    Title: The rate of energy dissipation determines probabilities of nonequilibrium assemblies
    Abstract: This work demonstrates that outside of thermodynamic equilibrium, the rate at which energy is dissipated to maintain an ordered state is related to the likelihood of this state being observed. This result is based on a study of a model system in which different (“polymorphic”) non-equilibrium structures are realized for the same values of system’s parameters [1]. Because the polymorphs differ only in the rates of energy dissipation, ϵ – and not in their kinetic or potential energies – it is possible to directly relate probabilities of polymorphs’ occurrence to ϵ. Combination of experiments and simulations indicates that the probability of polymorph/”state” occurrence decreases exponentially with its increasing dissipation rate [2]. In other words, far from thermodynamic equilibrium, nature favors less dissipative states, although the more thermodynamically wasteful structures are also permitted with small probabilities.
    [1] B. A. Grzybowski, H. A. Stone, and G. M. Whitesides, Dynamic self-assembly of magnetized, millimetre-sized objects rotating at a liquid-air interface. Nature 405, 1033-1036 (2000).
    [2] K. V. Tretiakov, I. Szleifer, and B. A. Grzybowski, The rate of energy dissipation determines probabilities of non-equilibrium assemblies, Angew. Chem. Int. Ed. 52, 10304-10308 (2013).
  163. /178/
    Date: Tuesday 2013.11.12
    Speaker: Dr Marcin Pawłowski
    Affiliation: Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, 80-952 Gdańsk oraz Krajowe Centrum Informatyki Kwantowej w Gdańsku, 81-824 Sopot
    Title: Semi-device independent protocols
    Abstract: After the second World War the British sold Enigma to the governments of some of their former colonies claiming that it was unbreakable. To counter untrusted vendors of the devices used in communication tasks quantum information theory offers Device Independent protocols, which can guarantee the security even if the devices are rigged. However, these protocols require parameters which are extremely difficult to obtain in real experiments (so far no group has been able to demonstrate Device Independent QKD). Semi-Device Independent protocols offer good compromise between the level of trust in the vendor of the device and the hardness of physical implementation. In this talk I will introduce the Semi-Device Independent scenario, give the examples of QKD and randomness expansion protocols and report on experimental realizations.
  164. /177/
    Date: Friday 2013.11.08
    Speaker: Prof. Anirban Pathak
    Affiliation: Department of Physics, Jaypee Institute of Information Technology (Deemed University), Noida, India.
    Title: Can we build a reversible classical computer?
    Abstract: Due to decoherence and other well-known issues, physical realization of a scalable quantum computer is not expected to happen in near future. However, it may be possible to design a reversible classical computer that would be free from energy loss due to logical operations. Due to other kind of existing losses it may not be very attractive as a commercial product, but it is interesting to investigate whether we are ready to build a reversible classical computer. We show that we can really build smart reversible circuits for almost all the essential component of a computer. Thus in principle we can build a reversible classical computer.
    To elaborate on the above claim we first provide a short introduction to the various quantitative measures of the quality of reversible and quantum circuits. To provide a clear distinction between classical reversible circuits and quantum circuits, some foundational aspects of quantum mechanics (specially related to measurement postulate, duality and monogamy) are discussed. The physics behind the strategies adopted for the optimization of various costs of quantum and reversible circuits are explained. Subsequently, two algorithms for optimization of quantum cost are described and optimized quantum costs of different reversible and quantum circuits are shown. As examples, some useful optimized quantum and reversible circuits designed by our group in recent past are shown. Specifically, reversible designs of Montgomery multiplier, sequential elements and ALU of a crypto-processor with minimal gate count, garbage bits, optimal quantum cost and delay are shown.
    Further to show that optimization strategies discussed in context of classical reversible circuits are also applicable to quantum circuits, we provide a set of optimized quantum circuits useful for construction of entanglement concentration protocols (ECPs) for cat state, GHZ-like state and all families of 4-qubit entangled states.
  165. /176/
    Date: Wednesday 2013.10.30
    Speaker: Prof. Krzysztof Wojciechowski
    Affiliation: Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań
    Title: Auxetic foams: how, when, why?
    Abstract: Materials with anomalous (negative) Poisson's ratio are called auxetics. In contrast to common materials, auxetics shrink when stretched and expand transversally when axially compressed. (Perfect auxetics preserve their shape when changing dimensions. So, in some sense, they show a behaviour opposite to incompressible liquids.) In spite that auxetic systems in the form of man-made structures [1] or self-organising (thermodynamically stable) phases [2] are known for more than 25 years, they are still intensively studied for many potential applications [3,4]. In this lecture the research in the field of auxetics will be briefly reviewed with emphasis on some recent results obtained for auxetic foams [5].
    [1] R. S.Lakes, "Negative Poisson's ratio materials", Science 235, 1038-1040 (1987).
    [2] K. W. Wojciechowski, "Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional systems of hard cyclic hexamers", Molecular Physics 61, 1247-125 (1987).
    [3] Y. Prawoto, "Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson's ratio", Computational Materials Science 58, 140-153 (2012).
    [4] K. W. Wojciechowski, J. N. Grima, K. L. Alderson, J. Rybicki, "Preface - Auxetic Materials and Related Systems", Physica Status Solidi B 250, 1959-1962 (2013); see also the references therein.
    [5] A. A. Pozniak, J. Smardzewski, and K. W. Wojciechowski, "Computer simulations of auxetic foams in two dimensions", Smart Materials and Structures 22, article 084009 (2013)
  166. /175/
    Date: Thursday 2013.10.17
    Speaker: Dr Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Linear optical quantum routers
    Abstract: This talk summarizes our recent results in the field of quantum routing. First, we define a fully functional quantum router with emphasis on the features such router has to provide. Then we review some of the previously published schemes showing the lack for genuine linear-optical quantum router for individual photons. Subsequently we present our two proposals for linear-optical quantum routers [1,2] and discuss their advantages and disadvantages. Finally we address the experimental implementation that is currently under construction in our laboratory.
    [1] K. Lemr, A. Černoch, Linear-optical programmable quantum router, Opt. Comm. 300, 282-285 (2013).
    [2] K. Lemr, K. Bartkiewicz, A. Černoch, and J. Soubusta, Resource-efficient linear-optical quantum router, Phys. Rev. A 87, 062333 (2013).
  167. /174/
    Date: Thursday 2013.10.17
    Speaker: Dr Antonín Černoch
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Linear-optical qubit amplifier
    Abstract: We propose a linear-optical scheme for heralded qubit amplification. The device is able to change the ratio between probabilities of detecting vacuum or a photonic qubit in the signal transmitted via some lossy channel by using a pair of entangled ancillae. The probability of successful amplification does not asymptotically drop to zero for infinite gain and it can be optimized if (i) some a priory knowledge of input state is known or (ii) some noise in the output signal is tolerated.
  168. /173/
    Date: Thursday 2013.10.17
    Speaker: Doc. Jan Soubusta
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Recent results of the experimental-optics group in Olomouc
    Abstract: We summarize ten years of experiments dealing with quantum cloning and implementations of linear-optical quantum devices. We tried several concepts and several platforms for optimal cloning of photon qubits. We developed several linear-optical quantum information processing devices and we used them for cloning.
  169. /172/
    Date: Thursday 2013.10.17
    Speaker: Prof. Jan Perina Jr.
    Title: Sub-Poissonian-light generation by postselection from twin beams
    Authors: Jan Perina, Jr.1, Ondrej Haderka2, Vaclav Michalek2
    1 RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of AS CR, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
    2 Institute of Physics of Academy of Sciences of the Czech Republic, Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, 17. listopadu 12, 772 07 Olomouc, Czech Republic
    Abstract: States with sub-Poissonian photon-number statistics obtained by post-selection from twin beams are characterized. States with Fano factors around 0.7 and mean photon numbers around 12 are experimentally reached. Their quasi-distributions of integrated intensity attaining negative values are determined. An intensified CCD camera with quantum detection efficiency exceeding 20 % is utilized both for post-selection and characterization. Experimental results are compared with theory that provides optimum conditions for the experiment.
  170. /171/
    Date: Thursday 2013.10.17
    Speaker: Prof. Marek Czachor
    Affiliation: Faculty of Applied Physics and Mathematics, Technical University of Gdańsk and National Quantum Information Centre in Sopot
    Title: Are EPR correlations sensitive to the form of field quantization?
    Abstract: As is widely known, the standard "one oscillator per one mode" quantization of free fields leads to the correct physical prediction <AB>=cos(a-b) for entanglement of linear polarizations, and violates the Bell inequality. This seems to suggest that the tensor product structure associated with the "oscillator per mode" quantization is indeed THE tensor structure associated with quantum fields. However, I will show that <AB>=cos(a-b) is typical also of fields quantized in a different way, where there is no relation at all between the number of modes and the number of oscillators.
  171. /170/
    Date: Thursday 2013.10.17
    Speaker: Prof. Konrad Banaszek
    Affiliation: Institute of Theoretical Physics, Department of Quantum Optics and Atomic Physics, Faculty of Physics, University of Warsaw
    Title: Which-way experiment with an internal degree of freedom
    Abstract: We present an inequality relating visibility and which-way information for a particle equipped with an internal degree of freedom travelling through a Mach-Zehnder interferometer. The inequality paints an unexpectedly intricate picture of wave-particle duality in the general case. Strikingly, in some instances which-way information becomes erased by introducing classical uncertainty in the internal degree of freedom. Furthermore, even imperfect interference visibility measured for a suitable set of inputs can be sufficient to infer absence of which-way information.
  172. /169/
    Date: Thursday 2013.10.17
    Speaker: Prof. Qiongyi He
    Title: Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanic
    Authors: Q. Y. He1,2, M. D. Reid2, and P. D. Drummond2
    1 State Key Laboratory of Mesoscopic Physics, School of Physics, Peking University, Beijing, China;
    2 Centre for Quantum Atom Optics, Swinburne University of Technology, Melbourne, Australia
    Abstract: We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between a mesoscopic mechanical oscillator and an optical pulse. We find two types of paradox, defined by whether it is the oscillator or the pulse that shows the effect Schrodinger called “steering”. Only the oscillator paradox addresses the question of mesoscopic local reality for a massive system. In that case, EPR’s “elements of reality” are defined for the oscillator, and it is these elements of reality that are falsified (if quantum mechanics is complete). For this sort of paradox, we show that a thermal barrier exists, meaning that a threshold level of pulse-oscillator interaction is required for a given thermal occupation n0 of the oscillator. We find there is no equivalent thermal barrier for the entanglement of the pulse with the oscillator, nor for the EPR paradox that addresses the local reality of the optical system. Our work highlights the asymmetrical effect of thermal noise on quantum nonlocality.
  173. /168/
    Date: Thursday 2013.10.17
    Speaker: Prof. Zbigniew Ficek
    Title: Role of the first-order coherence in entanglement between Gaussian modes
    Affiliation: The National Centre for Mathematics and Physics, KACST, Riyadh, Saudi Arabia
    In collaboration with: Li-hui Sun1 and Gao-xiang Li2
    1 College of Physical Science and Technology, Yangtze University, Jingzhou, P. R. China
    2 Department of Physics, Huazhong Normal University, Wuhan, P. R. China
    Abstract: The coherence and entangled properties of coupled Gaussian modes of optical systems are discussed. The systems considered are (1) an atomic ensemble located inside a ring cavity, and (2) an optical lattice trapped inside a cavity with a movable mirror. We examine separately the cases of two-mode and three-mode interactions, which are distinguished by a suitable tuning of the mode frequencies. We find that the occurrence of entanglement in the system is highly sensitive to the presence of the first-order coherence between the modes. In particular, the creation of the first-order coherence between modes is achieved at the expense of entanglement between them.
  174. /167/
    Date: Thursday 2013.10.17
    Speaker: Prof. Maciej Krawczyk
    Affiliation: Nanomaterials Physics Division, Physics Faculty, AMU
    Title: Review and prospects of magnonic crystals
    Abstract: Magnonic crystals are the magnetic equivalent of photonic crystals, with spin waves as the counterpart of electromagnetic waves, playing the role of information carriers. We will present short overview of research performed on magnonic crystals offering tailored band structures for spin waves. The promising directions of magnonic crystals research and its applications will be briefly discussed.
  175. /166/
    Date: Thursday 2013.10.17
    Speaker: Dr Przemysław Głowacki
    Title: Spectroscopic investigations of the atomic structure in support of quantum engineering and metrology
    Authors: P. Głowacki1, A. Krzykowski1, A. Jarosz1, O. A. Herrera-Sancho2, M. V. Okhapkin2, E. Peik2
    1 Laboratory of Quantum Engineering and Metrology, Poznań University of Technology, Poland
    2 Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
    Abstract: The contribution is focused on spectroscopic investigations of electronic levels, in particular metastable ones, in free atoms and ions.
    A system consisting of a metastable atomic state and the ground state is very favorable for optical atomic frequency standards, since the levels are connected via a forbidden transition with possible application as a "clock" transition. The same system of levels may serve as a basis for construction of a quantum bit.
    Within the work some recent achievements in high precision spectroscopy of metastable levels in chromium atoms, obtained with ABMR-LIRF (laser - microwave double resonance on an atomic beam) method [1, 2], are presented. A brief review of experimental investigations of thorium ion structure aimed at construction of an extremely precise optical nuclear frequency standard [3], performed in cooperation in PTB, is also given.
    [1] A. Jarosz, D. Stefańska, M. Elantkowska, J. Ruczkowski, A. Buczek, B. Furmann, P. Głowacki, A. Krzykowski, Ł. Piątkowski, E. Stachowska, J. Dembczyński, High precision investigations of the hyperfine structure of metastable levels in chromium atom, J. Phys. B: At. Mol. Opt. Phys. 40: 2785-2797 (2007).
    [2] A. Krzykowski, P. Głowacki, A. Jarosz Precise measurements of the hyperfine structure of the levels belonging to the terms 3d54s 5G and 5P in Cr(I), Acta Phys. Pol. A, 122, 78-81 (2012).
    [3] O. A. Herrera-Sancho, M. V. Okhapkin, K. Zimmermann, Chr. Tamm, E. Peik, A. V. Taichenachev, V. I. Yudin, P. Głowacki, Two-photon laser excitation of trapped 232Th+ ions via the 402-nm resonance line Phys. Rev. A 85, 033402 (2012).
  176. /165/
    Date: Thursday 2013.10.17
    Speaker: Dr hab. Ireneusz Weymann
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: The Kondo effect in quantum dots
    Abstract: Quantum dots are promising candidates for future quantum computing devices. They are also considered as ideal model systems to study fundamental correlations and interactions between single charges and spins. We will here present the basic transport properties of quantum dots coupled to external leads, with a special focus on the strong coupling regime where the electronic correlations can give rise to the Kondo effect. The case of the spin S=1/2 Kondo effect will be analyzed for quantum dots with both nonmagnetic and ferromagnetic leads. Moreover, we will also discuss the SU(4) Kondo effect, which can occur in double quantum dots when the system possesses both spin and orbital degeneracy.
  177. /164/
    Date: Thursday 2013.10.17
    Speaker: Prof. Alexandre Zagoskin
    Affiliation: Loughborough University, UK
    Title: Quantum metamaterials: concept and applications
    Abstract: Quantum metamaterials are optical media comprised of artificial quantum scatterers (e.g., qubits), in such a way that (1) these unit blocks maintain quantum coherence for times exceeding the characteristic travel time of an electromagnetic wave through the system, and (2) their quantum state can be directly controlled. For example, a periodic arrangement of qubits in a register of an adiabatic quantum computer can be considered as a quantum metamaterial.
    The simplest case of a quantum metamaterial is a one-dimensional set of superconducting qubits in a transmission line. It was shown in experiment that a single qubit in such a line demonstrates all the expected of a pointlike quantum scatterer, with a much stronger coupling to the field than can be achieved with natural atoms in 3D space. Other implementations of quantum metamaterials (like quantum dots placed inside photonic crystals, which would operate in the optical range) are also being considered.
    In my talk I will discuss some of the unusual properties of a quantum metamaterial, which stem from its being an extended quantum object, and their possible applications.
  178. /163/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Jan Martinek
    Title: Cooper pair splitting as a source of entangled electrons
    Authors: Jan Martinek1, D. Tomaszewski1, M. Czechlewski1, P. Rożek1, R. Zitko2, R. Lopez3, M. Lee4, W. Kłobus5, A. Grudka5, A. Baumgartner6, and C. Schonenberger6
    1Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznan, Poland
    2Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
    3Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
    4Department of Physics, Kyung Hee University, Yongin 446-701, Korea
    5Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
    6Department of Physics, University of Basel, CH-4056 Basel, Switzerland
    Abstract: We study an entangled state of spatially separated electrons, in particular its spins, in a solid state electronic system. The ground state of conventional superconductors is a singlet state of electron Cooper pairs that can provide a natural source of entangled electrons. One of the proposals to obtain the nonlocal entanglement of electrons is to use the Cooper pairs split in the Double Quantum Dot (DQD) system using the Coulomb interaction between electrons [1]. We have analyzed an efficiency of the separation of Cooper pairs in systems, where the DQD is connected to the two superconducting leads, or to the superconducting and normal leads [2,3]. Addressing the idea of quantum communication with entangled electrons in a solid state, where ferromagnetic detectors allow for spin correlation detection, we provide, using quantum information theory, a lower bond on the spin polarization of detectors [4]. In ferromagnetic detectors the spin information is transformed into charge information, however, any real magnetic materials feature imperfect spin polarization due to presence of both spin component in density of states at the Fermi surface. We find that lower bond for the spin polarization is p > 58% for detection of entanglement using an optimal entanglement witness [4]. It provides the minimal spin polarization of ferromagnetic materials that can be useful in quantum communication.
    [1] L. Hofstetter, S. Csonka, J. Nygard, and C. Schönenberger, Nature 461, 960 (2009).
    [2] J. Eldridge, M. G. Pala, M. Governale, and J. König, Phys. Rev. B 82, 184507 (2010).
    [3] R. Zitko, J. Lim, R. Lopez, J. Martinek, P. Simon, Phys. Rev. Lett. 108, 166605 (2012).
    [4] W. Kłobus, A. Grudka, A. Baumgartner, D. Tomaszewski, C. Schönenberger, and J. Martinek, (in preparation).
  179. /162/
    Date: Wednesday 2013.10.16
    Speaker: Dr Tomasz Polak
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Gauge dependent time of flight patterns in Abelian synthetic magnetic fields
    Abstract: I will show how to calculate the time-of-flight patterns of strongly interacting bosons confined in two-dimensional square lattice in the presence of an artificial magnetic field. I will discuss the cases with the artificial magnetic field being uniform, staggered or forming a checkerboard configuration. Effects of additional temporal modulation of the optical potential that results from application of Raman lasers driving particle transitions between lattice sites are also included. The presented time-of-flight patterns may serve as a verification of chosen gauge in experiments, but also provide important hints on unconventional, non-zero momentum condensates, or possibility of observing graphene-like physics resulting from occurrence of Dirac cones in artificial magnetic fields in systems of ultra-cold bosons in optical lattices. Also, I elucidate on differences between effects of magnetic field in solids and the artificial magnetic field in optical lattices, which can be controlled on much higher level leading to effects not possible in condensed matter physics.
  180. /161/
    Date: Wednesday 2013.10.16
    Speaker: Dr Tomasz Sowiński
    Affiliation: Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland and Center for Theoretical Physics of the Polish Academy of Sciences, Warsaw, Poland
    Title: Universality of extended Bose-Hubbard models with local three-body interactions
    Abstract: Experimental progress on trapping and manipulating ultra-cold atoms confined in optical lattices has opened new perspectives for controlling many-body states of different quantum systems. In the simplest case such systems are described in the context of the Bose-Hubbard (BH) model. In my talk I will consider the class of extended BH models with additional three-body on-site interactions. After short introduction I will divide the talk into two parts: (i) Standard BH with additional three-body term: I will show that the shape of insulating lobes may crucially depend on the three-body interactions and in the case of attractive three-body term may lead to vanishing of the second insulating lobe [1,2]. (ii) Attractive BH model with soft-core three-body repulsion: I will show that the critical behavior of the system undergoing a phase transition from pair-superfluid to superfluid at integer filling depends on the value of the three-body repulsion. In particular, a critical exponent and the central charge governing the quantum phase transitions are shown to have repulsion dependent features. In consequence, the model extends the list of known systems violating the universality hypothesis [3].
    [1] T. Sowinski, Phys. Rev. A 85, 065601 (2012).
    [2] T. Sowinski, ArXiv:1307.6852 (2013).
    [3] T. Sowinski, R. W. Chhajlany, O. Dutta, L. Tagliacozzo, M. Lewenstein, ArXiv:1304.4835 (2013).
  181. /160/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Jan Mostowski
    Affiliation: Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
    Title: Time crystals
    Abstract: A system of two charged particles in a harmonic trap with additional magnetic field is considered. The problem is reduced to a single-particle one in relative coordinates. The ground- and lowest excited-state energies and wave functions are found. The ground state exhibits non-zero expectation value of the velocity (kinetic momentum) and the probability current density does not vanish as well. When the ground state becomes degenerate the expectation value of velocity becomes discontinuous. The effects associated with turning on of the magnetic field are studied by solving the appropriate time-dependent Schroedinger equation. No substantial differences between abrupt (discontinuous in time) and continuous switching on have been observed. Evolution of a wave packet which is initially Gaussian is also investigated. The wave packet loses its Gaussian nature and, after sufficiently large time, a system of diffractive maxima and minima is built.
  182. /159/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Karol Życzkowski
    Affiliation: Jagiellonian University, Krakow & Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
    Title: Measuring the degree of quantum entanglement
    Abstract: Measures of quantum entanglement are reviewed and compared. We focus quantities characterizing entanglement which could be experimentally accessible. A quantity called 'collectibility' is proposed which can be determined in a coincidence experiment involving two copies of the state analyzed. Our approach, initially designed for the case of pure states, works also in the general case of mixed quantum states of a multi-partite system.
  183. /158/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Paweł Horodecki
    Affiliation: Faculty of Applied Physics and Mathematics, Technical University of Gdańsk and National Quantum Information Centre in Sopot, Poland
    Title: Device independent arbitrary weak randomness amplification with noise tolerance
    Abstract: Recently the protocols of randomness amplification have been introduced secure against quantum and no-signaling adversaries. Here we present the first fully constructive proof of existence of the protocol that is secure against general no-signaling adversary and amplifies arbitrary small randomness (in standard terms of Santha-Vazirani source) in a fully device independent way. The protocol tolerates some amount of noise depending among others on the initial randomness that is to be amplified.
  184. /157/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Marek Kuś
    Affiliation: Center for Theoretical Physics, Polish Academy of Sciences, Warsaw, Poland
    Title: Engineering SU(3) models: trapped ions, quantum chaos, classical limit(s)
    Abstract: One of the current trends in quantum physics is the quest for controllable quantum many-body systems which can be used as quantum simulators. In particular, there is a growing interest in simulating spin and quantum magnetism. In recent years, the focus is moving from SU(2) spins towards SU(N)-symmetric models. The SU(3) systems, having their origin in nuclear physics, were a fruitful playground for quantum chaos investigations, in particular due to they reach possible behavior in the classical limit. Now it seems to be possible to realize such models experimentally with trapped ions providing a large degree of control from the experimental point of view.
  185. /156/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Werner Vogel
    Title: Unified representation of nonclassicality and entanglement
    Authors: Werner Vogel and Jan Sperling
    Arbeitsgruppe Quantenoptik, Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
    Abstract: In Quantum Optics the widely used definition of nonclassicality is based on the Glauber-Sudarshan P function [1]. If the P function has the properties of a classical probability density, the state is a classical mixture of coherent states. In any other case, the quantum state clearly shows quantum interference effects. In general, the P function is strongly singular and, hence, not applicable in experiments. A universal regularization resolves this problem [2], as it was demonstrated in experiments. In view of its structure [3], entanglement can also be visualized by quasiprobabilities. This requires an optimization based on the solution of the separability eigenvalue problem [4]. Its extension to the multipartite case yields multipartite entanglement witness for complex quantum states [5]. To characterize general quantum correlations, the concept of the P function was extended to a functional [6]. Its regularized version visualizes quantum correlations, even when the state is not entangled and has zero quantum discord [7].
    [1] E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); R. J. Glauber, Phys. Rev. 131, 2766 (1963).
    [2] T. Kiesel and W. Vogel, Phys. Rev A 82, 032107 (2010).
    [3] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
    [4] J. Sperling and W. Vogel, Phys. Rev. A 79, 042337 (2009).
    [5] J. Sperling and W. Vogel, Phys. Rev. Lett. 111, 110503 (2013).
    [6] W. Vogel, Phys. Rev. Lett. 100, 013605 (2008).
    [7] E. Agudelo, J. Sperling, and W. Vogel, Phys. Rev. A 87, 033811 (2013).
  186. /155/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Andrzej Grudka
    Title: Universal scheme for violation of local realism from quantum advantage in one-way communication complexity
    Authors: L. Czekaj1, A. Grudka2, M. Horodecki1, P. Horodecki3, and M. Markiewicz1
    1Faculty of Mathematics, Physics and Informatics, Gdańsk University, 80-952 Gdańsk,Poland
    2Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
    3Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 80-952 Gdańsk, Poland
    Abstract: We consider relations between communication complexity problems and detecting correlations (violating local realism) with no local hidden variable model. We show first universal equivalence between characteristics of protocols used in that type of problems and non-signaling correlations. We construct non linear bipartite Bell type inequalities and strong nonlocality test with binary observables by providing general method of Bell inequalities construction and showing that existence of gap between quantum and classical complexity leads to violation of these inequalities. We obtain, first to our knowledge, explicit Bell inequality with binary observables and exponential violation.
  187. /143/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Dariusz Chruściński
    Affiliation: Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
    Title: Non-Markovian quantum dynamics
    Abstract: We discuss recent concepts of non-Markovianity of quantum evolution. The discussion is illustrated by simple examples (pure decoherence, amplitude damping and random unitary dynamics).
  188. /153/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Marek Żukowski
    Title: Generalized Hardy correlations and quantum communication problems
    Authors: Ramij Rahaman, Marcin Wieśniak, and Marek Żukowski
    Abstract: We present multi-partite Hardy-type test against local realism. For n qubit systems, we prove the uniqueness and purity of the Hardy state (that is the one that satisfies Hardy conditions), and its genuine n-partite entanglement. We show an that Hardy correlations allow one to find solutions to some quantum communication problems. As an example we present a secure quantum scheme for the original Byzantine Generals problem. Our protocol is based on Hardy's paradox, which uses a set of conditions impossible for classical systems, but satisfied by a unique quantum two-particle state, and on entanglement swapping methods.
  189. /152/
    Date: Wednesday 2013.10.16
    Speaker: Prof. Ryszard Horodecki
    Affiliation: Instytut Fizyki Teoretycznej i Astrofizyki, Uniwersytet Gdański, 80-952 Gdańsk oraz Krajowe Centrum Informatyki Kwantowej w Gdańsku, 81-824 Sopot, Poland
    Title: Objectivity from first principles - new role of broadcasting structure
    Abstract: Incessant run of successes of quantum mechanics suggests that quantum formalism plays decisive role in the description of physical phenomena. It leads inevitably to the problem: How does Nature create a "foot-bridge" from fragile quanta to the objective world of everyday experience? The subject of the talk will provide an answer to this fundamental issue. We will show how a crucial for quantum mechanics notion of non-disturbance due to Bohr and a natural definition of objectivity lead to a canonical spectrum broadcasting structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.
  190. /151/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Tadeusz Lulek
    Affiliation: Mathematical Physics Division, Physics Faculty, AMU
    Title: Nonlinear magnetooptics, symmetry breakings and ascents, and the magnetic translation groups
    Abstract: This commemoration intertwines between various physical ideas (as presented in the title), shared within the scientific works of Professors: Stanisław Kielich, Louis Michel, Jan Mozrzymas, Joshua Zak, Marian Surma, and others. It goes from experimental studies on Cotton-Mouton effect (heavy electromagnesses in the basements of Collegium Chemicum), through symmetry considerations in phase transitions (nematics, smectics, etc., mainly breaking of symmetry, but, somehow exceptionally, also ascent), to the magnetic translation group as a mathematical tool for the Bohm-Aharonov effect (everybody knows Landau levels of a free two-dim electron gas, and the magnetic translation group serves as an equivalent for the case of itinerant electrons, with its irreducible representations labeling the levels, and the basis functions describing degenerate cyclotronic orbits). Nowadays, these ideas can be converted to "reality" within nanotechnology, e. g. magnetic quantum dots.
  191. /150/ Date: Tuesday 2013.10.15
    Speaker: Prof. Anna Zawadzka
    Affiliation: Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
    Title: Nonlinear optical properties of organometallic thin films
    Abstract: This work contains investigation results of the structural and nonlinear optical properties of organometallic thin films and nanostructures. The films and nanostructures were successfully grown by Physical Vapor Deposition technique in high vacuum on transparent (quartz, glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 24 hours at the temperature in the range from 50oC to 250oC. Spectral properties were examined using transmission, photoluminescence, Second and Third Harmonic Generation's techniques. The experimental spectra were allowed to determine optical constant of the films. Structural properties were investigated by AFM measurements. The organometallic films and nanostructures exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. We find that the optical properties were strictly connected with the morphology and the annealing process can significantly change the structural properties of the films and lead to the formation of various nanostructures.
  192. /149/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Małgorzata Makowska-Janusik
    Affiliation: Institute of Physics, Jan Długosz University, Częstochowa, Poland
    Title: Macroscopic optical properties of composite materials - computational approach
    Abstract: One of the possibilities to obtain efficient and stable nonlinear optical (NLO) material is to dope an amorphous polymer with organic donor-acceptor molecules forming a composite. The appropriate material for the first NLO effect as persistent second harmonic generation (SHG) requires large number of polarizable molecules embedded in polymeric matrix preventing polar orientation. The polar orientation may be induced by external electric field at the temperatures where the matrix is sufficiently mobile to allow fast alignment of the dopants. The experimental explanation of the origin of their NLO response is very difficult because optical susceptibilities are measured in condensed matter where the molecular properties are affected by the host matrix. Molecular simulations can help to explain the nature of the guest-host interaction and separate the different contribution of the material to the optical output signal. A goal of many theoretical works is to find appropriate model describing optical properties of molecules incorporated into polymeric environment.
    In the presented work linear and nonlinear optical susceptibilities of guest-host polymer systems were calculated applying the hierarchic procedure . The wild variety of chromophores characterized by different size, shape and charge distribution incorporated into different polymer matrix were studied. First of all the structures of the investigated systems have been modeled by molecular dynamic simulations applying molecular mechanics CVFF force field method. The obtained structures are amorphous. Investigations of radial distribution function prove that location of chromophores in polymeric matrix is an intrinsic property of polymer. The motion of polymer chain allows a rotation of dopants under influence of an external electric field.
    The electronic properties of the NLO chromophores were computed at the HF and DFT level using different exchange - correlation potentials. These properties were investigated for the isolated NLO molecules as well as for the ones in polymer environment. In the second case the first-order susceptibilities corresponding to SHG were calculated using discrete local field approach. The implemented method is very efficient to the molecules with high charge transfer effect and give the data approximately consistent with the experimental results. It was also proved that the optical response, especially NLO output signal of chromophores embedded into polymeric matrix, depends on their local environment.
  193. /148/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Jean-Luc Godet
    Affiliation: University of Angers, UFR Sciences Institute of Sciences and Molecular Technologies of Angers, France
    Title: A short historical recall about the story of the concept of refractive index: From the Antique to the 19th century.
    Abstract: The research of a refraction law played a major role in the development of the optics since the first attempts of Ptolemy until the more accomplished results of Ibn Sahl, Snel or Descartes. However, it is necessary to wait for the beginning of the XIXth century, much later than the theory of colours of Newton and thanks to the researches on the achromatic glasses, so that emerges the concept of refractive index and so that it begins to be understood well. We propose a historical reminder and an outline of the obstacles and epistemological advances which allowed to establish it.
  194. /147/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Jerzy Warczewski
    Title: Spin glass state and other magnetic structures with their symmetries in terms of the Fibre Bundle Approach
    Authors: Jerzy Warczewski1, Paweł Gusin2 and Daniel Wojcieszyk1
    1University of Silesia, Institute of Physics, 40-007 Katowice, Poland
    2University of Wrocław, Institute of Theoretical Physics, 50-204 Wrocław, Poland
    Abstract: The fibre bundle approach [1] has been applied to the unified description of all the eight fundamental magnetic structures and their symmetry groups [2]. On this basis the explicit formulas describing both the variety of magnetic structures and their symmetry groups have been derived. In the particular case of the spin glass state (SGS) the global magnetic coupling constant has been interpreted as a section of the corresponding fibre bundle. The fibre of this bundle makes the space of the Gaussian distributions. Thus one can say that the randomness of the distribution of both the magnetization and the individual magnetic moments in the SGS is of the Gaussian-like character. An observation was made that another kind of the fibre bundle sections make the magnetization vectors M multiplied by a certain Gaussian factor defined in R3, the last factor making the problem continuous and more physical [3, 4]. In one of the previous papers the authors have proved that an internal spontaneous magnetic field Hint is necessary for the SGS to be stable and just to exist [5]. For the angle between M and Hint equal to ϕ one can say that at ϕ=const any rotation (precession) of M around the direction of Hint makes the operation of symmetry of the SGS. Thus the magnetic symmetry group of SGS turns out to be SO(2). The role of both the Hint and the external magnetic field Hext as well as of the average kinetic energy Ekin of the separate magnetic atoms in the explanation of the experimental temperature dependencies of susceptibility is shown. Thus the fibre bundle approach equates the method of the symmetry analysis of magnetic structures with the method of the higher dimensional embeddings of the modulated structures. The symmetry groups appearing in the method of the symmetry analysis become the structural groups of the bundles. From the other side a higher dimensional space needed to the description of a modulated structure makes here the total space of the bundle. Thus these three methods, namely the symmetry analysis, the higher dimensional embeddings and the fibre bundles are equivalent. The analogous situation is with the description of the magnetic structures with the use of the spin groups, where an additional type of symmetry is introduced. Note that the Gaussian factor introduced above plays a double role: it makes the vector M to be a field and simultaneously makes the description of the magnetic structures more physical [6, 7]. It seems that the fibre bundle approach could serve also for the description of the symmetry groups of all the other aperiodic structures, like e.g. the modulated nonmagnetic structures, quasicrystals (nonmagnetic and magnetic) etc. It is worthwhile to mention here that these different magnetic structures under consideration have been found by the authors to be related with the values of the certain topological invariants [8].
    [1] Sulanke, R. Wintgen, P., Differentialgeometrie und Faserbundel, Berlin (1972)
    [2] J. Warczewski, P. Gusin, D. Wojcieszyk, Mol. Cryst. Liq. Cryst. 554 (2012), 209-220
    [3] J. Warczewski, P. Gusin et al. Central European Journal of Physics 5(3) 2007 377-384
    [4] P. Gusin and J. Warczewski, Mol. Cryst. Liq. Cryst. Vol. 521: pp. 288-292, 2010
    [5] J. Warczewski, P. Gusin et al., J. Phys.: Condens. Matter, 21 (2009) pp. 035402- 035407
    [6] J. Warczewski, J. Krok-Kowalski, P. Gusin et al., J. of Non-Linear Optics, Quantum Optics, Vol. 30, (2003) pp. 301-320
    [7] J. Warczewski, J. Krok-Kowalski, P. Gusin et al., Journal of Physics and Chemistry of Solids 66 (2005) 2044-2048
    [8] P. Gusin and J. Warczewski, J. of Magn. and Magn. Mat., 2004, 28(1/2-3), 178-187
  195. /146/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Igor Lyubchanskii
    Title: Nonlinear magneto-optical ellipsometry
    Authors: Yu. S. Dadoenkova1, I. L. Lyubchanskii1,2, Y.P. Lee3, and Th. Rasing4
    1Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine, 83114, Donetsk, Ukraine
    2Department of Physics and Technology, Donetsk National University, 83001, Donetsk, Ukraine
    3Quantum Photonic Science Research Center (q-Psi) and Hanyang University, 133-791, Seoul, Republic of Korea
    4Radboud University Nijmegen, Institute for Molecules and Materials, 6525 AJ, Nijmegen, the Netherlands
    Abstract: The ellipsometric parameters for light reflection from a dielectric film with Kerr optical nonlinearity on a bigyrotropic magneto-electric film are theoretically investigated. The combined contributions of the cubic optical nonlinearity and the magneto-electric coupling allows to control the ellipsometric parameters and thus for example the Kerr rotation with the incoming light intensity, in particular at incidence angles close to the pseudo-Brewster angle.
  196. /145/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Georges Boudebs
    Affiliation: Laboratoire de photonique d'Angers (LPhiA), University d'Angers, France
    Title: Optical nonlinear characterization using imaging technique in a 4f-Z-scan system
    Abstract: We show that the direct measurement of the beam radius in Z-scan experiments using a CCD camera at the output of a 4f-imaging system allows a higher sensitivity and a better accuracy than other methods. One of the advantages is to be insensitive to pointing instability of the pulsed laser because no hard aperture is employed as in the usual Z-scan. In addition, the numerical calculations involved here and the measurement of the beam radius are simplified since we do not measure the transmittance through an aperture and it is not subject to mathematical artefacts related to a normalization process, especially when the diffracted light is very low.
    Keywords: Nonlinear optics, Z-scan, diffraction, image processing, Fourier optics
  197. /144/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Dobrosława Kasprowicz
    Title: Opportunities for Bi2ZnOB2O6 single crystals: Second and third order nonlinear optical applications
    Authors: D. Kasprowicz1, K. Iliopoulos2, A. Majchrowski3, and B. Sahraoui2
    1Faculty of Technical Physics, Poznan University of Technology, Nieszawska 13 A, 60-965 Poznan, Poland
    2LUNAM Université, Université d'Angers, CNRS UMR 6200, Laboratoire MOLTECH-Anjou, 2 Bd Lavoisier, 49045 Angers Cedex, France
    3Institute of Applied Physics, Military University of Technology, Kaliskiego 2, 00 - 908 Warszawa, Poland
    Abstract: Bi2ZnOB2O6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The SHG and THG response of the Bi2ZnOB2O6 crystal was studied by the Maker fringes techniques. Moreover SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The crystals have been shown to have high SHG and THG efficiency, comparable with those of well-known crystals such as BBO, KDP, KTP, which makes them very attractive materials for NLO applications. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi2ZnOB2O6 an excellent candidate for photonic applications.
  198. /143/
    Date: Tuesday 2013.10.15
    Speaker: Prof. George Maroulis
    Affiliation: Department of Chemistry, University of Patras, Greece
    Title: Quantifying the performance of quantum chemistry methods
    Abstract: We present a general method for the quantification of the performance of quantum chemical methods over an arbitrary collection of atomic/molecular properties. Our approach relies on the Minkowski metric, graph theoretic concepts and pattern recognition techniques. The method should be of interest as a rigorous approach to the introduction of order and classification in spaces of theoretical descriptions. We show how it can be used to quantify the relative merit of ab initio and DFT methods.
  199. /142/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Keith Gubbins
    Affiliation: Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, U.S.A.
    Title: The Theory of Polar Liquids and Their Mixtures: A Historical Review
    Abstract: The primary goal of a theory of liquid mixtures is to determine, using statistical mechanics, how the structure and free energy varies with the composition, and with the chemical composition of its components. Such a theory provides the key to the determination of dielectric and spectral properties, phase transitions, critical points, solubilities, immiscible regions, metastable and unstable regions, etc.
    Theories proposed in the first half of the 20th century were, for the most part, lattice theories, and many of these are described in the books by Guggenheim [1] and Prigogine [2]. These early theories pre-dated molecular simulations and the availability of electronic computers, so that they were “tested” by direct comparison with experimental data. Since such comparisons, in the case of the lattice theories, involved adjustment of various parameters to experimental data, these tests were of dubious value. Once molecular simulation data became available in the early 1960’s these theories were shown to be in serious error, and can now be considered to be extinct.
    Modern theory of polar liquids (the last 60 years) has followed a dual path. The first has been perturbation theory, in which the free energy and other properties of the solution of interest are related to those of a simpler solution having simple intermolecular forces, for example hard spheres or Lennard-Jones mixtures. Perturbation theory has been particularly successful for thermodynamic properties. The theory of Wertheim [3], relates the free energy of a polar or associating fluid to that of a hard body (non-associating) fluid through a clever resummation of a cluster series for the free energy. It and its later extensions are finding widespread practical application [4].
    The second route to a theory of polar liquids has been integral equation theory, which yields the structure in the form of distribution functions [5]. Although less successful than the perturbation theories for thermodynamic properties, integral equation theories have been successful for other properties, in particular dielectric and spectral properties.
    References
    [1] E.A. Guggenheim, “Mixtures”, Clarendon Press, Oxford, 1952.
    [2] I. Prigogine, “The Molecular Theory of Solutions”, North-Holland Pub. Co., Amsterdam, 1957.
    [3] Wertheim, M.S. J. stat. Phys. 35, 19 (1984); ibid. 35, 35 (1984); ibid. 42, 459 (1986); ibid. 42, 477 (1986).
    [4] For reviews of the theory and its extensions, and practical applications, see: Müller, E.A. and Gubbins, K.E. Ind. Engng. Chem. Research, 40, 2193 (2001); Tan, S.P., Adidharma, H. and Radosz, M., Ind. Eng. Chem. Research, 47, 8063 (2008).
    [5] C.G. Gray and K.E. Gubbins, Theory of Molecular Fluids. I. Fundamentals, Chap. 5, Oxford University Press (1984); C.G. Gray, K.E. Gubbins and C.G. Joslin, Theory of Molecular Fluids. II. Applications, Chap. 9-11, Oxford University Press (2011).
  200. /141/
    Date: Tuesday 2013.10.15
    Speaker: Prof. Tadeusz Hilczer
    Affiliation: Division of Dielectrics Physics, Physics Faculty, AMU
    Title: The early days of physics of dielectrics in Poznań
    Abstract: Physics of dielectrics started in Poznań when professor Arkadiusz Piekara took chair in Experimental Physics at the Poznań University in 1952. At the beginning a lot of effort was taken to prepare the measuring basis, that is to construct the measuring condensers, Schering bridges, resonance circuits, heterodyne beat apparatus (∆C/C ≈ 10−6), to purifying liquid dielectrics and to synthesize ferroelectrics. Later, professor Piekara got Stanisław Kielich interested in theoretical approach to the physics of dielectrics and his Master of Science dissertation in 1955 can be considered as the beginning of the work of young Poznań staff in theory of dielectrics.
  201. /140/
    Date: Tuesday 2013.10.15
    Speaker: Ms. Natalia Kielich-Buchowska, Prof. Tadeusz Bancewicz1, and Prof. Ryszard Tanaś1
    Affiliation: 1Nonlinear Optics Division, Physics Faculty, AMU
    Title: Stanisław Kielich - a few words about his life
  202. /139/
    Date: Wednesday 2013.06.19
    Speaker: Dr Semanti Pal
    Affiliation: Thematic Unit of Excellence on Nanodevice Technology and Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic sciences, Block JD, Sec III, Salt Lake, Kolkata 700098, India
    Coauthors: Saswati Barman, Olav Hellwig, and Anjan Barman
    Title: Effect of the Spin-Twist Structure on the Spin-Wave Dynamics of the Fe55Pt45/Ni80Fe20 Exchange Coupled Bi-layers with varying Ni80Fe20 Thickness
    Abstract: We have investigated optically induced ultrafast magnetization dynamics of a series of Fe55Pt45/Ni80Fe20 exchange spring bi-layers with varying Ni80Fe20 thickness by time-resolved magneto-optical Kerr effect measurements. Rich spin wave spectra are observed and the spin-wave frequency shows a strong dependence on the Ni80Fe20 layer thickness. Micromagnetic simulations reproduced the experimental data qualitatively after considering pinning of spins at the Fe55Pt45/ Ni80Fe20 interface and an effective magnetic field gradient across the thickness of the Ni80Fe20 layer. The spin twist structure introduced in the Ni80Fe20 layer gives rise to new modes in the composite system as opposed to the bare Ni80Fe20 films.
  203. /138/
    Date: Wednesday 2013.06.05
    Speaker: Prof. Andrzej Grudka
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Randomness amplification based on no-signaling principle (Wzmacnianie losowości w oparciu o zasadę niesygnalizowania)
    Abstract: We analyze the protocol of randomness amplification using Bell inequality violation in terms of the convex combination of no-signaling boxes required to simulate quantum violation of the inequality. We present intuitive proof for the range of partial randomness from which perfect randomness can be extracted using quantum correlations violating the chain inequalities. We derive exact values in the asymptotic limit of a large number of measurement settings.
  204. /137/
    Date: Wednesday 2013.05.29
    Speaker: Dr hab. Ireneusz Weymann
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Dynamics in single impurity Anderson model: Testing the eigenstate thermalization hypothesis
    Abstract: We analyze the eigenstate thermalization hypothesis (ETH) for the single impurity Anderson model, focusing on the Kondo regime. For this we construct the complete eigenbasis of the Hamiltonian using the numerical renormalization group method in the language of the matrix product states. We calculate the spectral function of the quantum impurity (a quantum dot) for the ground state and several excited states of the system using the microcanonical and diagonal ensembles. These spectral functions are compared to the time-averaged spectral function obtained by time-evolving the initial state according to the full Hamiltonian and to the spectral function calculated using the thermal density matrix. We find good agreement between the spectral functions calculated this way, which indicates that the process of thermalization happens at the level of individual eigenstates, indeed. We also discuss the behavior of the spectral functions calculated for states with the bath initially in its ground state. In certain cases then, this mandates the alternative interpretation in terms of a quantum quench. The distinctive features as compared to ETH are highlighted.
  205. /136/
    Date: Wednesday 2013.05.22
    Speaker: Prof. Michał Banaszak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Simple model of transport in biological cells
    Abstract: Physical-chemical reasoning is used to demonstrate that the sizes of both prokaryotic and eukaryotic cells are such that they minimize the times needed for the macromolecules to migrate throughout the cells and interact/react with one another. This conclusion does not depend on a particular form of the crowded-medium diffusion model, as thus points toward a potential optimization principle of cellular organisms. In eukaryotes, size optimality renders the diffusive transport as efficient as active transport - in this way, the cells can conserve energetic resources that would otherwise be expended in active transport.
  206. /135/
    Date: Wednesday 2013.05.15
    Speaker: Dr Barbora Lemrová
    Affiliation: Department of Organic Chemistry, Palacký University, Olomouc, Czech Republic
    Title: BIOMEDREG - bio-sciences centre in Olomouc
    Abstract: Biomedreg is a collaboration project to join several bio-sciences groups. This centre provides research activities ranging from organic synthesis to medicinal research.
  207. /134/
    Date: Wednesday 2013.05.15, 12:30
    Speaker: Dr Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Regional Centre of Advanced Technologies and Materials
    Abstract: The talk will provide an overview of the RCPTM - a regional centre of scientific collaboration across various natural sciences (physics, chemistry, nanomaterials). The capabilities in contract and collaboration research will be presented.
  208. /133/
    Date: Wednesday, 2013.5.8
    Speaker: Prof. Adekunle Adeyeye
    Affiliation: Departament of Electrical Computer Engineering, National University of Singapore, Singapore.
    Title: Artificial Ferromagnetic Nanostructures: An Experimental Platform for Magnonics
    Abstract: Artificial ferromagnetic nanostructures with periodic lateral contrasts in magnetization are known as “magnonic crystals” (MCs), conceived as the magnetic analogue of photonic crystals. Recently, there is growing interest in the fundamental understanding of the spin wave propagation in MCs because of their huge potential in a wide range of applications such as microwave resonators, filters and spin wave logic devices. With advances in controlled nanofabrication techniques, it is now possible to synthesize high-quality periodic bi-component magnetic nanostructures with precisely controlled dimensions. The band spectrum of MCs consists of allowed states magnonic bands and forbidden states (magnonic gaps) that can be tuned by magnetic fields or geometrical parameters. We have shown that MCs represent a perfect system for studying excitations on disordered periodical lattices because of the possibility of controlled variation in the degree of disorder by varying the applied magnetic field [1]. We have also demonstrated functionality of magnetic logic based on a reconfigurable MC in the form of a meander-type ferromagnetic nanowire [2]. A ferromagnetic resonance method employing a microscopic coplanar waveguide was used to detect the logic state of the structure coded in its magnetic ground state.
    This talk will be divided into 3 parts: the first part will focus on strategies we have developed for synthesizing high-quality 1-D and 2-D MCs using deep ultra-violet lithography technique at 248 nm exposure wavelength. Using resolution enhancement techniques, we have fabricated arrays of ferromagnetic nanostructures with lateral dimensions and inter-element spacing below the conventional resolution limit of optical lithography tools. The second part will focus on results of our recent systematic investigation of both the static and dynamic properties of MCs using a combination of magneto-optical Kerr effect measurements, magnetic force microscopy, broadband ferromagnetic resonance spectroscopy, magneto transport measurements and micromagnetic simulations. In the third part, the concept of binary magnetic nanostructures will be introduced and their potential application in magnetic logic devices demonstrated.
    [1] J. Ding, M. Kostylev, and A. O. Adeyeye, Physical Review Letters 107,047205 (2011).
    [2] J. Ding, M. Kostylev, and A. O. Adeyeye, Applied Physics Letters 100, 062401 (2012).
  209. /132/
    Date: Tuesday 2013.04.30
    Speaker: Dr Karol Bartkiewicz
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Measuring nonclassical correlations of two-photon states
    Abstract: The threshold between classical and nonclassical two-qubit states is drawn at the place when these states can no longer be described by classical correlations, i.e., quantum discord or entanglement appear. However, to check if the correlations are classical (in terms of quantum discord and entanglement) it is sufficient to witness the lack of quantum discord because its zero value implies the lack of entanglement. We explain how the indicator of quantum discord introduced by Girolami and Adesso [Phys. Rev. Lett. 108, 150403 (2012)] can be practically measured in linear-optical systems using standard beam splitters and photon detectors. We also show how to the setup can be modified to efficiently investigate the degree of Bell-CHSH inequality violation.
  210. /131/
    Data: Środa 2013.04.24
    Prelegent: Dr Jarosław W. Kłos
    Afiliacja: Zakład Fizyki Nanomateriałów, WF UAM
    Tytuł: Periodyczne heterostruktury półprzewodnikowe jako aktywne elementy ogniw słonecznych
    (Semiconductor superlattices applied to intermediate band solar cells)
    Streszczenie: Periodyczne heterostruktury półprzewodnikowe są układami z podwójną periodycznością. Periodyczność sieci krystalicznej powoduje powstanie przerwy energetycznej (o szerokości od ułamka eV do pojedynczych eV), która w litym materiale wyraźnie rozdziela prawie całkowicie obsadzone pasmo walencyjne do prawie pustego pasma przewodnictwa. Wprowadzenie periodycznej strukturalizacji, np. poprzez wytworzenie heterostruktury półprzewodnikowej, o okresie rzędu kilku lub kilkudziesięciu nm prowadzi do wytworzenia miniprzerw energetycznych w obrębie wierzchołka pasma walencyjnego i dna pasma przewodnictwa o szerokościach istotnie mniejszych od szerokości przerwy energetycznej litego półprzewodnika. Stany elektronowe i dziurowe o energiach bliskich dna pasma przewodnictwa i wierzchołkowi pasma walencyjnego mogą być opisane w przybliżeniu kp za pomocą równania Schrodingera ze zmienną przestrzennie masą efektywną nośnika, odpowiednio, elektronów i dziur.
    Rozdzielanie pasma przewodnictwa i pasma walencyjnego na minipasma może zwiększyć efektywność produkcji par elektron-dziura przy absorpcji światła słonecznego. Efekt ten wynika z ograniczenia procesów termalizacji oraz z pojawienia się nowych przejść pomiędzy minipasmami. Zostaną przedstawione wyniki obliczeń teoretycznych efektywności ogniw słonecznych działających w oparciu o dwuwymiarowe periodyczne heterostruktury półprzewodnikowe na bazie AsGa/AlGaAs dla różnych geometrii rozważanych układów.
  211. /130/
    Data: Środa 2013.04.17
    Afiliacja: Zakład Fizyki Matematycznej (Mathematical Physics Division), WF UAM
    Prelegent: Prof. Maciej Błaszak
    Tytuł: Jak kanonicznie kwantować mechanikę hamiltonowską we współrzędnych krzywoliniowych?
    (Canonical quantization of Hamiltonian mechanics in curvilinear coordinates)
    Streszczenie: Prezentowana jest niezmiennicza procedura kwantyzacji na przestrzeni fazowej oraz jej niezmiennicza reprezentacja operatorowa w przestrzeni Hilberta nad płaską przestrzenią konfiguracyjną. W konsekwencji pokazana jest konstrukcja poprawnych operatorów położenia i pędu dla kanonicznych zmiennych krzywoliniowych oraz ich odpowiedni porządek w hamiltonianie.
  212. /129/
    Date: Friday 2013.4.12
    Speaker: Prof. Jan Perina Jr
    Coauthors: O. Haderka, M. Hamar, and V. Michalek
    Affiliation: RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
    Title: Measurement of photon-number distributions of twin beams and their applications. Generation of sub-Poissonian light.
    Abstract: Determination of photon-number statistics [1,2] of twin beams based on the measurement of photocount statistics by an iCCD camera is discussed. The approach based on the superposition of signal and noise [3] applied to paired fields is analyzed in detail and compared with that based on the method of maximum likelihood. Advantages of the use of an iCCD camera as well as limitations are mentioned [4]. A method for the determination of absolute quantum detection efficiency based on the measurement of photocount statistics of twin beams is suggested [5]. The measured histograms of joint signal-idler photocount statistics allow to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above others presently used [6]. Values of the inquired quantum detection efficiencies in the signal- and idler-field paths are derived from the first- and second-order experimental photocount moments combined with the method of least-square declinations from the experimental histogram. Post-selection from twin beams is used to generate conditional sub-Poissonian light with Fano factors up to 0.62 using the iCCD camera. Possibilities as well as limitations of this approach are analyzed.
    References:
    [1] O. Haderka, J. Perina Jr., M. Hamar, and J. Perina, Phys. Rev. A 71, 033815 (2005).
    [2] J. Perina Jr., O. Haderka, V. Michalek, and M. Hamar, Phys. Rev. A 87, 022108 (2013).
    [3] J. Perina and J. Krepelka, J. Opt. B: Quant. Semiclass. Opt. 7, 246 (2005).
    [4] J. Perina Jr., O. Haderka, M. Hamar, and V. Michalek, Phys. Rev. A 85, 023816 (2012).
    [5] J. Perina Jr., O. Haderka, M. Hamar, and V. Michalek, Opt. Lett. 37, 2475 (2012).
    [6] G. Brida, I. P. Degiovanni, M. Genovese, M. L. Rastello, and I. R. Berchera, Opt. Express 18, 20572 (2010).
  213. /128/
    Date: Wednesday, 2013.4.10
    Speaker: B.Sc. Adam Ścibior
    Affiliation: University of Cambridge, UK.
    Title: The physics of information processing
    Abstract: This talk will feature some classical results in the physical theory of information processing. First we'll take a look at a model of computation based on irreversible laws of macroscopic physics. We'll investigate its relationship with entropy and obtain the famous Landauer's principle. We'll further see how this principle limits the power of our computers and how it deals with the Maxwell demon. Later we'll consider why and how to build a model of computation based on reversible laws of microscopic physics.
  214. /127/
    Date: Wednesday 2013.03.20
    Speaker: Dr Dheeraj Kumar
    Affiliation: Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Sector-III, Block - JD, Salt Lake, Kolkata - 700098
    Title: Numerical Calculations Involving Spin-Wave Dynamics in One- and Two-Dimensional Magnonic Crystals
    Abstract: Numerical methods, which analyse the output of micro-magnetic simulations can be employed to extract desirable information. The presentation will discuss what information is usually required from theoretical and experimental aspects and how one can go about obtaining them. Apart from visualizing the evolution of magnetization with time in these mediums, methods to plot spin-wave power in frequency and wavevector domain shall also be discussed.
  215. /126/
    Date: Wednesday 2013.03.13
    Speaker: Prof. Piotr Tomczak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Quantum dimer model on Sierpiński gasket lattice
    Abstract: The properties of quantum dimer model are investigated on 42-site Sierpiński lattice. This is a self-similar lattice with, to some extend, the corner-sharing triangles. It is interesting that the entropy of dimer coverings of Sierpiński lattice is the same as that for the kagomé lattice (1/3 ln 2). We demonstrate that the quantum dimer model has short-range dimer-dimer correlations and gapped dimer-liquid phase with topological degeneracy. A full spectrum of a dimer liquid is obtained.
  216. /125/
    Date: Friday, 2013.3.8, 10:00
    Speaker: Prof. Sergey A. Nikitov
    Affiliation: Vice-director of Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Moscow, Russia; Corresponding Member of RAS
    Title: Institute of Radioengineering and Electronics of RAS. New trends in analogue electronics.
  217. /124/
    Date: Friday, 2013.3.1
    Speaker: Dr Krzysztof Lebecki
    Affiliation: Fachbereich Physik, Universitat Konstanz, Konstanz, Germany; home page 
    Title: Temperature effects in magnetism in the nanoscale
    Abstract: Usually, magnetic behavior in the nanoscale is described by the Landau-Schlitz-Gilbert equation. This enables us, for instance, to model and understand time-related issues, like: precession, or magnetization switching. In my talk I will shortly describe this equation and its importance. Then, I will speak about temperature, its influence, and how it can be included into the model. I will describe the problem from two perspectives. There exists namely an atomistic approach, where every single spin is modeled. For larger systems we use continuum theory-micromagnetism. This will lead me to the recently proposed Landau-Schlitz-Bloch equation. The talk will be supported with results of numerical simulations.
  218. /123/
    Date: Wednesday 2013.2.6
    Speaker: Dr Magdalena Stobińska
    Affiliation: Institute of Theoretical Physics, Polish Academy of Sciences and Institute of Theoretical Physics and Astrophysics, University of Gdansk
    Title: Entanglement Witnesses and Measures for Bright Squeezed Vacuum
    Abstract: Quantum entanglement is a fascinating phenomenon, especially if it is observed at the macroscopic scale. Importantly, macroscopic quantum correlations can be revealed only by accurate measurement outcomes and strategies. Here, we formulate feasible entanglement witnesses for bright squeezed vacuum in the form of the macroscopically populated polarization triplet Bell states. Their testing involves efficient photodetection and the measurement of the Stokes operators variances. We also calculate the measures of entanglement for these states such as the Schmidt number and the logarithmic negativity. Our results show that the bright squeezed vacuum degree of polarization entanglement scales as the mean photon number squared. We analyze the applicability of an operational analog of the Schmidt number.
    Reference: Phys. Rev. A 86, 022323 (2012)
  219. /122/
    Date: Wednesday 2013.1.23
    Speaker: Prof. Anirban Pathak
    Affiliation: Department of Physics, Jaypee Institute of Information Technology (Deemed University), Noida, India.
    Temporarily at RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Science of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic.
    Title: Secure quantum communication using arbitrary orthogonal multi-particle quantum states
    Abstract: It is shown that maximally efficient protocols for secure direct quantum communications can be constructed using any arbitrary orthogonal basis. This establishes that no set of quantum states (e.g. GHZ states, W states, Brown states or Cluster states) has an advantage over the others, barring the relative difficulty in physical implementation. This provides a wide choice of states for experimental realization of direct secure quantum communication protocols. We have also shown that this protocol can be generalized to a completely orthogonal state based protocol of Goldenberg-Vaidman (GV) type. The security of these protocols essentially arises from duality and monogamy of entanglement. This stands in contrast to protocols that employ non-orthogonal states, like Bennett-Brassard 1984 (BB84), where the security essentially comes from non-commutativity in the observable algebra. This observation is exploited to classify the quantum communication protocols into two broad (but not exclusive) classes: A) protocols based on conjugate coding, which require the non-commutative structure of the physical theory; and B) superposition-based protocols, where security arises from non-realism and linearity.
  220. /121/
    Date: Wednesday 2013.1.16
    Speaker: B.Sc. Karol Nowacki
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Cryptography in classical antiquity
    Abstract: The ancient Greeks and Romans used several methods of hiding secret messages written in plaintext, but seldom had recourse to cryptography in the proper sense. Two examples of its application - Caesar's substitution cipher and a Spartan transposition ciphering device - are discussed based on accounts by Aulus Gellius and other authors.
  221. /120/
    Data: Środa 2013.1.9
    Prelegent: Prof. Grzegorz Wrochna
    Afiliacja: Dyrektor Narodowego Centrum Badań Jądrowych w Świerku
    Tytuł: Energetyka jądrowa - nie chcemy, ale musimy?
    Streszczenie: Energetyka jądrowa (EJ) budzi wiele kontrowersji, a powszechna wiedza na jej temat zdominowana jest przez mity i nieporozumienia. Seminarium będzie próbą odpowiedzi na pytania: EJ na świecie po Fukushimie: regres czy renesans? Dlaczego Niemcy rezygnują z EJ? Czy EJ jest potrzebna Polsce? Program Polskiej EJ: jakim cudem jest realizowany, skoro nie jest zatwierdzony?
  222. /119/
    Data: Środa 2012.12.19
    Prelegent: Prof. Marek Wolf
    Afiliacja: Uniwersytet Kardynała Stefana Wyszyńskiego
    Tytuł: Hipoteza Riemanna oczami fizyka
    Streszczenie: Hipoteza Riemanna (RH) mówi o położeniu na płaszczyźnie zespolonej nietrywialnych zer funkcji dzeta dzeta(s) Riemanna. Jest ona jednym z najbardziej znanych nierozwiązanych problemów w matematyce. Po sformułowaniu hipotezy Riemanna kilka minut poświęcę anatomii dzety Riemanna. Zasadnicza część wykładu będzie poświęcona omówieniu związków RH z fizyką: Twierdzenie Woronina i fraktalność dzety(s). Elektromechaniczny układ van der Pola. Przypuszczenie Polya'i-Hilberta, korelacje zer dzety: praca Montgomerego, macierze losowe, hamiltonian Okubo, Berry: H=xp. Związki z chaosem kwantowym. Modele Isinga i RH. Bilardy i RH. Ruchy losowe i RH.
  223. /118/
    Date: Wednesday 2012.12.12
    Speaker: Prof. Kostyantyn Gusliyenko
    Affiliation: Ikerbasque Research Professor, Departamento de Física de Materiales, Universidad del País Vasco, UPV/EHU, San Sebastian, SPAIN.
    Title: Review of spin dynamics in the vortex state magnetic dots and nanopillars
    Abstract: Fundamental understanding of spin dynamics and reversal in a system with a reduced dimensionality is essential in the future advancements of nanomagnetism and spintronics. Thus, it becomes important to explore the spin excitations in sub-micron magnetic particles such as dots. For mesoscopic and nanoscale sizes of dots, non-uniform magnetization distributions with zero remanence ("vortex" states) are often observed at equilibrium [1]. The magnetic vortex with the in-plane curling magnetization and the out-of-plane magnetization at the core is the simplest topologically non-trivial ground state in ferromagnetic dots. The vortex states are stable within a wide range of dot sizes from a few tens of nm up to a few tens of microns. Vortex related phenomena offer insight into spin dynamics on a fundamental level, and also govern magnetization reversal. In this talk, I will present a review of calculations and measurements of the spin excitations in the vortex ground state of soft magnetic dots. The spectrum of spin excitations consists of a low-frequency gyrotropic (sub-GHz range) mode describing precessional motion of the vortex core and high-frequency modes describing spin excitations of the vortex planar part. Nontrivial spin dynamic properties, such as magnetic vortex core (VC) polarization reversal driven by small-amplitude, oscillating (pulse) magnetic fields or spin polarized currents, were observed [2]. Special interest in the vortex dynamics is inspired by the possibility of easy and controllable dynamical switching of the VC magnetization direction (polarization). The dynamical origin of the VC polarization reversal will be considered. We derived a phase diagram of the VC reversal and its switching time with respect to both the driving field strength and frequency. The interaction of high frequency azimuthal spin waves with the moving VC [3] and their influence on the VC motion will be discussed. There is a giant frequency splitting of the spin waves having non-zero overlapping with the vortex mode as well as a finite vortex mass of dynamical origin. We calculated also the main dynamic parameters of the spin polarized current induced magnetic vortex oscillations in nanopillars, such as the range of current density, where the vortex steady oscillation state exists, the oscillation frequency and VC orbit radius [4].
    References:
    [1] K.Y. Guslienko, J. Nanosci. Nanotechn. 8, 2745 (2008).
    [2] B. Van Waeyenberge et al., Nature 444, 461 (2006); K. Yamada et al., Nature Materials 6, 269 (2007).
    [3] K.Y. Guslienko et al., Phys. Rev. Lett. 101, 247203 (2008); Phys. Rev. B 81, 014414 (2010).
    [4] K.Y. Guslienko et al., J. Phys.: Conf. Ser. 292, 012006 (2011).
  224. /117/
    Date: Wednesday 2012.11.28
    Speaker: M.Sc. T. Kendziorczyk
    Coauthor: T. Kuhn
    Affiliation: Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany
    Title: Micromagnetic simulation of spin torque nano-oscillators
    Abstract: It has been predicted theoretically and observed experimentally that a direct current traversing a magnetic multilayer exerts a spin torque on the magnetic system which can compensate the natural damping and lead to self-sustaining magnetic oscillations in the GHz range. Due to the easy frequency tunability of the spin torque nano-oscillators (STNOs) this effect has great potential for the construction of nanosized microwave gen- erators. The main problem which has to be solved for future applications is the low output power of a single STNO. Some experiments have already been performed which show that it is possible to synchronize two STNOs. The output power for N synchronized STNOs could in principle scale with N2. However, in order to construct larger arrays of STNOs a good knowledge about the interaction mechanism between them is indispensable, which can be obtained by means of micromagnetic simulations. This talk will give a general overview of the magnetization dynamics of an extended thin magnetic film excited by a direct current through a point contact. The oscillation below the point contact can excite propagating spin waves which provide an important mechanism for the interaction between STNOs. We will present micromagnetic simulation results concerning the synchronization of two STNOs which show that there can exist several different synchronized states, whose dynamics are determined by the characteristics of the involved spin waves.
  225. /116/
    Date: Wednesday 2012.11.28
    Speaker: M.Sc. J. Hüser
    Coauthors: T. Kendziorczyk and T. Kuhn
    Affiliation: Institut für Festkörpertheorie, Universität Münster, 48149 Münster, Germany
    Title: Effects of the lattice discreteness on the spin wave dispersion in ferromagnetic thin films
    Abstract: Spin wave dispersion relations in ferromagnetic thin films are often calculated within a continuum model based on the Landau-Lifshitz equation thereby neglecting the underlying lattice structure in real materials. In this talk we present and analyze some differences between the spin wave modes obtained in a lattice model and the well known results of the continuum model. For this purpose we calculate the spin wave dispersion with a discrete model consisting of classical spins which are stacked on a cubic lattice and interact via exchange and dipolar forces. In the case of magnetostatic modes, the discrete model yields new qualitative features in comparison with the results of Damon and Eshbach. We observe several surface modes and the degeneracy of the spin waves which propagate perpendicularly to the applied magnetic field is lifted. We also show that the dipolar-exchange modes are strongly influenced by the boundary conditions in ultra-thin films and undergo a frequency upshift. Finally, we compare the 2d-limit of the continuum model with the case of a single layer in the discrete model.
  226. /115/
    Date: Wednesday 2012.11.7
    Speaker: Prof. Henryk Drozdowski
    Affiliation: Optics Division, Physics Faculty, AMU
    Title: New outlook on molecular liquids by X-ray diffraction
    Abstract: Knowledge of the structure, molecular correlations and mechanisms of structural processes taking place in liquids are of fundamental importance for understanding of their physical and chemical properties. X-Ray diffraction studies of liquids open a possibility of finding relations between their structures and properties. Liquids have been divided into certain classes (homologue series) according to certain properties. The lecture is concerned with presentation of application of X-Ray diffraction method to investigation of intra- and intermolecular interactions and close-range structure in selected complex liquids. X-ray structural study brings information on the types of molecular associations contributing to determination of the liquid nature and mechanisms of processes taking place in it. The close-range ordering is related to the mode of packing of molecules in the liquid. According to molecules in liquid have at their disposal 35% of free space. Structure of liquid can be described by the radial distribution function (RDF). This function permits determination of such parameters as the sphere radii, coordination numbers and degree of ordering. The close-ordering range determined in the liquids studied by the WAXS method is about 2 nm.
  227. /114/
    Date: Wednesday 2012.10.31
    Speaker: Dr hab. Genowefa Ślósarek
    Affiliation: Molecular Biophysics Division, Physics Faculty, AMU
    Title: Współczesna rewolucja naukowa na pograniczu fizyki i biologii
    Abstract: Koniec XX wieku przyniósł wielkie zmiany w paradygmatach fizyki molekularnej i biologii. Doszło do powstania nowych dziedzin nauki - nanotechnologii i biologii systemowej. Są to zupełnie rozdzielne dziedziny badań. W konsekwencji trudno jest obecnie jednoznacznie określić interdyscyplinarny kierunek badań, jakim była biofizyka.
  228. /113/
    Date: Wednesday 2012.10.24
    Speaker: Dr Marcin Ziółek
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Fotoogniwa barwnikowe badane metodami spektroskopii laserowej
    Abstract: Fotoogniwa barwnikowe (DSSC: Dye-Sensitized Solar Cells), należą do nowej, obiecującej generacji ogniw słonecznych, w których podstawą funkcjonowania jest oddziaływanie barwników organicznych z warstwami nanocząstek tlenków metali (najczęściej tlenku tytanu). Fotogniwa barwnikowe zostały po raz pierwszy zaproponowane stosunkowo niedawno, w pionierskiej pracy w Nature w 1991 r. Ich obecna sprawność może przekraczać 12%, a znacznie mniejsze koszty produkcji oraz lepsza wydajność w warunkach umiarkowanego i słabego oświetlenia (wewnątrz pomieszczeń i w strefie klimatycznej, w której leży nasz kraj) powodują, że stały się one potencjalną alternatywą dla dotychczasowej generacji fotoogniw krzemowych. O wysokim i realnym znaczeniu fotoogniw barwnikowych świadczy lawinowo wzrastająca liczba publikacji i patentów na ich temat oraz wiele prestiżowych nagród naukowych przyznanych w ostatnich latach ich głównemu twórcy, Michealowi Grätzelowi. Separacja ładunku w fotoogniwach barwnikowych decyduje o ogólnej sprawności ogniwa i odbywa się w kilku procesach (wstrzykiwanie elektronu z barwnika do nanocząstki, regeneracja barwnika, transport ładunku przez nanocząstki), których skala czasowa rozciąga się od dziesiątek femtosekund do setek milisekund. Poznanie cząstkowych wydajności poszczególnych procesów jest możliwe za pomocą technik czasowo-rozdzielczej absorpcyjnej i emisyjnej spektroskopii laserowej w świetle widzialnym i podczerwieni. Podczas seminarium omówione zostaną najnowsze modele opisujące wspomniane procesy i zaprezentowane będą wyniki badań fotoogniw barwnikowych metodami spektroskopii laserowej, w których w ostatnich kilku miesiącach autor brał udział. Znaczna część badań została przeprowadzona na Wydziale Fizyki UAM.
  229. /112/
    Date: Thursday 2012.10.18
    Speaker: Dr Antonín Černoch
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Single photon detection in Olomouc
    Abstract: The talk presents several devices capable of detection of ultra-weak light signals. The main technological aspects and limitations of these devices are discussed with emphasis on possible usage in quantum optical experiments.
  230. /111/
    Date: Thursday 2012.10.18
    Speaker: Dr Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Optimal linear-optical tunable controlled phase gate and related research
    Abstract: Controlled phase gate is one of the fundamental building blocks of quantum information devices. This talk presents our experimental implementation of such device and related research.
  231. /110/
    Date: Thursday 2012.10.18
    Speaker: Prof. Konrad Banaszek
    Affiliation: Institute of Theoretical Physics, Department of Quantum Optics and Atomic Physics, Faculty of Physics, University of Warsaw
    Title: Entanglement-based effects in two-photon propagation
    Abstract: Radiation generated in spontaneous parametric down-conversion exhibits a number of interesting features. One of them is the phenomenon of non-local dispersion cancellation, in which strong temporal correlations between photon pairs are preserved despite propagation through dispersive media with group velocity dispersion coefficients of equal strength and opposite signs. An intriguing question is whether such features can be reproduced with classical radiation. In the case of non-local dispersion cancellation, an analogous effect can be shown to occur also for Gaussian mixtures of coherent states, but at the cost of introducing a uniform background of coincidence counts with a comparable magnitude. We present here a simple variance-based criterion identifying a feature of non-local dispersion cancellation that critically depends on the presence of entanglement in the propagating light. Analogous analysis can be applied also to directional correlations in free-space propagation.
  232. /109/
    Date: Thursday 2012.10.18
    Speaker: Dr Karol Bartkiewicz
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Experimental quantum cloning for hacking quantum-key distribution protocols
    Abstract: We describe a proof-of-principle experiment which shows that quantum cloning can be used for hacking quantum key distribution protocols. We analyze the conditions under which the cloning attack is successful and obtain the corresponding error rates.
  233. /108/
    Date: Thursday 2012.10.18
    Speaker: Dr Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Amplification of Kerr nonlinearity and its application for deterministic entangling gates at the single-photon level
    Abstract: An alternative approach to implement quantum entangling gates to the well-known linear-optical one is using nonlinear materials for deterministic nonlinear photon interactions. However only small conditional phase shift induced by a few photons in the Kerr nonlinearity was successfully measured. We show how to improve the phase-shift obtained for two single-photon states in the cross-Kerr interaction.
  234. /107/
    Date: Thursday 2012.10.18
    Speaker: Dr Anna Kowalewska-Kudłaszyk
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Kerr couplers as nonlinear quantum scissors - entanglement creation and decay
    Abstract: Various types of decay for entanglement obtained within nonlinear quantum scissors systems are discussed. Conditions for observing entanglement death or its revival are presented.
  235. /106/
    Date: Thursday 2012.10.18
    Speaker: Prof. Wiesław Leoński
    Affiliation: Quantum Optics and Engineering Division, Institute of Physics, University of Zielona Góra
    Title: Quantum states engineering - nonlinear quantum scissors
    Abstract: Several models involving nonlinear quantum Kerr-like oscillators are presented. Such models referred to as nonlinear quantum scissors can lead to finite-dimensional states generation, including maximally entangled ones.
  236. /105/
    Date: Wednesday 2012.10.17
    Speaker: Dr Michał Berent
    Coauthors: Andon A. Rangelov and Nikolay V. Vitanov
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Broadband Faraday isolator
    Abstract: Drawing on an analogy with the powerful technique of composite pulses in quantum optics and polarization optics we present a broadband optical diode (optical isolator) made of a sequence of ordinary 45° Faraday rotators sandwiched with quarter-wave plates rotated at the specific angles with respect to their fast polarization axes.
  237. /104/
    Date: Wednesday 2012.10.17
    Speaker: Dr Piotr Trocha
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Spin and charge thermoelectric effects in a double quantum dot system
    Abstract: Thermoelectric effects in a double quantum dot system coupled to external magnetic/nonmagneticleads are investigated theoretically. The basic thermoelectric transport characteristics, like thermopower, electronic contribution to heat conductance, and the corresponding figure of merit, have been calculated in terms of the linear response theory and Green function formalism in the Hartree-Fock approximation for Coulomb interactions. An enhancement of the thermal efficiency (figure of merit ZT) due to Coulomb blockade has been found. The magnitude of ZT is further considerably enhanced by quantum interference effects. The influence of spin-dependent transport on the thermoelectric effects (especially on Seebeck and spin Seebeck effects) is also analyzed.
  238. /103/
    Date: Wednesday 2012.10.17
    Speaker: Prof. Piotr Tomczak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Entanglement in Quantum Spin Systems: RVB Approach
    Abstract: Recently proposed estimators for entanglement entropy in quantum spin systems in resonating valence bond (RVB) basis are reviewed. Some of them may be effectively calculated by using Monte Carlo techniques. Additionally properties of entanglement spectrum of small systems are presented in position and momentum space and their relation to topologically ordered states is discussed. An attempt to calculate such a spectrum of small spin systems in RVB basis is reported. A possibility of finding the topological order in quantum spin systems using RVB basis is discussed.
  239. /102/
    Date: Wednesday 2012.10.17
    Speaker: B.Sc. Marcin Karczewski
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: An algorithm for characterizing SLOCC classes of multiparticle entanglement
    Abstract: A primer on how geometric invariant theory and momentum map geometry could be used to effectively find all stochastic local operations and classical communication (SLOCC) classes of pure states.
  240. /101/
    Date: Wednesday 2012.10.17
    Speaker: M.Sc. Jan Tuziemski
    Affiliation: Faculty of Applied Physics and Mathematics, Technical University of Gdańsk
    Title: Novel property of private states and its application
    Abstract: Quantum bipartite states with the direct accessible, ideal cryptographic key are known as private states. In this talk we will present a novel property, namely the invariance of distillable key under rotations around private axis in Devetak-Winter protocol, for general private states. Its application to the problem of searching optimal measurement basis for a given private state will be demonstrated. We will also provide results concerning error estimation of the proposed procedure.
  241. /100/
    Date: Wednesday 2012.10.17
    Speaker: M.Sc. Joanna Pietraszewicz
    Affiliation: Institute of Physics, Polish Academy of Sciences (PAN), Warsaw
    Title: Anharmonicity vs. higher orbital states in the optical lattices
    Abstract: It is known that dipolar interactions in the presence of a resonant magnetic field can transfer atoms to higher excited states with non zero angular momentum (Einstein-de Haase effect). We investigate how this effect is modified by the lattice potential. In particular we explain in details the role of anharmonicity and anisotropy of a single lattice site.
  242. /99/
    Date: Wednesday 2012.10.17
    Speaker: Dr Grzegorz Chimczak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Improving fidelity in atomic-state teleportation via non-maximally-entangled states
    Abstract: The talk shows that non-maximally entangled states can be better for atomic state teleportation performed via cavity decay. The destructive influence of cavity decay on the fidelity can be minimized by using in the teleportation the non-maximally entangled states instead of the maximally entangled state.
  243. /98/
    Date: Wednesday 2012.10.17
    Speaker: B.Sc. Karol Nowacki
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Statistical testing of random number generators
    Abstract: Review of statistical randomness tests and their software implementations used to verify quality of random number generators.
  244. /97/
    Date: Wednesday 2012.10.17
    Speaker: Dr Marek Sawerwain
    Affiliation: Institute of Physics, University of Zielona Góra
    Title: Perfect state transfers in finite Hilbert space (for qubits and qudits)
    Abstract: The talk presents the perfect state transfer (PST) protocols performed in 1D qubit or qudit chains. Dynamics of transfer is determined by the XY-like Hamiltonian which will be described by special unitary group operators SU(d).
  245. /96/
    Date: Wednesday 2012.10.17
    Speaker: Prof. Andrea Lehmann-Szweykowska
    Coauthors: Ryszard Wojciechowski, Michał Kurzyński
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Correlated cluster mean field theory in the hcp compressible Ising model
    Abstract: We derive an hcp compressible Ising Hamiltonian with a spin-phonon interaction and compute the influence of spin correlations on the empirically observed Brillouin shift. The spin correlations are found by an Oguchi-like method which is newly tailored variation of the Bethe-Peierls-Weiss (BPW) approximation. In the direct space, we consider a cluster consisting of a central spin and its 12 nearest neighbours. Each of the 12 nn pairs, consisting of the central spin and, in turn, all the neighbours , is treated exactly (Oguchi method) while the influence of the remaining spins is replaced by an effective field. In the present approach, the latter is not calculated self-consistently, but substituted by that found in the conventional MFA. In the reciprocal lattice, after the Fourier transformation, we finally arrive at the spin correlation which is temperature and wave-vector dependant. The result remains valid both in the ordered and disordered phases. In the ordered phase, the molecular-field approximation is extended to the static soliton theory.
  246. /95/
    Date: Wednesday 2012.10.17
    Speaker: Dr hab. Jan Soubusta
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Spatial and spectral properties of the pulsed second-harmonic generation in a PP-KTP waveguide
    Abstract: Spatial and spectral properties of the pulsed second harmonic generation in a periodically-poled KTP waveguide are analyzed. Experimental results are interpreted using a model based on finite elements method.
  247. /94/
    Date: Wednesday 2012.10.17
    Speaker: Dr hab. Krzysztof Gibasiewicz
    Affiliation: Molecular Biophysics Division, Physics Faculty, AMU
    Title: Influence of protein dynamics on intraprotein electron transfer in photosynthetic reaction centers
    Abstract: Photosynthetic reaction centers are pigment-protein complexes containing a chain of electron transfer carriers. A linear electron transfer between these carriers occurs on a wide time-scale spanning from picoseconds to microseconds depending on particular step of the transfer. In the talk, results of experimental studies of one particular step of this electron transfer will be shown. Multiphasic kinetics of this reaction is interpreted in terms of a model in which protein dynamically modulates the rate of the electron transfer with characteristic lifetimes of  ∼ 1 and  ∼ 10 ns.
  248. /93/
    Date: Wednesday 2012.10.17
    Speaker: Dr Barbora Lemrová
    Affiliation: Department of Organic Chemistry, Palacký University, Olomouc, Czech Republic
    Title: Solid phase synthesis of potentially biologically active compounds
    Abstract: The talk presents the technique of the so-called solid phase synthesis of organic molecules. Its application on synthesis of compounds with potential biological activity is discussed with emphasis on current research at the Department of Organic Chemistry of Palacký University in Olomouc.
  249. /92/
    Date: Tuesday 2012.10.16
    Speaker: Dr Jan Milewski
    Affiliation: Institute of Mathematics, Poznań University of Technology, Poznań
    Title: Anyonic harmonics and their Hodge structure deformation
    Abstract: The space of anyonic harmonic function on a plane admits a deformed Hodge structure. The deformation of the Hodge structure is connected with the fractional statistics. The parameters of the structure are quantum numbers of the system.
  250. /91/
    Date: Tuesday 2012.10.16
    Speaker: Dr Tomasz Polak
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Dirac like physics in optical lattices
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Abstract: This talk presents an elegant concept of the effective mass theory applied to the neutral bosons confined in two-dimensional square lattice under synthetic magnetic field. Analytically calculated band structure allows to predict the existence of the massless particles with neutrino like dispersion relation located in the particular points of the momentum space. It will be shown that the Dirac cones contain massless particles whose positions and velocities can be tuned by the external magnetic field giving rise to the exotic properties. The presence of the Hofstadter spectrum in the strongly interacting system of bosons reveals some unexpected behavior of the local effective mass dependence.
  251. /90/
    Date: Tuesday 2012.10.16
    Speaker: Dr Przemysław Grzybowski
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Hubbard-I approach to the Mott transition
    Abstract: We analyse the Hubbard model with correlated hopping, at the double occupancy conservation symmetry point, using Hubbard-I approach which describes fractionalised electrons quasiparticles. We obtain description of Mott transitions and the surrounding extremely correlated quantum liquids. The calculations may be relevant for future experiments on optical lattices.
  252. /89/
    Date: Tuesday 2012.10.16
    Speaker: Dr Tomasz Sowiński
    Affiliation: Institute of Physics, Polish Academy of Sciences (PAN), Warsaw
    Title: Dipolar molecules in optical lattices
    Abstract: We study the extended Bose-Hubbard model describing an ultracold gas of dipolar molecules in an optical lattice, taking into account all on-site and nearest-neighbor interactions, including occupation-dependent tunneling and pair tunneling terms. We show that these terms can destroy insulating phases and lead to novel quantum phases.
  253. /88/
    Date: Tuesday 2012.10.16
    Speaker: Dr Antonín Černoch
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Experimental implementations of quantum cloners
    Abstract: Review of several experimental implementations of qubit cloners implemented in the Joint Laboratory of Optics in Olomouc is presented. Quality of various implementations is discussed based on obtained clones fidelity.
  254. /87/
    Date: Tuesday 2012.10.16
    Speaker: Dr hab. Jan Soubusta
    Affiliation: Institute of Physics of Academy of Science of the Czech Republic, Joint Laboratory of Optics of PU and IP AS CR, Olomouc, Czech Republic
    Title: Experimental implementations of linear-optical quantum devices
    Abstract: This review talk presents several linear-optical quantum devices suitable for discrete variables quantum information processing. The devices make use of single and bi-photon interference in both bulk and fibre optical setups.
  255. /86/
    Date: Tuesday 2012.10.16
    Speaker: Dr Piotr Deuar
    Affiliation: Institute of Physics, Polish Academy of Sciences (PAN), Warsaw
    Title: Nonclassical atom pairs obtained from supersonic collisions of Bose-Einstein condensates
    Abstract: Correlated atom pairs are scattered from colliding Bose-Einstein condensates by a process akin to parametric down conversion. I will describe an experiment and its numerical simulation that have shown number-difference squeezing and a violation of the Cauchy-Schwartz inequality. The long term goal is to test Bell inequalities with spatially separated massive particles.
  256. /85/
    Date: Tuesday 2012.10.16
    Speaker: Prof. Tadeusz Lulek
    Affiliation: Mathematical Physics Division, Physics Faculty, AMU
    Title: Galois qubits and Bethe Ansatz
    Abstract: Implementation of an arithmetic qubit on the basis of exact Bethe Ansatz eigenstates of a Heisenberg magnetic ring is proposed. It bases on the Galois number field of an appropriate finite extension of rationals.
  257. /84/
    Date: Tuesday 2012.10.16
    Speaker: Dr Karel Lemr
    Affiliation: Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic, Faculty of Science, Palacký University, Olomouc, Czech Republic
    Title: Quantum information in the Joint Laboratory of Optics - last three years of photon pairs
    Abstract: This talk reviews recent experimental activities in the quantum information processing with linear-optics. The most important results over the past three years are presented.
  258. /83/
    Date: Tuesday 2012.10.16
    Speaker: Prof. Paweł Horodecki
    Affiliation: Faculty of Applied Physics and Mathematics, Technical University of Gdańsk
    Title: Quantum privacy witness
    Abstract: Quantum private states are the states that represent perfectly secure bits of secret key. It is known that among quantum private states that are ones that are not maximally entangled. In those cases secret key extraction goes beyond entanglement distillation scheme. The construction of simple observable called quantum privacy witness which allows to correctly detect and qualitatively estimate privacy will be presented. In some cases the observable is experimentally very friendly still providing useful lower bound for secret key entanglement measure K beyond entanglement distillation regime.
  259. /82/
    Date: Tuesday 2012.10.16
    Speaker: Prof. Ryszard Tanaś
    Title: Correlations in a two-atom system
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Abstract: Evolution of the two-atom system driven by the resonant laser field is considered. It is shown that the two-photon entangled states can be generated in such a system. The role of the dipole-dipole interaction in generating of quantum correlations is discussed. The condition for obtaining steady-state entanglement is given and the time evolution of the quantum correlations is presented.
  260. /81/
    Date: Wednesday 2012.06.13
    Speaker: Prof. Tadeusz Lulek
    Affiliation: Mathematical Physics Division, Physics Faculty, AMU
    Title: Galois theory in Bethe Ansatz: an implementation of arithmetic qubits
  261. /80/
    Date: Wednesday 2012.06.06
    Speaker: Dr hab. Wojciech Rudziński
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Andreev reflection in a hybrid magnetic tunnel junction
  262. /79/
    Date: Wednesday 2012.05.30
    Speaker: Prof. Abderrazzak Douhal
    Affiliation: Facultad de Ciencias Ambientales y Bioquimica, Universidad de Castilla-La Mancha, Toledo, Spain (www) 
    Title: Interrogating Molecules Interacting With Silica-based Materials Using Single Molecule Fluorescence Microscopy
    Abstract: In this lecture, the main concepts of single molecule fluorescence microscopy (SMS) are first explained. Then, I will show and discuss results from my group studying selected molecules interacting with silica based materials where we can directly visualise the photobehavior of a single molecule interacting with this kind of materials. We identify the relevant populations, and assign their emission characteristics.
  263. /78/
    Date: Wednesday 2012.05.23
    Speaker: M.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Security of quantum communication vs quantum cloning
  264. /77/
    Date: Wednesday 2012.05.16
    Speaker: M.Sc. Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Optical tests of quantumness
  265. /76/
    Date: Tuesday 2012.05.08
    Speaker: Prof. Grzegorz Milczarek
    Affiliation: Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology
    Title: From blueberries to batteries. Energy storing materials from biomass
    Reference: G. Milczarek & O. Inganäs, Science 335, 1468 (2012) 
  266. /75/
    Date: Friday 2012.04.27
    Speaker: Dr Azzedine Bousseksou
    Affiliation: Laboratoire de Chimie de Coordination, Tulouse, France
    Title: Spin Crossover Phenomenom at Nanoscale
    Abstract: [PDF] 
  267. /74/
    Date: Friday 2012.04.27
    Speaker: Prof. Marylise Buron
    Affiliation: University Rennes 1, France
    Title: Advanced photocrystallography in molecular materials
    Abstract: [PDF]  Photo-Induced phase transitions [1-2] pose challenging issues to science and science-driven technologies, the goal of which is to control with light the cooperative switching of the macroscopic physical state of a material. A better understanding of the mechanisms is necessary. Photo-crystallography may be a key issue on that purpose through the different kinds of information that can be obtained from X-Ray diffraction [3] patterns: unit-cell geometries, average atomic positions, symmetry-breaking and order parameter, mechanisms of the transition (nucleation of domains versus homogeneous transformation), coherent processes, etc … A few examples of photo-induced transformations in charge-transfer molecular materials [4] or spin-crossover compounds [5-6], under both continuous or pulsed (down to femtosecond 1 fs = 10−15 s) irradiation will be presented.
    References:
    [1] Cailleau H. et al., Chap. 7 in "Photoinduced Phase Transitions", ISBN: 981-238-763-3 (2004).
    [2] Cailleau H. et al., Acta Phys. Polonica A 121 297 (2012).
    [3] Collet E. et al., Journal of the Jap. Phys. Soc. 75 011002 (2006).
    [4] Guerin L. et al, Phys. Rev. Lett. 105 246101 (2010).
    [5] Lorenc M. et al, Phys Rev. Lett. 103 028301 (2009).
    [6] Buron-Le Cointe M. et al, Phys. Rev. B 85 064114 (2012).
  268. /73/
    Date: Wednesday 2012.04.25
    Speaker: Dr hab. Wojciech Rudziński
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Polaronic transport through a quantum-dot-based spin-valve device
  269. /72/
    Date: Wednesday 2012.04.18
    Speaker: Dr Ravindra Chhajlany
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Quantum percolation
  270. /71/
    Date: Wednesday 2012.04.11
    Speaker: Prof. Piotr Tomczak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Metoda grupy renormalizacji w fizyce klasycznej i kwantowej
  271. /70/
    Date: Wednesday 2012.04.04
    Speaker: Prof. Nataliya Dadoenkowa
    Affiliation: Donetsk Physical and Technical Institute of the NAS of Ukraine
    Title: Linear and nonlinear reflection of light on realistic interfaces of magnetic and nonmagnetic media. The effect of strains.
  272. /69/
    Date: Wednesday 2012.03.28
    Speaker: M.Sc. Yuliya Dadoenkowa
    Affiliation: Donetsk Physical and Technical Institute of the NAS of Ukraine
    Title: Magneto-optical ellipsometry: Effect of the combined nonlinear optical interaction and magneto-electric coupling
  273. /68/
    Date: Tuesday 2012.03.27
    Speaker: Prof. Lianao Wu
    Affiliation: IKERBASQUE of the Basque Foundation for Science and Department of Theoretical Physics and History of Science of the Basque Country University (EHU/UPV), Bilbao, Spain
    Title: Quantum phase transitions and quantum entanglement (part II)
  274. /67/
    Date: Tuesday 2012.03.27
    Speaker: Prof. Abdellah Abdelaziz Huseen Al-Sunaidi
    Affiliation: King Fahd University of Petroleum Minerals, Dhahran, Saudi Arabia
    Title: Investigating the Liquid-Crystalline Behavior of Rod-Coil Copolymers Using the Dissipative Particle Dynamics Method
  275. /66/
    Date: Wednesday 2012.03.21
    Speaker: Prof. Lianao Wu
    Affiliation: IKERBASQUE of the Basque Foundation for Science and Department of Theoretical Physics and History of Science of the Basque Country University (EHU/UPV), Bilbao, Spain
    Title: Nondeterministic ultrafast ground-state cooling of a mechanical resonator
  276. /65/
    Date: Wednesday 2012.03.14
    Speaker: M.Sc. Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Universal optical quantum gates
  277. /64/
    Date: Wednesday 2012.03.07
    Speaker: Prof. Michał Banaszak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Effect of Fluctuations on Order Formation in Ion-containing Block Copolymers
  278. /63/
    Date: Wednesday 2012.02.29
    Speaker: M.Sc. Waldemar Kłobus
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Quantum mechanics near closed timelike curves
  279. /62/
    Date: Wednesday 2012.02.22
    Speaker: Dr Ireneusz Weymann
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: Frequency-Dependent Spin Current Noise through Correlated Quantum Dots
  280. /61/
    Date: Wednesday 2012.02.15
    Speaker: Prof. Michał Banaszak
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Great expectations: can artificial molecular machines deliver on their promise?
  281. /60/
    Date: Wednesday 2012.02.08
    Speaker: M.Sc. Mykhaylo Sokolovskyy
    Affiliation: Nanomaterials Physics Division, Physics Faculty, AMU
    Title: Investigation of spin dynamics in planar magnonic crystals
  282. /59/
    Date: Wednesday 2012.02.01
    Speaker: Prof. Igor Lyubchanskii
    Affiliation: Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine and Department of Physics and Technology, Donetsk National University
    Title: Nonlinear acousto-optical diffraction
  283. /58/
    Date: Wednesday 2012.01.25
    Speaker: Dr Ewa Banachowicz
    Affiliation: Molecular Biophysics Division, Physics Faculty, AMU
    Title: Protein structure prediction (Przewidywanie struktury białek)
  284. /57/
    Date: Wednesday 2012.01.18
    Speaker: Dr Ireneusz Weymann
    Affiliation: Mesoscopic Physics Division, Physics Faculty, AMU
    Title: The Kondo effect in quantum dots coupled to ferromagnetic leads
  285. /56/
    Date: Wednesday 2012.01.11
    Speaker: Dr Jarosław Kłos
    Affiliation: Nanomaterials Physics Division, Physics Faculty, AMU
    Title: Electronic states in graphene nanoribbons.
  286. /55/
    Date: Wednesday 2012.01.4
    Speaker: Prof. Ryszard Tanaś
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum correlations of two qubits.
  287. /54/
    Date: Wednesday 2011.12.14
    Speaker: Prof. A. A. Kargin
    Affiliation: Dean of the Faculty of Physics Technology, Donetsk National University, Ukraine
    Title: Overview Perspectives of Collaboration with the Faculty of Physics Technology of the Donetsk National University.
  288. /53/
    Date: Wednesday 2011.12.14
    Speaker: Dr hab. Maciej Krawczyk
    Affiliation: Nanomaterials Physics Division, Physics Faculty, AMU
    Title: Magnonic crystals: Mastering magnons at nanoscale.
  289. /52/
    Date: Friday 2011.12.09
    Speaker: Prof. Paweł Horodecki
    Affiliation: Technical University of Gdańsk and National Center for Quantum Information in Sopot
    Title: Quantum correlations.
  290. /51/
    Date: Wednesday 2011.12.7
    Speaker: Prof. Nataliya Dadoenkowa
    Affiliation: Donetsk Physical and Technical Institute of the NAS of Ukraine
    Title: One-dimensional photonic crystals with combined superconducting defect layers.
  291. /50/
    Date: Wednesday 2011.11.30
    Speaker: M.Sc. Yuliya Dadoenkowa
    Affiliation: Donetsk Physical and Technical Institute of the NAS of Ukraine
    Title: Peculiarities of the Electric Field Controlling of Goos-Hänchen Effect and Faraday Effect in 1D Magnetic Photonic Crystals.
  292. /49/
    Date: Wednesday 2011.11.09
    Speaker: Prof. Igor Lyubchanskii
    Affiliation: Donetsk Physical and Technical Institute of the National Academy of Sciences of Ukraine and Department of Physics and Technology, Donetsk National University
    Title: Magneto-photonic crystals and related structures
  293. /48/
    Date: Wednesday 2011.04.11
    Speaker: Dr Przemysław Chełminiak
    Affiliation: Solid State Theory Division, Physics Faculty, AMU
    Title: Evolution of scale-free networks on fractal networks
  294. /47/
    Date: Tuesday 2011.06.14
    Speaker: Dr Marceli Kaczmarski
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Raman spectroscopy and nanotechnology for cancer diagnostics
  295. /46/
    Date: Tuesday 2011.04.24
    Speaker: Prof. Ryszard Tanaś
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Nonclassical correlations in the system of two atoms
  296. /45/
    Date: Thursday 2011.04.14
    Speaker: B.Sc. Joanna Luchowska
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Introduction to quantum chemistry
  297. /44/
    Date: Thursday 2011.02.03
    Speaker: Dr Wojciech Czart
    Affiliation: Zakład Stanów Elektronowych Ciała Stałego, Wydział Fizyki UAM
    Title: Marketing wyszukiwarek internetowych - optymalizacja
  298. /43/
    Date: Thursday 2011.01.27
    Speaker: Dr hab. Andrzej Grudka
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: On problem of measures of multi-particle correlations
  299. /42/
    Date: Thursday 2011.01.13
    Speaker: M.Sc. Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Superconducting quantum computation
  300. /41/
    Date: Tuesday 2010.12.07
    Speaker: M.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Optical simulations of systems strongly scattering light on example of printer ink
  301. /40/
    Date: Thursday 2010.11.25
    Speaker: M.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum cloning of qubits
  302. /39/
    Date: Thursday 2010.11.18
    Speaker: M.Sc. Bohdan Horst
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Introduction to quantum engineering
  303. /38/
    Date: Thursday 2010.11.04
    Speaker: Prof. Ryszard Tanaś
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum and classical correlations of two atoms
  304. /37/
    Date: Thursday 2010.10.21
    Speaker: Dr Yoichi Uetake
    Affiliation: Faculty of Mathematics and Informatics, AMU
    Title: Scattering theory in quantum mechanics
  305. /36/
    Date: Thursday 2010.10.14
    Speaker: Dr hab. Jacek Kubicki
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Shaping pulses in ultra-fast laser spectroscopy
  306. /35/
    Date: Tuesday 2010.05.25
    Speaker: Prof. Lianao Wu
    Affiliation: IKERBASQUE of the Basque Foundation for Science and Department of Theoretical Physics and History of Science of the Basque Country University (EHU/UPV), Bilbao, Spain
    Title: Quantum phase transitions and quantum entanglement (part I)
  307. /34/
    Date: Thursday 2010.05.20
    Speaker: Dr Grzegorz Chimczak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Finding atom-cavity parameters
  308. /33/
    Date: Thursday 2010.03.13
    Speaker: M.Sc. Joanna Modławska
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Improving the fraction of entanglement
  309. /32/
    Date: Thursday 2010.05.6
    Speaker: M.Sc. Bohdan Horst
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Introduction to Mathematics of Finance
  310. /31/
    Date: Thursday 2010.05.6
    Speaker: M.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Research at the Niels Bohr Institute in Copenhagen
  311. /30/
    Date: Thursday 2010.04.29
    Speaker: Dr hab. Krzysztof Grygiel
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Anomalous rotational diffusion
  312. /29/
    Date: Thursday 2010.04.22
    Speaker: M.Sc. Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Linear-optical implementations of quantum gates - iSWAP and CNOT
  313. /28/
    Date: Thursday 2010.04.15
    Speaker: Dr hab. Krzysztof Grygiel
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: New approach to non-Markovian processes
  314. /27/
    Date: Thursday 2010.04.8
    Speaker: Dr Krzysztof Gibasiewicz
    Affiliation: Molecular Biophysics Division, Physics Faculty, AMU
    Title: Exciton coupling in photosystem I - photosynthetic protein-dye complex
  315. /26/
    Date: Wednesday 2010.03.31
    Speaker: Prof. Tadeusz Bancewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Induced hyper-polarization of complexes H2-He-H2-Ar
  316. /25/
    Date: Thursday 2010.03.25
    Speaker: Dr Andrzej Grudka
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Nonadditivity of quantum capacity of quantum multi-access channels breaking quantum entanglement
  317. /24/
    Date: Thursday 2010.03.18
    Speaker: M.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Optimal quantum cloning and quantum teleportation
  318. /23/
    Date: Thursday 2010.03.11
    Speaker: Dr Andrzej Koper
    Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Gutzwiller states, functions τ, and Metropolis algorithm
  319. /22/
    Date: Thursday 2010.03.04
    Speaker: Prof. Ryszard Tanaś
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Sudden death and sudden birth of entanglement
  320. /21/
    Date: Wednesday 2009.06.03
    Speaker: Dr Zbigniew Ficek
    Affiliation: The National Centre for Mathematics and Physics, KACST, Riyadh, Saudi Arabia
    Title: Squeezed and thresholdless dressed-atom laser in a photonic crystal
  321. /20/
    Date: Thursday 2009.05.28
    Speaker: M.Sc. Monika Bartkowiak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum entanglement and phase transitions
  322. /19/
    Date: Thursday 2009.05.21
    Speaker: Dr Marceli Kaczmarski
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Big Bang and Raman spectra of glaserite-type crystals
  323. /18/
    Date: Thursday 2009.05.14
    Speaker: Dr Grzegorz Chimczak
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Improving fidelity of quantum teleportation
  324. /17/
    Date: Thursday 2009.05.07
    Speaker: B.Sc. Jacek Więcław
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum key distribution protocols
  325. /16/
    Date: Tuesday 2009.04.30
    Speaker: B.Sc. Łukasz Olejnik
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Problem of secure acquisition of information
  326. /15/
    Date: Thursday 2008.11.25
    Speaker: Dr Anna Kowalewska-Kudłaszyk
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Nonlinear quantum scissors and generation of entangled states
  327. /14/
    Date: Thursday 2008.11.20
    Speaker: Dr Andrzej Grudka
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: On additivity of quantum capacity of quantum channels
  328. /13/
    Date: Thursday 2008.11.13
    Speaker: B.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Damping of entangled states and teleportation
  329. /12/
    Date: Tuesday 2008.11.04
    Speaker: Dr Marceli Kaczmarski
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Raman spectroscopy in the past and nowadays
  330. /11/
    Date: Friday 2008.09.26
    Speaker: B.Sc. Karol Bartkiewicz
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Teleportation through dissipative channels: Conditions for surpassing the no-cloning limit
  331. /10/
    Date: Friday 2008.09.26
    Speaker: Dr Andrzej Grudka
    Authors: Dr Andrzej Grudka and B.Sc. Joanna Modławska
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: How to increase the probability of faithful multiple teleportation in the KLM scheme
  332. /9/
    Date: Friday 2008.09.26
    Speaker: Prof. Ryszard Tanaś
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Sudden birth and death of entanglement in a two-atom system
  333. /8/
    Date: Friday 2008.09.26
    Speaker: M.Sc. Mikołaj Czechlewski
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Entanglement distillation of certain mixed states
  334. /7/
    Date: Friday 2008.09.26
    Speaker: B.Sc. Łukasz Olejnik
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Quantum solution to symmetrically private information retrieval
  335. /6/
    Date: Friday 2008.09.26
    Speaker: Dr Anna Kowalewska-Kudłaszyk
    Authors: Dr Anna Kowalewska-Kudłaszyk and dr hab. Wiesław Leoński:
    Affiliation: Nonlinear Optics Division, Physics Faculty, AMU
    Title: Nonlinear quantum scissors and entanglement
  336. /5/
    Date: Friday 2008.09.26
    Speaker: Dr Paweł Kurzyński
    Affiliation: Quantum Electronics Division, Physics Faculty, AMU
    Title: Multiple violation of local realism
  337. /4/
    Date: Friday 2008.09.26
    Speaker: Prof. Piotr Tomczak
    Affiliation: Affiliation: Quantum Physics Division, Physics Faculty, AMU
    Title: Entanglement in antiferromagnetic spin systems
  338. /3/
    Date: Friday 2008.09.26
    Speaker: Dr Yoichi Uetake
    Affiliation: Faculty of Mathematics and Computer Science, Adam Mickiewicz University
    Title: Lax-Phillips scattering and its possible implication in quantum computing
  339. /2/
    Date: Friday 2008.09.26
    Speaker: Prof. Nobuyuki Imoto
    Affiliation: Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Osaka, Japan
    Title: Photonic quantum information processing
  340. /1/
    Date: Friday 2008.09.26
    Speaker: Prof. Hideaki Matsueda
    Affiliation: Kochi University and Kyoto University, Japan
    Title: Nanostructure realization of quantum computing
free counters
Free counters



File translated from TEX by TTHgold, version 4.00.
On 23 Oct 2017, 13:07.