Citations of papers by Adam Miranowicz

Citations of papers by Adam Miranowicz

1
A. Miranowicz, R. Tanaś, and S. Kielich:
Generation of discrete superpositions of coherent states in the anharmonic oscillator model,
Quantum Opt. 2, 253 (1990).
CITATIONS:
  1. /1/ M. J. Werner and H. Risken:
    Q-function for the Jaynes-Cummings model with an additional Kerr-medium,
    Quantum Opt. 3, 185 (1991).
  2. /2/ A. D. Wilson-Gordon, V. Buzek, and P. L. Knight:
    Statistical and phase properties of displaced Kerr states,
    Phys. Rev. A 44, 7647 (1991).
  3. /3/ S. P. Nikitin and A. V. Masalov:
    Quantum state evolution of the fundamental mode in the process of second-harmonic generation,
    Quantum Opt. 3, 105 (1991).
  4. /4/ Ts. Gantsog:
    Quantum fluctuations and correlations of phase in nonlinear optical processes,
    Ph.D. Thesis (in Russian), Dubna, 1991.
  5. /5/ T Gantsog, R Tanaś, R Zawodny:
    Quantum phase fluctuations in the second-harmonic generation,
    Phys. Lett. A 155, 1 (1991).
  6. /6/ R Tanaś, T Gantsog, R Zawodny:
    Number and phase quantum fluctuations in second harmonic,
    Quantum Opt. 3, 221 (1991).
  7. /7/ T Gantsog, R Tanaś:
    Phase properties of a damped anharmonic oscillator,
    Phys. Rev. A 44, 2086 (1991).
  8. /8/ T Gantsog, R Tanaś:
    Phase properties of self-squeezed states generated by the anharmonic oscillator,
    J. Mod. Opt. 38, 1021 (1991).
  9. /9/ T Gantsog, R Tanaś:
    Phase properties of elliptically polarized light propagating in a Kerr medium with dissipation,
    J. Opt. Soc. Am. B 8, 2505-2512 (1991). 
  10. /10/ R Tanaś:
    Quantum phase correlations in nonlinear optical processes,
    Journal of Soviet Laser Research 12, Issue 5, 395 (1991).
  11. /11/ K. J. Blow, R. Loudon, and S. J. D. Phoenix:
    Quantum theory of nonlinear loop mirrors,
    Phys. Rev. A 45, 8064 (1992).
  12. /12/ V. Buzek, A. Vidiella-Barranco, and P. L. Knight:
    Superpositions of coherent states: Squeezing and dissipation,
    Phys. Rev. A 45, 8190 (1992).
  13. /13/ V. Buzek, H. Moya-Cessa, P. L. Knight, and S. J. D. Phoenix:
    Schrödinger-cat states in the resonant Jaynes-Cummings model: Collapse and revival of oscillations of the photon-number distribution,
    Phys. Rev. A 45, 8190 (1992).
  14. /14/ M. M. Brisudová:
    Creating multiphase coherent states in a damped anharmonic oscillator,
    Phys. Rev. A 46, 1696 (1992).
  15. /15/ B. C. Sanders:
    Superpositions of distinct phase states by a nonlinear evolution,
    Phys. Rev. A 45, 7746 (1992).
  16. /16/ Fan Hong-Yi and Weng Hai-Guang:
    Simple approach for discussing the properties of displaced Fock states,
    Quantum Opt. 4 265 (1992). 
  17. /17/ M. S. Kim and V. Buzek:
    Photon statistics of superposition states in phase-sensitive reservoirs,
    Phys. Rev. A 47, 610 (1993).
  18. /18/ S Kielich, R Tanas, R Zawodny:
    Self-Squeezing of Elliptically Polarized Light Propagating in a Kerr-Like Optically Active Medium,
    in: Modern Nonlinear Optics, ed. M. Evans and S. Kielich (Wiley, New York, 1993), vol. 85(1) of series Advances in Chemical Physics, p. 541.
  19. /19/ S Kielich, K. Piatek:
    Squeezed States of Light in the Second and Third Harmonic Generated by Self-Squeezed Light,
    in: Modern Nonlinear Optics, ed. M. Evans and S. Kielich (Wiley, New York, 1993), vol. 85(1) of series Advances in Chemical Physics, p. 497.
  20. /20/ R Tanas:
    Quantum noise in nonlinear optical phenomena,
    in: Modern Nonlinear Optics, ed. M. Evans and S. Kielich (Wiley, New York, 1993), vol. 85(1) of series Advances in Chemical Physics, p. 1.
  21. /21/ J. Perina, J. Bajer, V. Perinová, and Z. Hradil:
    Photon statistics of non-classical fields,
    in: Modern Nonlinear Optics, Prigogine and Rice Series, Vol. 85 Part 1, eds. M. W. Evans and S. Kielich, Wiley, New York (1993) pp. 405-459.
  22. /22/ I. Földesi, P. Adam, and J. Janszky:
    Antisymmetric straight-line superposition of coherent states,
    Phys. Lett. A 173, 97 (1993).
  23. /23/ M. S. Kim and V. Buzek:
    Schrödinger-cat states at finite temperature - influence of a finite-temperature heat bath on quantum interferences,
    Phys. Rev. A  46, 4239 (1992).
  24. /24/ M. Ban:
    SU(1,1) Lie algebraic approach to linear dissipative processes in quantum optics,
    J. Math. Phys. 33, 3213 (1992).
  25. /25/ A. Vourdas:
    Superpositions of macroscopically distinguishable states in the presence of thermal noise,
    Opt. Commun. 91, 236 (1992).
  26. /26/ B. C. Sanders:
    Entangled coherent states,
    Phys. Rev. A 45, 6811 (1992).
  27. /27/ V. Buzek and B. Hladký:
    Macroscopic superposition states of light via two-photon resonant interaction of atoms with cavity field,
    J. Mod. Opt. 40, 1309 (1993).
  28. /28/ V. Buzek, Ts. Gantsog, and M. S. Kim:
    Phase properties of Schrödinger cat states of light decaying in phase-sensitive reservoirs,
    Phys. Scripta T48, 131 (1993).
  29. /29/ V. Perinová and J. Krepelka:
    Free and dissipative evolution of squeezed and displaced number states in the 3rd-order nonlinear oscillator,
    Phys. Rev. A  48, 3881-3889 (1993).
  30. /30/ J. Janszky, P. Domokos, and P. Adam:
    Coherent states on a circle and quantum interference,
    Phys. Rev. A  48, 2213 (1993).
  31. /31/ K. J. Blow, R. Loudon, and S. J. D. Phoenix:
    Graphical representation of self-phase modulation noise,
    J. Mod. Opt. 40, 2515 (1993).
  32. /32/ B. Wielinga and B. C. Sanders:
    Entangled coherent states with variable weighting,
    J. Mod. Opt.  40, 1923 (1993).
  33. /33/ P. Domokos, J. Janszky, P. Adam, and T. Larsen:
    Role of quantum interference in producing non-classical states,
    Quantum Opt. 6, 187 (1994).
  34. /34/ P. Domokos, P. Adam, and J. Janszky:
    One-dimensional coherent-state representation on a circle in phase-space,
    Phys. Rev. A 50, 4293 (1994).
  35. /35/ C. C. Gerry and R. Grobe:
    Statistical properties of squeezed Kerr states,
    Phys. Rev. A  49, 2033 (1994).
  36. /36/ P. Adam, I. Földesi, and J. Janszky:
    Complete basis set via straight-line coherent-state superposition,
    Phys. Rev. A 49, 1281 (1994).
  37. /37/ P. F. Góra and C. Jedrzejek:
    Revivals and superstructures in the Jaynes-Cummings model with a small number of photons,
    Phys. Rev. A 49 (1994) 3046.
  38. /38/ M. L. Lyra and A. S. Gouveia-Neto:
    Evolution of coherent states in a dispersionless fiber with saturable nonlinearity and the generation of macroscopic quantum-superposition states,
    J. Mod. Opt. 41, 1361 (1994).
  39. /39/ V. Perinová and A. Luks:
    Quantum statistics of dissipative nonlinear oscillators,
    Progress in Optics, Vol. 33, ed. E. Wolf, Elsevier, Amsterdam, 1994, pp. 129-202.
  40. /40/ I. Jex and A. Orlowski:
    Wehrl's entropy dynamics in a Kerr-like medium,
    J. Mod. Opt.  41, 2301 (1994).
  41. /41/ V. Buzek and P. L. Knight:
    Quantum interference, superposition states of light and nonclassical effects,
    Progress in Optics, Vol. 34, ed. E. Wolf, Elsevier, Amsterdam, 1995, pp. 1-158.
  42. /42/ J. Janszky, A. Petak, C. Sibilia, M. Bertolotti, and P. Adam:
    Optical Schrödinger cat states in a directional coupler,
    Quantum Opt. 7, 145 (1995).
  43. /43/ J. A. Vaccaro and A. Orlowski:
    Phase properties of Kerr media via variance and entropy as measures of uncertainty,
    Phys. Rev. A 51, 4172 (1995).
  44. /44/ R. F. Alvarez-Estrada, A. Nicola, L. Sánchez-Soto, and A. Luis:
    A quasi-classical analysis of 2nd-harmonic generation,
    J. Phys. A 28, 3439 (1995).
  45. /45/ I. Földesi, P. Adam, and J. Janszky:
    One-dimensional coherent-state representation of squeezed displaced number states,
    Phys. Lett. A 204, 16 (1995).
  46. /46/ P. Adam, S. Szabo, and J. Janszky:
    Phase optimized states via discrete coherent-state superpositions,
    Phys. Lett. A 215, 229 (1996).
  47. /47/ M. L. Lyra:
    Multifractal entanglement of copropagating electromagnetic fields,
    Europhys. Lett. 33, 117 (1996).
  48. /48/ S. Szabo, P. Adam, J. Janszky, and P. Domokos:
    Construction of quantum states of the radiation-field by discrete coherent-state superpositions,
    Phys. Rev. A 53, 2698 (1996).
  49. /49/ M. L. Lyra:
    Universal multifractal singularity spectrum of generalized purity measures,
    Fractals 4, 49 (1996).
  50. /50/ F.A. de Moura and M. L. Lyra:
    Phase distribution and superstructures on the phase correlation of copropagating electromagnetic-fields,
    J. Mod. Opt.  43, 1671 (1996).
  51. /51/ D. Mogilevtsev and K. S. Ya:
    The generation of multicomponent entangled Schrödinger cat states via a fully quantized nondegenerate 4-wave-mixing process,
    Opt. Commun. 132, 452 (1996).
  52. /52/ C. Leichtle, I. S. Averbukh, and W. P. Schleich:
    Multilevel quantum beats - an analytical approach,
    Phys. Rev. A  54, 5299-5312 (1996).
  53. /53/ D. Mogilevtsev, N. Korolkova and J. Perina:
    Entangled superpositions of distinguishable states via nonlinear wave mixing,
    Quantum and Semicl. Optics 8, 1169 (1996).
  54. /54/ G. Drobny, A. Bandilla and I. Jex:
    Quantum description of nonlinearly interacting oscillators via classical trajectories,
    Phys. Rev. A 55, 78-93 (1997).
  55. /55/ S. D. Du, S. Q. Gong, Z. Z. Xu, L. W. Zhou and C. D. Gong:
    Production of two-mode optical Schrödinger catlike states via Kerr nonlinearity,
    Opt. Commun. 138, 193-199 (1997).
  56. /56/ V. Perinová, A. Luks and J. Krepelka:
    Preferred values and phase dispersions of any order for l-photon Kerr states,
    Quantum and Semicl. Optics 9, 465 (1997).
  57. /57/ S. Chountasis and A. Vourdas:
    Weyl Functions and Their Use in the Study of Quantum Interference,
    Phys. Rev. A 58, 848-855 (1998).
  58. /58/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  59. /59/ W. Leoński:
    Periodic behaviour of displaced Kerr states,
    Acta Phys. Slovaca 48, 371 (1998).
  60. /60/ B. C. Sanders and D. A. Rice:
    A Description of the Quantized Nonlinear Interferometer,
    Opt. Qu. Electronics 31, 525-533 (1999).
  61. /61/ D. Kuznetsov and E. Gomez:
    Self-Modulation of Optical Pulses in a Kerr Medium and Limits of the Single-Mode Approximation,
    Opt. Spectr. 87 (1999) 594-602.
  62. /62/ B. C. Sanders and D. A. Rice:
    Nonclassical Fields and the Nonlinear Interferometer,
    Phys. Rev. A  60, 013805 (2000).
  63. /63/ W. Leoński:
    Finite-Energy States Generation by Periodically Pulsed Nonlinear Oscillator,
    J. Mod. Opt. 48, 877-887 (2001).
  64. /64/ V. P. Karassiov and A. V. Masalov:
    Quantum interference of light polarization states via polarization quasiprobability functions,
    J. Opt. B 4 (2002) S366-S371.
  65. /65/ R. Tanaś:
    Nonclassical states of light propagating in Kerr media,
    in: Theory of Nonclassical States of Light, eds. V. V. Dodonov and V. I. Man'ko, Taylor & Francis, London, 2003, pp. 267-312.
  66. /66/ V. V. Dodonov:
    `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years,
    J. Opt. B 4 (2002) R1-R33.
  67. /67/ P. Roy:
    Quantum statistical properties of Gazeau-Klauder coherent state of the anharmonic oscillator,
    Opt. Commun. 221, 145-152 (2003).
  68. /68/ N. H. Abdel-Wahab:
    Multi-photon processes for one-mode intensity dependent coupling Hamiltonian in the presence of Stark shift,
    Phys. Scripta 68, 103-107 (2003).
  69. /69/ F. A. A. El-Orany, J. Perina, V. Perinova, M. S. Abdalla:
    Evolution of cat states in a dissipative parametric amplifier: Decoherence and entanglement,
    Euro. Phys. J. D 22 141-156 (2003).
  70. /70/ F. A. A. El-Orany, S. S. Hassan and M. S. Abdalla:
    Squeezing evolution with non-dissipative SU(1,1) systems,
    J. Opt. B  5, 396-404 (2003).
  71. /71/ Yu-xi Liu, L.F. Wei, and Franco Nori:
    Preparation of Schrödinger cat states of a cavity field via coupling to a SQUID-based charge qubit,
    Phys. Rev. A 71, 063820 (2005); e-print arXiv:quant-ph/0406058 .
  72. /72/ F. A. A. El-Orany, M. S. Abdalla and J. Perina:
    Single-mode quantum properties of the codirectional Kerr nonlinear coupler: frequency mismatch and exact solution,
    J. Opt. B 6, 460-471 (2004), e-print arXiv:0908.0381 .
  73. /73/ F. A. A. El-Orany, M. Sebawe Abdalla, and J. Perina:
    Quantum properties of the codirectional three-mode Kerr nonlinear coupler,
    Euro. Phys. J. D 33, 453 (2005), e-print arXiv:0907.5291 .
  74. /74/ F. Toscano, D.A.R. Dalvit, L. Davidovich, and W.H. Zurek:
    Sub-Planck phase-space structures and Heisenberg-limited measurements,
    Phys. Rev. A 73, 023803 (2006); e-print arXiv:quant-ph/0508093 .
  75. /75/ D.A.R. Dalvit, R.L. de Matos Filho, and F. Toscano:
    Quantum metrology at the Heisenberg limit with ion traps,
    New J. Phys. 8, 276 (2006); e-print arXiv:quant-ph/0608082 .
  76. /76/ V.V. Dodonov, L.A. de Souza:
    Decoherence of multicomponent symmetrical superpositions of displaced quantum states,
    J. Phys. A  40, Issue 46, pp. 13955-13974 (2007).
  77. /77/ VV Dodonov, LA de Souza:
    Decoherence of multicomponent and multimode generalizations of even/odd coherent states in thermal and phase reservoirs,
    Journal of Russian Laser Research 28, 453 (2007).
  78. /78/ F.A.A. El-Orany, M.S. Abdalla, J. Perina:
    Squeezing properties of the Kerr-down conversion system,
    Euro. Phys. J. D 41 (2), 391-396 (2007).
  79. /79/ Abdel-Wahab NH:
    A four-level atom interacting with a single-mode cavity field: double xi-configuration,
    Mod. Phys. Lett. 22, 2587-2599 (2008).
  80. /80/ E. Zambrano and A. M. O. de Almeida:
    Blind spots between quantum states,
    New J. Phys. 11, 113044 (2009).
  81. /81/ C. M. Caves and A. Shaji:
    Quantum-circuit guide to optical and atomic interferometry,
    Opt. Commun. 283 (2010) 695-712, e-print arXiv:0909.0803 .
  82. /82/ A. Kowalewska-Kudlaszyk and W. Leonski:
    Squeezed vacuum reservoir effect for entanglement decay in nonlinear quantum scissors system,
    J. Phys. B 43, 205503 (2010); e-print arXiv:1009.1068 .
  83. /83/ A.Y. Galashev:
    Molecular dynamics calculation of infrared spectra of ultradispersed atmospheric moisture,
    J. Comp. Methods Sci. Eng. 10 (2010) 321-340.
  84. /84/ Kowalewska-Kudłaszyk, A.; Leoński, W.; Peřina, J. Jr:
    Photon-number entangled states generated in Kerr media with optical parametric pumping,
    Phys. Rev. A 83, 052326 (2011); e-print arXiv:1104.4889 .
  85. /85/ Stobińska, M.; Villar, A. S.; Leuchs, G.:
    Generation of Kerr non-Gaussian motional states of trapped ions,
    Europhys. Lett. 94, 54002 (2011).
  86. /86/ Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.:
    Classicalization times of parametrically amplified "Schrödinger cat" states coupled to phase-sensitive reservoirs,
    Phys. Lett. A 375, 3668 (2011).
  87. /87/ Kowalewska-Kudłaszyk, A.; Kalaga, J. K.; Leoński, W.; Cao Long, V.:
    Kullback-Leibler quantum divergence as an indicator of quantum chaos,
    Phys. Lett. A 376, 1280 (2012).
  88. /88/ G R Honarasa and M K Tavassoly:
    Generalized deformed Kerr states and their physical properties,
    Phys. Scr. 86, 035401 (2012).
  89. /89/ W. Leoński; V. Cao Long:
    Nonlinear quantum scissors and quantum states engineering: numerical simulations,
    Proc. SPIE 8697, 869728 (2012).
  90. /90/ G. A. White, J. A. Vaccaro, and H. M. Wiseman:
    Optimal reference states for maximum accessible entanglement under the local particle number superselection rule,
    e-print arXiv:0807.0064v2 .
  91. /91/ S. Choudhury and P. K. Panigrahi:
    A proposal to generate entangled compass states with sub-Planck structure,
    e-print arXiv:1004.2163 .
  92. /92/ Lu, XY; Zhang, WM; Ashhab, S; Wu, Y; Nori, F:
    Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,
    Scientific Reports 3, 2943 (2013).
  93. /93/ M Rohith and C Sudheesh:
    Fractional revivals of superposed coherent states,
    J. Phys. B: At. Mol. Opt. Phys. 47, 045504 (2014). 
  94. /94/ A. Kowalewska-Kudłaszyk, W. Leonski, T. D. Nguyen, and V. C. Long:
    Kicked nonlinear quantum scissors and entanglement generation,
    Phys. Scr. T160, 014023 (2014). 
  95. /95/ A Shankar, S Lakshmibala, V Balakrishnan:
    Dynamics of an open quantum system interacting with a quantum environment,
    e-print arXiv:1407.6862 .
  96. M Rohith, C Sudheesh, R Rajeev:
    Entanglement dynamics of quantum states generated by a Kerr medium and a beam splitter,
    Mod. Phys. Lett. B 30, 1550269 (2016),  e-print arXiv:1409.2643 .
  97. /97/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  98. /98/ G Najarbashi, S Mirzaei:
    Entanglement of Multi-qudit States Constructed by Linearly Independent Coherent States: Balanced Case,
    e-print arXiv:1503.05321 .
  99. /99/ M Rohith, C Sudheesh:
    Visualizing revivals and fractional revivals in a Kerr medium using an optical tomogram,
    Phys. Rev. A 92, 053828 (2015),  e-print arXiv:1507.03724 .
  100. /100/ R Chakrabarti, V Yogesh:
    Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation,
    e-print arXiv:1509.07030 .
  101. /101/ G Najarbashi, S Mirzaei:
    Noise Effects on Entangled Coherent State Generated via Atom-Field Interaction and Beam Splitter,
    e-print arXiv:1511.03799 .
  102. G Najarbashi, S Mirzaei:
    Wigner Quasi-probability Distribution Function for Two-mode Entangled Coherent States Generated by Beam Splitter and Cavity QED,
    e-print arXiv:1601.00143 .
  103. JQ Liao, JF Huang, L Tian:
    Generation of macroscopic Schr\" odinger's cat states in qubit-oscillator systems,
    e-print arXiv:1512.08536 .
2
R. Tanaś, A. Miranowicz, and S. Kielich:
Squeezing and its graphical representations in the anharmonic oscillator model, Phys. Rev. A 43, 4014 (1991).
CITATIONS:
  1. /102/ K. J. Blow, R. Loudon, and S. J. D. Phoenix:
    Quantum theory of nonlinear loop mirrors,
    Phys. Rev. A 45, 8064 (1992).
  2. /103/ A. Luis and L. L. Sánchez-Soto:
    Breaking the standard quantum limit for interferometric measurements,
    Opt. Commun. 89, 140 (1992).
  3. /104/ K. J. Blow, R. Loudon, and S. J. D. Phoenix:
    Graphical representation of self-phase modulation noise,
    J. Mod. Opt.  40, 2515 (1993).
  4. /105/ J. Perina, J. Bajer, V. Perinová, and Z. Hradil:
    Photon statistics of non-classical fields,
    in: Modern Nonlinear Optics, Prigogine and Rice Series, Vol. 85 Part 1, eds. M. W. Evans and S. Kielich, Wiley, New York (1993) pp. 405-459.
  5. /106/ V. Perinová and A. Luks:
    Quantum statistics of dissipative nonlinear oscillators,
    Progress in Optics, Vol. 33, ed. E. Wolf, Elsevier, Amsterdam, 1994, pp. 129-202.
  6. /107/ J. Recamier and R. Jauregui:
    Time-evolution operator for a forced parametric oscillator,
    Int. J. Quantum Chem. 62, 125-135 (1997).
  7. /108/ K.N. Alekseev and J. Perina:
    Chaos-assisted light squeezing,
    Phys. Lett. A 231, 373-378 (1997); e-print chao-dyn/9803026.
  8. /109/ K.N. Alekseev and D. S. Primak:
    Squeezed states and quantum chaos,
    J. Experimen. and Theor. Phys. 86, 61-70 (1998); Zh. Eksp. Teor. Fiz. 113, 111-127 (1998); e-print arXiv:quant-ph/0111044 .
  9. /110/ K. N. Alekseev and J. Perina:
    Light Squeezing at the Transition to Quantum Chaos,
    Phys. Rev. E  57, 4023-4034 (1998); e-print chao-dyn/9804041.
  10. /111/ D. Kuznetsov and E. Gomez:
    Self-Modulation of Optical Pulses in a Kerr Medium and Limits of the Single-Mode Approximation,
    Opt. Spectr. 87 (1999) 594-602.
  11. /112/ K. N. Alekseev and J. Perina:
    The 1/N-Expansion, Quantum-Classical Correspondence and Nonclassical States Generation in Dissipative Higher-Order Anharmonic-Oscillators,
    Phys. Scripta 61, 7-16 (2000); e-print arXiv:quant-ph/9812019 .
  12. /113/ K. N. Alekseev, N. V. Alekseeva and J. Perina:
    Quantum-Classical Correspondence and Nonclassical State Generation in Dissipative Quantum Optical Systems,
    J. of Experimental and Theor. Phys. 90, 592-599 (2000); Zh. Eksp. Teor. Fiz. 117, 682 (2000)-690; e-print chao-dyn/9912013.
  13. /114/ R. Zambrini and S. M. Barnett:
    Analytic stochastic treatment of a nonlinear quantum model with negative diffusion,
    Phys. Rev. A 65, 053810 (2002); e-print arXiv:quant-ph/0109110 .
  14. /115/ V. V. Dodonov:
    `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years,
    J. Opt. B 4 (2002) R1-R33.
  15. /116/ P. Roy:
    Quantum statistical properties of Gazeau-Klauder coherent state of the anharmonic oscillator,
    Opt. Commun. 221, 145-152 (2003).
  16. /117/ Roberta Zambrini:
    Quantum fluctuations in nonlinear optical systems,
    Ph.D. Thesis, Mediterranean Institute for Advanced Studies (IMEDEA), Mallorca, Spain, 2003.
  17. /118/ F. A. A. El-Orany, M. S. Abdalla and J. Perina:
    Single-mode quantum properties of the codirectional Kerr nonlinear coupler: frequency mismatch and exact solution,
    J. Opt. B 6, 460-471 (2004), e-print arXiv:0908.0381 .
  18. /119/ M.S. Abdalla, J. Perina, and J. Krepelka:
    Statistical properties of multiphoton time-dependent three boson coupled oscillators,
    J. Opt. Soc. Am. B 23 (6) 1146-1160 (2006).
  19. /120/ F.A.A. El-Orany, M.S. Abdalla, J. Perina:
    Squeezing properties of the Kerr-down conversion system,
    Euro. Phys. J. D 41 (2), 391-396 (2007).
  20. /121/ Giri DK, Gupta PS:
    The amplitude squeezing effects of the electromagnetic field in six-wave interaction model,
    Modern Phys. Lett. B 22, 219-230 (2008)
  21. /122/ F.A.A. El-Orany, A.-S.F. Obada, Z. M. Asker and J. Perina:
    Quantum properties of a superposition of squeezed displaced two-mode vacuum and single-photon states,
    Phys. Scripta 79, 035402 (2009); e-print arXiv:0808.2681 .
  22. /123/ X. Li, J.F. Harrison, M. Gustafsson, L. Frommhold and K.L.C. Hunt:
    The anisotropic polarizability of pairs of hydrogen molecules and the depolarized collisioninduced rototranslational Raman light scattering spectra,
    J. Comp. Meth. Sci. Eng. 10, 367-399 (2010).
  23. /124/ Giri, D. K.; Gupta, P. S.; Mahan, M. K.; Prasad, Ajay:
    Higher-order squeezing and sub-poissonian photon statistics in CARS and CAHRS,
    Opt. Quantum Electr. 42 (4), 215-229 (2010).
  24. /125/ Stobińska, M.; Villar, A. S.; Leuchs, G.:
    Generation of Kerr non-Gaussian motional states of trapped ions,
    European Phys. Lett. 94 (5), 54002 (2011).
  25. /126/ G R Honarasa and M K Tavassoly:
    Generalized deformed Kerr states and their physical properties,
    Phys. Scr. 86, 035401 (2012). 
  26. /127/ Meng Xiang-Guo, Wang Ji-Suo(, and Liang Bao-Long:
    New approach for deriving the exact time evolution of density operator for diffusive anharmonic oscillator and its Wigner distribution function,
    Chin. Phys. B 22, No. 3, 030307 (2013). 
  27. /128/ W. Leoński; V. Cao Long:
    Nonlinear quantum scissors and quantum states engineering: numerical simulations,
    Proc. SPIE 8697, 869728 (2012) 
  28. /129/ Rajendra Pratap, D.K. Giri, Ajay Prasad:
    Effects on squeezing and sub-Poissonian of light in fourth harmonic generation up to first-order Hamiltonian interaction,
    Optik - International Journal for Light and Electron Optics, 125 (3), 1065 (2014). 
  29. /130/ R. Pratap, D. K. Giri, A. Prasad:
    Nonclassical Effects of Light in Fifth Harmonic Generation Upto First-Order Hamiltonian Interaction,
    ISRN Optics, article ID 580262 (2014) .
  30. /131/ A. Kowalewska-Kudłaszyk, W. Leonski, T. D. Nguyen, and V. C. Long:
    Kicked nonlinear quantum scissors and entanglement generation,
    Phys. Scr. T160, 014023 (2014). 
  31. /132/ R Pratap, DK Giri, A Prasad:
    Squeezing and Sub-Poissonian Effects of Light in Third Harmonic Generation,
    Acta Phys. Polon. 125, 1126 (2014).
  32. /133/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
  33. /134/ Z. Hradil, J. Rehacek, P. de la Hoz, G. Leuchs, and L. L. Sanchez-Soto,:
    Extremal states for photon number and quadratures as gauges for nonclassicality,
    e-print arXiv:1412.5421 .
  34. /135/ S Wang, LL Hou, XF Chen, XF Xu:
    Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition,
    Phys. Rev. A 91, 063832 (2015),  e-print arXiv:1411.7500 .
  35. /136/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  36. /137/ M. A. Al-Rajhi,
    Photon added coherent states for nonharmonic oscillators in a nonlinear Kerr medium,
    Mod. Phys. Lett. B, 29, 1550035 (2015). 
  37. /138/ Chakrabarti, R.; Jenisha, B. Virgin:
    Quasi-Bell states in a strongly coupled qubit-oscillator system and their delocalization in the phase space,
    Physica A 435, 95 (2015). 
  38. /139/ N Alam, S Mandal:
    Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators,
    Opt. Commun. 359, 221 (2016). 
  39. LL Hou, KH Jia, XF Chen:
    Einstein-Podolsky-Rosen correlation and continuous-variable quantum teleportationfor the non-Gaussian entangled state with coherent component,
    Optik-International Journal for Light and Electron Optics (2016). 
3
R. Tanaś, Ts. Gantsog, A. Miranowicz, and S. Kielich:
The quasiprobability distribution Q(α,α*) versus the phase distribution P(θ) in description of superpositions of coherent states,
J. Opt. Soc. Am. B  8, 1576-1582 (1991).
CITATIONS:
  1. /140/ B. M. Garraway and P. L. Knight:
    Quantum phase distributions and quasidistributions,
    Phys. Rev. A  46, 5346 (1992).
  2. /141/ Ho Trung Dung and A. S. Shumovsky:
    Quantum phase fluctuations in the Jaynes-Cummings model:
    effects of cavity damping
    ,
    Phys. Lett. A 169 (1992) 379-388.
  3. /142/ B. M. Garraway and P. L. Knight:
    Quantum superpositions, phase distributions and quasi-probabilities,
    in: Quantum Phase and Phase Dependent Measurements, eds. W. P. Schleich and S. M. Barnett, special edition of Phys. Scripta  T48, 66 (1993).
  4. /143/ J. Perina, J. Bajer, V. Perinová, and Z. Hradil:
    Photon statistics of non-classical fields, in Modern Nonlinear Optics, Prigogine and Rice Series, Vol. 85 Part 1, eds. M. W. Evans and S. Kielich, Wiley, New York (1993) pp. 405-459.
  5. /144/ S. M. Barnett, and B. J. Dalton:
    Conceptions of quantum optical phase,
    in: Quantum Phase and Phase Dependent Measurements, eds. W. P. Schleich and S. M. Barnett, special edition of Phys. Scripta  T48, 13 (1993).
  6. /145/ K. Tara, G. S. Agarwal, and S. Chaturvedi:
    Production of Schödinger macroscopic quantum-superposition states in a Kerr medium,
    Phys. Rev. A 47, 5024 (1993).
  7. /146/ V. Perinová and J. Krepelka:
    Free and dissipative evolution of squeezed and displaced number states in the 3rd-order nonlinear oscillator,
    Phys. Rev. A  48, 3881-3889 (1993).
  8. /147/ A. Luks and V. Perinová:
    Finite photon number and discrete quantum phase, Quantum Opt.  5, 287 (1993).
  9. /148/ C. C. Gerry and R. Grobe:
    Statistical properties of squeezed Kerr states, Phys. Rev A 49, 2033 (1994).
  10. /149/ P. Shanta, S. Chaturvedi, V. Srinivasan, G. S. Agarwal, and C. L. Mehta:
    Unified approach to multiphoton coherent states,
    Phys. Rev. Lett.  72, 1447 (1994).
  11. /150/ K. S. Lee, M. S. Kim, and V. Buzek:
    Amplification of multicomponent superpositions of coherent states of light with quantum amplifiers,
    J. Opt. Soc. Am. B 11, 1118-1129 (1994).
  12. /151/ V. Perinová and A. Luks:
    Quantum statistics of dissipative nonlinear oscillators,
    Progress in Optics, Vol. 33, ed. E. Wolf, Elsevier, Amsterdam, 1994, pp. 129-202.
  13. /152/ V. Buzek and P. L. Knight:
    Quantum interference, superposition states of light and nonclassical effects,
    Progress in Optics, Vol. 34, ed. E. Wolf, Elsevier, Amsterdam, 1995.
  14. /153/ O. Castanos, R. Lopez-Pena and V. I. Man'ko:
    Crystallized Schrödinger cat states, J. Russian Laser Res. 16, 477-525 (1995).
  15. /154/ D. T. Pegg and S. M. Barnett:
    Tutorial review: Quantum optical phase,
    J. Mod. Opt. 44, 225 (1997).
  16. /155/ G. S. Agarwal, R. R. Puri, and R. P. Singh:
    Atomic Schrödinger cat states,
    Phys. Rev. A 56, 2249-2254 (1997).
  17. /156/ G. S. Agarwal and J. Banerji:
    Fractional revivals in systems with two time scales,
    Phys. Rev. A  57, 3880-3884 (1998).
  18. /157/ S. Chountasis and A. Vourdas:
    Weyl Functions and Their Use in the Study of Quantum Interference,
    Phys. Rev. A 58, 848-855 (1998).
  19. /158/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  20. /159/ J. Banerji and G. S. Agarwal:
    Revival and Fractional Revival in the Quantum Dynamics of SU(1,1) Coherent States,
    Phys. Rev. A 59 (1999) 4777-4783.
  21. /160/ A. B. Klimov, L. L. Sanchez-Soto, and J. Delgado:
    Mimicking a Kerrlike medium in the dispersive regime of second-harmonic generation,
    Opt. Commun. 191 (2001) 419-426; e-print arXiv:quant-ph/0101145 .
  22. /161/ J. Banerji:
    Non-linear wave packet dynamics of coherent states, Pramana - J. Phys. 56, 267-280 (2001).
  23. /162/ A. B. Klimov, J. L. Romero, J. Delgado and and L. L. Sánchez-Sotoz:
    Master equations for effective Hamiltonians,
    J. Opt. B 5, 34-39 (2003); e-print arXiv:quant-ph/0208038 .
  24. /163/ C. H. Dong:
    The squeezing of angular momentum and its evolutions in atomic Schrödinger cat states, Acta Phys. Sin. 52 (2), 337-344 (2003).
  25. /164/ F. A. A. El-Orany, S. S. Hassan and M. S. Abdalla:
    Squeezing evolution with non-dissipative SU(1,1) systems,
    J. Opt. B  5, 396-404 (2003).
  26. /165/ F. A. A. El-Orany, M. S. Abdalla and J. Perina:
    Single-mode quantum properties of the codirectional Kerr nonlinear coupler:
    frequency mismatch and exact solution
    ,
    J. Opt. B 6, 460-471 (2004), e-print arXiv:0908.0381 .
  27. /166/ F. A. A. El-Orany, M. Sebawe Abdalla and J. Perina:
    Quantum properties of the codirectional three-mode Kerr nonlinear coupler,
    Euro. Phys. J. D 33, 453 (2005), e-print arXiv:0907.5291 .
  28. /167/ R. Barak and Y. Ben-Aryeh:
    Non-orthogonal positive operator valued measure phase distributions of one- and two-mode electromagnetic fields,
    J. Opt. B 7, 123-134 (2005).
  29. /168/ A. B. Klimov, J. Delgado, L. L. Sanchez-Soto:
    Quantum phase-space description of light polarization,
    Opt. Commun. 258, 210-218 (2006); arXiv:quant-ph/0505135 .
  30. /169/ F.A.A. El-Orany, M.S. Abdalla, J. Perina:
    Squeezing properties of the Kerr-down conversion system
    Euro. Phys. J. D 41 (2), 391-396 (2007).
  31. /170/ Stobińska, M.; Villar, A. S.; Leuchs, G.:
    Generation of Kerr non-Gaussian motional states of trapped ions,
    European Phys. Lett. 94 (5), 54002 (2011).
  32. /171/ Abdel-Khalek, S.; Berrada, K.; Eleuch, H.; Abel-Aty, M.:
    Dynamics of Wehrl entropy of a degenerate two-photon process with a nonlinear medium,
    Opt. Quant. Electr. 42, 887-897 (2011).
  33. /172/ G R Honarasa and M K Tavassoly:
    Generalized deformed Kerr states and their physical properties,
    Phys. Scr. 86, 035401 (2012). 
  34. /173/ Chakrabarti, R.; Jenisha, B. Virgin:
    Quasi-Bell states in a strongly coupled qubit-oscillator system and their delocalization in the phase space,
    Physica A 435, 95 (2015). 
4
Ts. Gantsog, A. Miranowicz, and R. Tanaś:
Phase properties of real field states: the Garrison-Wong versus Pegg-Barnett predictions,
Phys. Rev. A 46, 2870-2876 (1992).
CITATIONS:
  1. /174/ S. M. Barnett and D. T. Pegg:
    Limiting procedures for the optical phase operator,
    J. Mod. Opt.  39, 2121 (1992).
  2. /175/ A. Luis and L. L. Sánchez-Soto:
    Canonical transformations to action and phase-angle variables and phase operators,
    Phys. Rev. A 48 (1993) 752-757.
  3. /176/ Ho Trung Dung and A. S. Shumovsky:
    Quantum phase fluctuations in the Jaynes-Cummings model:
    effects of cavity damping
    ,
    Phys. Lett. A 169, 379 (1992).
  4. /177/ S. M. Barnett and B. J. Dalton:
    Conceptions of quantum optical phase,
    in: Quantum Phase and Phase Dependent Measurements, eds. W. P. Schleich and S. M. Barnett, special edition of Phys. Scripta  T48, 13 (1993).
  5. /178/ M. M. Nieto:
    Quantum phase and quantum phase operators: Some physics and some history,
    in: Quantum Phase and Phase Dependent Measurements, eds. W. P. Schleich and S. M. Barnett, special edition of Phys. Scripta  T48, 5-12 (1993); e-print arXiv:hep-th/9304036 .
  6. /179/ C. A. Nelson and M. H. Fields:
    Number and phase uncertainties of the q-analogue quantized field,
    Phys. Rev. A 51, 2410 (1995).
  7. /180/ R. Lynch:
    The quantum phase problem: A critical review,
    Phys. Rep. 256, 368 (1995).
  8. /181/ S. Abe:
    The Pegg-Barnett phase operator formalism as a q-deformed theory: Limiting procedure and weak deformation,
    Phys. Lett. A  200, 239 (1995).
  9. /182/ M. A. Hennings, T. B. Smith, D. A. Dubin:
    Approximations to the quantum phase operator,
    J. Phys. A  28, 6809 (1995).
  10. /183/ D. T. Pegg and S. M. Barnett:
    Tutorial review: Quantum optical phase,
    J. Mod. Opt. 44, 225 (1997).
  11. /184/ A. Luks and V. Perinová:
    Commuting and noncommuting phase operators,
    Jemna Mechanika a Optika 1, 25 (1997).
  12. /185/ B. Roy and R. Roychoudhury:
    Even and odd q-coherent states in a finite-dimensional basis and their squeezing properties,
    Int. J. Theor. Phys. 36, 1525-1536 (1997).
  13. /186/ S. M. Barnett and D. T. Pegg:
    Quantum optical phase,
    in: Quantum Communication, Computing, and Measurement, eds. O. Hirota, A. S. Holevo and C. M. Caves, Plenum Press, New York, 1997, p. 415.
  14. /187/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  15. /188/ R. R. McGowan and W. C. Schieve:
    Micromaser with injected atomic phase,
    Phys. Rev. A 56, 2373-2384 (1997).
  16. /189/ J.P. Pellonpaa:
    Covariant Phase Observables in Quantum Mechanics,
    Ann. Univ. Turk., Ser. A 288, 1-69 (2002).
  17. /190/ Anirban Pathak:
    Quantum fluctuations of coherent light in nonlinear media,
    Ph.D. Thesis (Visva-Bharati, India, 2002); e-print arXiv:quant-ph/0207034 .
  18. /191/ K. Kakazu:
    Operational phase operators and Hermitian phase operators,
    Prog. Theor. Phys. 110 (4), 669-690 (2003).
  19. /192/ M. Abdel-Aty, A. Azzeer, M.S. Abdalla:
    Anabiosis of phase distribution of a three-level atom,
    Physica A 389, 3375 (2010).
  20. /193/ Maciej Przanowski, Przemysław Brzykcy:
    Generalized Weyl quantization on the cylinder and quantum phase,
    Annals of Physics 337, 34 (2013) ; e-print arXiv:1302.2800v1 .
  21. /194/ M Przanowski, P Brzykcy, J Tosiek:
    From the Weyl quantization of a particle on the circle to number-phase Wigner functions,
    Annals of Physics 351, 919 (2014);  e-print arXiv:1311.7335 .
  22. /195/ Varro, S:
    Regular phase operator and SU(1,1) coherent states of the harmonic oscillator,
    Phys. Scripta 90, (2015). 
  23. /196/ Maciej Przanowski, Hugo García-Compeán, Jaromir Tosiek, Francisco J. Turrubiates:
    Uncertainty relations in quantum optics. Is the photon intelligent?,
    e-print arXiv:1511.04215v1 .
5
R. Tanaś, A. Miranowicz, and Ts. Gantsog:
Phase distributions of real field states,
in: Quantum Phase and Phase Dependent Measurements, eds. W. P. Schleich and S. M. Barnett, special edition of Phys. Scripta T48, 53 (1993).
CITATIONS:
  1. /197/ V. Perinová and J. Krepelka:
    Free and dissipative evolution of squeezed and displaced number states in the 3rd-order nonlinear oscillator,
    Phys. Rev. A  48, 3881 (1993).
  2. /198/ A. Luks and V. Perinová:
    Presumable solutions of quantum phase problem and their laws,
    Quantum Opt. 6, 125 (1994).
  3. /199/ U. Leonhardt, J. A. Vaccaro, B. Böhmer, and H. Paul:
    Canonical and measured phase distributions,
    Phys. Rev. A 51, 84-95 (1995).
  4. /200/ R. Lynch:
    The quantum phase problem: A critical review,
    Phys. Rep. 256, 368 (1995).
  5. /201/ G. M. d'Ariano, C. Macchiavello, and M. G. A. Paris:
    Optimized phase detection,
    Phys. Lett. A 198 (1995) 286-294.
  6. /202/ A. Royer:
    Phase states and phase operators for the quantum oscillator,
    Phys. Rev. A 53, 70-108 (1996).
  7. /203/ D. T. Pegg and S. M. Barnett:
    Tutorial review: Quantum optical phase,
    J. Mod. Opt. 44, 225 (1997).
  8. /204/ A.S.F. Obada, O. M. Yassin and S. M. Barnett:
    Phase properties of coherent phase and generalized geometric states,
    J. Mod. Opt.  44, 149-161 (1997).
  9. /205/ A. S. F. Obada and G. M. Abd Al-Kader:
    Squeezed States and Nondiagonal P-Representation,
    Int. J. Theor. Phys.  37, 2207-2232 (1998).
  10. /206/ A. S. F. Obada and G. M. Abd Al-Kader:
    Linear Amplifier and Quasi-Probability Distribution-Functions for the Squeezed Displaced Fock States,
    Int. J. Theor. Phys. 37, 2233-2260 (1998).
  11. /207/ A. S. F. Obada and G. M. Abd Al-Kader:
    Squeezed Displaced Fock States and Nondiagonal P-Representation,
    J. Mod. Opt. 45, 713-734 (1998).
  12. /208/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  13. /209/ J. Fiurásek and J. Perina:
    Phase properties of two-mode Gaussian light fields with application to Raman scattering,
    J. Mod. Opt. 47 (2000) 1399-1417.
  14. /210/ J. Fiurásek:
    Direct sampling of exponential phase moments of smoothed Wigner functions,
    Phys. Rev. A 62, 013822 (2000); e-print arXiv:quant-ph/0005120 .
  15. /211/ A. Wunsche:
    A Class of Phase-Like States,
    J. Opt. B 3, 206-218 (2001).
  16. /212/ J. Fiurasek and J. Perina:
    Quantum phase properties of Raman scattering,
    Proc. of SPIE, 4356, 32 (2001).
  17. /213/ J.P. Pellonpaa:
    Phase Observables, Phase Operators and Operator Orderings,
    J. Phys. A 34, 7901-7916 (2001).
  18. /214/ J.P. Pellonpaa:
    Covariant Phase Observables in Quantum Mechanics, Ann. Univ. Turk., Ser. A 288, 1-69 (2002).
  19. /215/ G. M. Abd Al-Kader:
    Phase distribution from the Wigner function for superpositions of squeezed displaced Fock states,
    J. Opt. B 5 (3), S228-S232 (2003).
  20. /216/ A. Luis:
    Quantum polarization distributions via marginals of quadrature distributions,
    Phys. Rev. A 71, 053801 (2005).
  21. /217/ Subeesh, T.; Sudhir, V.:
    Phase-space based operator valued measure for the quantum optical phase,
    e-print arXiv:1205.3294 .
  22. /218/ Subeesh, T; Sudhir, V:
    Phase properties of operator valued measures in phase space,
    J. Mod. Opt. 60, 503 (2013).
  23. /219/ R Chakrabarti, V Yogesh:
    Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation,
    e-print arXiv:1509.07030 .
6
A. Miranowicz and S. Kielich:
Quantum-statistical theory of Raman scattering processes,
in: Modern Nonlinear Optics, eds. M. Evans and S. Kielich, Prigogine and Rice Ser., Vol. 85 Part 3, Wiley, New York, 1994, pp. 531-626.
CITATIONS:
  1. /220/ J. Perina, Z. Hradil, and B. Jurco:
    Quantum Optics and Fundamentals of Physics, Vol. 63 in the series:
    Fundamental Theories of Physics, Kluwer, Dordrecht, 1994.
  2. /221/ M. Evans and J. P. Vigier:
    The Enigmatic Photon (Vol. 1: The Field B(3)),
    Vol. 64 in the series Fundamental Theories of Physics, Kluwer, Dordrecht, 1994.
  3. /222/ M. Olivík and J. Perina:
    Non-classical properties of stimulated Raman and hyper-Raman scattering in stationary regime,
    J. Mod. Opt. 42, 197 (1995).
  4. /223/ M. Pospíchal:
    Quantum theory of light propagation: II. Application to Raman scattering,
    Czech. J. Phys. 45, 831 (1995).
  5. /224/ M. Pospíchal:
    Quantum theory of light propagation in Raman scattering,
    Ph.D. Thesis, Palacký University, Olomouc, Czech Republic, 1996.
  6. /225/ M. Pospíchal:
    Quantum theory of light propagation: III. Counter-propagating waves,
    Czech. J. Phys. 46, 473 (1996).
  7. /226/ J. Perina, Jr., and J. Perina:
    Statistics of light in Raman and Brillouin nonlinear couplers, Quantum and Semiclas. Opt. 9, 443 (1997); e-print arXiv:quant-ph/9901006 .
  8. /227/ O. V. Man'ko and N. V. Tcherniega:
    Photon Distribution Function for Stocks Wave for Stimulated Raman Scattering, Journal of Russian Laser Research (Plenum Press, New York), Vol. 18, No. 4, 1997; e-print arXiv:quant-ph/9705004 .
  9. /228/ J. Perina, Jr., and J. Perina:
    Quantum statistics of nonlinear optical couplers,
    in: Progress in Optics, ed. E. Wolf, Vol. 41, Elsevier Science Pub., North Holland (2000) pp. 361-419.
  10. /229/ R. H. Xie, S. Yu:
    The effect of two-photon quantum interference on amplitude-squared squeezing of a quantum field,
    J. Opt. B 4 172-178 (2002).
  11. /230/ P. A. Roos, S. K. Murphy, L. S. Meng, J. L. Carlsten, T. C. Ralph, A. G. White, and J. K. Brasseur:
    Quantum theory of the far-off-resonance cw Raman laser: Heisenberg-Langevin approach,
    Phys. Rev. A 68, 013802 (2003).
  12. /231/ Sergey V. Kuznetsov, Olga V. Man'ko, and Nikolay V. Tcherniega:
    Photon distribution function, tomograms and entanglement in stimulated Raman scattering,
    J. Opt. B 5, S503-S512 (2003).
  13. /232/ A. Luks and V. Perinová:
    Invariant-subspace method in quantum optics,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 115-173.
  14. /233/ A. Pathak, J. Krepelka, J. Perina:
    Relation between squeezing of vacuum fluctuations, quantum entanglement and sub-shot noise in Raman scattering,
    e-print arXiv:1210.3779 .
  15. /234/ A. Pathak, J. Křepelka, J. Peřina:
    Nonclassicality in Raman scattering: quantum entanglement, squeezing of vacuum fluctuations, sub-shot noise and joint photon–phonon number and integrated-intensity distributions,
    Phys. Lett. A  (2013). 
7
A. Miranowicz, K. Piątek, and R. Tanaś:
Coherent states in a finite-dimensional Hilbert space,
Phys. Rev. A 50, 3423 (1994).
CITATIONS:
  1. /235/ T. Opatrný, V. Buzek, J. Bajer, and G. Drobný:
    Propensities in discrete phase-spaces: Q-function of a state in a finite-dimensional Hilbert space,
    Phys. Rev. A 52, 2419 (1995).
  2. /236/ W. Leoński:
    Nonlinear media and coherent state in finite-dimensional Hilbert space,
    Acta Phys. Slovaca 45, 383 (1995).
  3. /237/ T. Opatrný:
    Statistical properties of quantum harmonic oscillators,
    Ph.D. Thesis, Palacký University, Olomouc, Czech Republic, 1995.
  4. /238/ L. M. Kuang and J. Y. Zhu:
    Even and odd phase coherent states for Hermitian phase operator: theory,
    J. Phys. A 29, 895-901 (1996).
  5. /239/ A. Vourdas:
    The angle-angular momentum quantum phase-space,
    J. Phys. A  29, 4275 (1996).
  6. /240/ D. T. Pegg and S. M. Barnett:
    Tutorial review: Quantum optical phase,
    J. Mod. Opt. 44, 225 (1997).
  7. /241/ A.S.F. Obada, O. M. Yassin and S. M. Barnett:
    Phase properties of coherent phase and generalized geometric states,
    J. Mod. Opt. 44, 149 (1997).
  8. /242/ W. Leoński:
    Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models,
    Phys. Rev. A 45, 3874 (1997).
  9. /243/ B. Roy and R. Roychoudhury:
    Even and odd q-coherent states in a finite-dimensional basis and their squeezing properties,
    Int. J. Theor. Phys. 36, 1525-1536 (1997).
  10. /244/ B. Roy:
    Higher moment properties of k-component (k>=3) coherent states in a finite dimensional basis,
    Modern Phys. Lett. B 11, 963-972 (1997).
  11. /245/ B. Roy and P. Roy:
    Coherent states, even and odd coherent states in a finite- dimensional Hilbert space and their properties,
    J. Phys. A 31, 1307-1317 (1998).
  12. /246/ S. M. Al-Jaber:
    Fermi Gas in D-Dimensional Space,
    Int. J. Theor. Phys. 38, 919-923 (1999).
  13. /247/ M. A. Marchiolli:
    Nonclassical statistical properties of finite-coherent states in the framework of the Jaynes-Cummings model,
    Physica A 319 331-354 (2003).
  14. /248/ K. Kakazu:
    Operational phase operators and Hermitian phase operators,
    Prog. Theor. Phys. 110 (4), 669-690 (2003).
  15. /249/ A. Vourdas:
    Quantum systems with finite Hilbert space,
    Rep. Progress Phys. 67, 267-320 (2004).
  16. /250/ F. Dell'Anno, S. De Siena, F. Illuminati:
    Multiphoton quantum optics and quantum state engineering,
    Phys. Rep. 428, 53-168 (2006).
  17. /251/ M. Sadallah, S. I. Muslih, D. Baleanu:
    Equations of motion for Einstein's field in non-integer dimensional space,
    Czech. J. Phys. 56 (4), 323-328 (2006).
  18. /252/ V. V. Borzov, E. V. Damaskinsky:
    Coherent states for generalized oscillator with finite-dimensional Hilbert space,
    ZNS POMI 335, 75-99 (2006); e-print arXiv:quant-ph/0612166 .
  19. /253/ M. Mirzaee, M. Rezaee, M.A. Jafarizadeh:
    Finite quantum tomography and semidefinite programming,
    Int. J. Theor. Phys. 46 (6), 1471-1494 (2007).
  20. /254/ M. Rezaei, M.R. Rezapour, M.A. Fasihi:
    Optimal unambiguous discrimination of two finite-dimensional coherent states,
    Int. J. Quant. Inform. 7, 517-528 (2009).
  21. /255/ Madhat Sadallah and Sami I. Muslih:
    Solution of the Equations of Motion for Einstein's Field in Fractional D Dimensional Space-Time,
    Int. J. Theor. Phys. 48, Is. 12, 3312-3318 (2009).
  22. /256/ S.I. Muslih, M. Saddallah, D. Baleanu, E. Rabei:
    Lagrangian formulation of Maxwell's field in fractional d dimensional space-time,
    Romanian J. Phys. 55 (7-8): 659-663 (2010).
  23. /257/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  24. /258/ A. Pathak, J. Banerji:
    Wigner distribution, nonclassicality and decoherence of generalized and reciprocal binomial states,
    Phys. Lett. A 378, 117-123 (2013),  e-print arXiv:1307.0452v1 .
  25. /259/ S Sivakumar:
    Truncated Coherent States and Photon-Addition
    Int. J. Theor. Phys. 53, 1697 (2014) .
  26. /260/ Chung, WS:
    Even and odd truncated coherent states and their nonclassical properties,
    Int. J. Mod. Phys. B 28, ??? (2014) 
  27. /261/ UR Fischer, MK Kang:
    "Photonic" Schrödinger cat states from strongly interacting matter waves,
    Phys. Rev. Lett. 115, 260404 (2015),  e-print arXiv:1506.07478 .
8
J. Bajer, M. Dusek, J. Fiurasek, Z. Hradil, A. Luks, V. Perinova, J. Rehacek, J. Perina, O. Haderka, M. Hendrych, J. Perina Jr., N. Imoto, M. Koashi, and A. Miranowicz,
Nonlinear Phenomena in Quantum Optics,
in: Modern Nonlinear Optics, Part I, Volume 119, Second Edition, Edited by M. W. Evans. New York, USA: Wiley, 2002.
CITATIONS:
  1. /262/ Jing Zhang, Re-Bing Wu, Yu-xi Liu, Chun-Wen Li, Tzyh-Jong Tarn:
    Quantum Coherent Nonlinear Feedbacks with Applications to Quantum Optics on Chip,
    IEEE Trans. Automatic Control ??? (2011), e-print arXiv:1102.2199v2 .
  2. /263/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  3. /264/ T Opatrný:
    Squeezing with classical Hamiltonians,
    Phys. Rev. A 92, 033801 (2015),  e-print arXiv:1508.04553 .
  4. /265/ H Flayac, V Savona:
    Single photons from dissipation in coupled cavities,
    e-print arXiv:1512.05537 .
9
A. Miranowicz, K. Piątek, T. Opatrný, and R. Tanaś:
Phase coherent states,
Acta Phys. Slovaca 45, 391 (1995).
CITATIONS:
  1. /266/ P. Roy and B. Roy:
    Remarks on the construction of a Hermitian phase operator,
    Quantum and Semicl. Optics 9 (1997) L37-L44.
  2. /267/ V. V. Borzov, E. V. Damaskinsky:
    Coherent states for generalized oscillator with finite-dimensional Hilbert space,
    ZNS POMI 335, 75-99 (2006); e-print arXiv:quant-ph/0612166 .
10
T. Opatrný, A. Miranowicz, and J. Bajer:
Coherent states in finite-dimensional Hilbert space and their Wigner representation,
J. Mod. Opt. 43, 417 (1996).
CITATIONS:
  1. /268/ W. Leoński:
    Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models, Phys. Rev. A  45, 3874 (1997).
  2. /269/ B. Roy and P. Roy:
    Coherent states, even and odd coherent states in a finite- dimensional Hilbert space and their properties,
    J. Phys. A 31, 1307-1317 (1998).
  3. /270/ A. Luis and J. Perina:
    Discrete Wigner function for finite-dimensional systems, J. Phys. A  31, 1423-1441 (1998).
  4. /271/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  5. /272/ V. V. Dodonov, V. I. Man'ko:
    Nonclassical states in quantum physics: Brief historical review,
    in: Theory of Nonclassical States of Light, eds. V. V. Dodonov and V. I. Man'ko, Taylor & Francis, London, 2003, pp. 1-80.
  6. /273/ V. V. Dodonov:
    `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years,
    J. Opt. B 4 (2002) R1-R33.
  7. /274/ M. A. Marchiolli:
    Nonclassical statistical properties of finite-coherent states in the framework of the Jaynes-Cummings model,
    Physica A 319 331-354 (2003).
  8. /275/ E.M.E. Zayed, A.S. Daoud, M.A. Al-Laithy, et al.:
    The Wigner distribution function for squeezed vacuum superposed state, Chaos Solitons & Fractals 24, 967-975 (2005).
  9. /276/ V. V. Borzov, E. V. Damaskinsky:
    Coherent states for generalized oscillator with finite-dimensional Hilbert space,
    ZNS POMI 335, 75-99 (2006); e-print arXiv:quant-ph/0612166 .
  10. /277/ G. Bjork, A.B. Klimov, L.L. Sanchez-Soto:
    The discrete Wigner function,
    Progress in Optics, vol. 51, 469-516 (2008).
  11. /278/ M. Rezaei, M.R. Rezapour, M.A. Fasihi:
    Optimal unambiguous discrimination of two finite-dimensional coherent states,
    Int. J. Quant. Inform. 7, 517-528 (2009).
  12. /279/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  13. /280/ K Thapliyal, S Banerjee, A Pathak, S Omkar, and V. Ravishankar:
    Quasiprobability distributions in open quantum systems: spin-qubit systems,
    Annals Phys. 362, 261-286 (2015),  e-print arXiv:1504.02030 .
  14. /281/ K Thapliyal, S Banerjee, A Pathak:
    Tomograms for open quantum systems: in (finite) dimensional optical and spin systems,
    Ann. Phys. 366, 148 (2016), e-print arXiv:1507.02135 .
11
R. Tanaś, A. Miranowicz, and Ts. Gantsog:
Quantum phase properties of nonlinear optical phenomena,
in: Progress in Optics, ed. E. Wolf, Vol. 35, Elsevier Science Pub., North Holland, 1996, 355-446.
CITATIONS:
  1. /282/ A. Vourdas, C. Brif and A. Mann:
    Factorization of analytic representations in the unit disc and number-phase statistics of a quantum harmonic oscillator,
    J. Phys. A 29, 5887 (1996).
  2. /283/ A. Luks and V. Perinová:
    Phase distributions of a two-mode squeezed coherent state,
    Proc. of SPIE 3320 (1996) 54-64.
  3. /284/ M. G. A. Paris, A. V. Chizhov, and O. Steuernagel:
    Phase space distributions from three-port couplers,
    Opt. Commun.  134, 117-120 (1997); e-print arXiv:quant-ph/9611034 .
  4. /285/ D. T. Pegg and S. M. Barnett:
    Tutorial review: Quantum optical phase,
    J. Mod. Opt. 44, 225 (1997).
  5. /286/ D. T. Pegg and S. M. Barnett:
    Measurement of quantum phase distribution by projection synthesis
    in: Quantum Communication, Computing, and Measurement, ed. O. Hirota, A. S. Holevo and C. M. Caves, Plenum Press, New York, 1997, p. 407.
  6. /287/ A. S. Shumovsky:
    Quantum phase via the angular momentum,
    Opt. Commun. 136, 219 (1997).
  7. /288/ A. Luis and L. L. Sánchez-Soto:
    Relative phase for a quantum field interacting with a two-level system, Phys. Rev. A  56, 994-1006 (1997).
  8. /289/ A. S. Shumovsky and O.E. Mustecaplioglu:
    Quantum phase in the Jaynes-Cummings model describing an electric dipole transition, Phys. Lett. A 235 (1997) 438-443.
  9. /290/ A. S. Shumovsky and O.E. Mustecaplioglu:
    Stokes operators, angular momentum and radiation phase,
    J. Mod. Opt.  45, 619-628 (1998).
  10. /291/ A. S. Shumovsky and O.E. Mustecaplioglu:
    Radiation phase and Stokes parameters,
    Opt. Commun.  146, 124-129 (1998).
  11. /292/ V. Perinová, A. Luks and J. Krepelka:
    Quantum phase properties impeded second-harmonic generation, Quantum and Semicl. Optics 10, 375-408 (1998).
  12. /293/ A. Luis and L. L. Sánchez-Soto:
    Complementarity Enforced by Random Classical Phase Kicks,
    Phys. Rev. Lett. 81, 4031-4035 (1998).
  13. /294/ D. T. Pegg:
    Complement of the Hamiltonian,
    Phys. Rev. A 58 (1998) 4307-4313.
  14. /295/ A. Luis and L. L. Sánchez-Soto:
    Quantum Theory of Rotation Angles:
    The Problem of Angle Sum and Angle Difference
    ,
    Euro. Phys. J. D 3, 195-200 (1998).
  15. /296/ A. P. Alodzhants and S. M. Arakelyan:
    Quantum-Nondemolition Measurements of the Phase and Polarization Stokes Parameters of Optical-Fields,
    J. Exper. Theor. Phys. 86, 672-681 (1998).
  16. /297/ L. Mista, J. Rehácek and J. Perina:
    Phase Properties of the Asymmetric Nonlinear Coupler,
    J. Mod. Opt.  45, 2269-2279 (1998).
  17. /298/ L. Scudiero, J. T. Dickinson and Y. Enomoto:
    The Electrification of Flowing Gases by Mechanical Abrasion of Mineral Surfaces, Physics Chem. Minerals 25 (1998) 566-573.
  18. /299/ L. Scudiero, J. T. Dickinson, and Y. Enomoto:
    The electrification of flowing gases by mechanical abrasion of mineral surfaces, Phys. Mem. Miner. 25, 566-573 (1998).
  19. /300/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  20. /301/ L. Mista, J. Rehacek, and J. Perina :
    Phase space approach to asymmetric nonlinear coupler,
    Acta Univ. Palacki. Olomuc., Physica 37, 61-68 (1998).
  21. /302/ A. Luis and L. L. Sánchez-Soto:
    Randomization of Quantum Relative Phase in Welcher Weg Measurements,
    J. Opt. B 1, 668-677 (1999).
  22. /303/ V. Perinova, A. Luks and J. Krepelka:
    Quasidistributions for Noncommuting Cosine and Sine Operators,
    Euro. Phys. J. D 5, 417-432 (1999).
  23. /304/ F. A. A. El-Orany, J. Perina and M. S. Abdalla:
    Quantum-Statistical Properties of Superposition of Squeezed and Displaced States with Thermal Noise,
    J. Mod. Opt. 46, 1621-1639 (1999).
  24. /305/ A. Cives-Esclop, A. Luis and L. L. Sánchez-Soto:
    Influence of Field-Dynamics on Rabi Oscillations: Beyond the Standard Semiclassical Jaynes-Cummings Model,
    J. Mod. Opt. 46, 639-655 (1999).
  25. /306/ A. P. Alodjants and S. M. Arakelian:
    Quantum Phase Measurements and Nonclassical Polarization States of Light,
    J. Mod. Opt. 46, 475-507 (1999).
  26. /307/ G. Bjork and J. Soderholm:
    Phase-Difference Measurements, Distributions and the Phase-Difference Minimum Uncertainty States,
    J. Opt. B 1, 315-319 (1999).
  27. /308/ B. Roy and P. Roy:
    Phase Distribution of Nonlinear Coherent States,
    J. Opt. B  1, 341-344 (1999)
  28. /309/ T. Hakioglu:
    Linear Canonical-Transformations and Quantum Phase:
    A Unified Canonical and Algebraic Approach
    ,
    J. Phys. A 32, 4111-4130 (1999); e-print arXiv:quant-ph/9906083 .
  29. /310/ A. S. F. Obada, A. M. Abdelhafez and M. Abdelaty:
    Phase Properties of 2-Mode Optical-Fields with Stark Shift and Kerr Nonlinearity,
    J. Phys. Soc. Jap. 68 (1999) 2269-2275.
  30. /311/ J. Fiurásek, J. Krepelka and J. Perina:
    Quantum-Phase Properties of the Kerr Couplers,
    Opt. Commun. 167, 115-124 (1999).
  31. /312/ J. Fiurásek, J. Krepelka and J. Perina:
    Quantum phase properties of the Kerr couplers,
    Acta Phys. Slovaca 49, No. 4, 689-694 (1999).
  32. /313/ L. Mista, J. Rehácek and J. Perina:
    Phase Switching Properties in Nonlinear Coupler,
    Opt. Spectr. 87, 561-564 (1999).
  33. /314/ B. Roy and P. Roy:
    Phase Properties of Even and Odd Nonlinear Coherent States,
    Phys. Lett. A 257, 264-268 (1999).
  34. /315/ A. Sizmann and G. Leuchs:
    The Optical Kerr-Effect and Quantum Optics in Fibers,
    Prog. Optics 39, 373-469 (1999)
  35. /316/ J. Fiurásek and J. Perina:
    Phase properties of two-mode Gaussian light fields with application to Raman scattering,
    J. Mod. Opt. 47 (2000) 1399-1417.
  36. /317/ B. Roy and P. Roy:
    Phase properties of a new nonlinear coherent state,
    J. Opt. B  2, 505-509 (2000).
  37. /318/ J. Perina, Jr., and J. Perina:
    Quantum statistics of nonlinear optical couplers,
    in: Progress in Optics, ed. E. Wolf, Vol. 41, Elsevier Science Pub., North Holland, 361-419 (2000).
  38. /319/ A. Luis and L. L. Sánchez-Soto:
    Quantum phase difference, phase measurements and Stokes operators,
    in: Progress in Optics, ed. E. Wolf, Vol. 41, Elsevier Science Pub., North Holland, 421-481 (2000).
  39. /320/ J. Fiurásek, M. Dakna, T. Opatrný, and D.-G. Welsch:
    Sampling the canonical phase from phase-space functions,
    Phys. Rev. A 62, 063811 (2000); e-print arXiv:quant-ph/0004059 .
  40. /321/ A. Trifonov, T. Tsegaye, G. Bjork, J. Soderholm, E. Goobar, N. Atature, and A. V. Sergienko:
    Experimental demonstration of the relative phase operator,
    J. Opt. B 2, 105-112 (2000).
  41. /322/ C. Brif and A. Mann:
    Quantum statistical properties of the radiation field in a cavity with a movable mirror,
    J. Opt. B 2, 53-61 (2000); e-print arXiv:quant-ph/9905040 .
  42. /323/ J. Fiurásek and J. Perina:
    Quantum statistics of light propagating in nonlinear optical couplers,
    in: Coherence and Statistics of Photons and Atoms, Wiley Ser. in Lasers and Applications, ed. J. Perina, Wiley, New York, 65-110 (2001).
  43. /324/ F. A. A. El-Orany, J. Perina, and M. S. Abdalla:
    Generation of squeezed light in a nonlinear asymmetric directional coupler,
    J. Opt. B 3, 67-75 (2001).
  44. /325/ T. Richter and M. G. A. Paris:
    Homodyning the exponential phase moments of smoothed Wigner functions,
    J. Opt. B 3 (2001) S42-S49.
  45. /326/ A. P. Alodjants, A. Yu. Leksin, S. M. Arakelian:
    Interferometry and ellipsometry of limit resolution in quantum optics (in Russian),
    Ruphys News (an online journal of the United Physical Society of the Russian Federation), No. 3 (2001).
  46. /327/ F. A. A. El-Orany, J. Perina, and M. S. Abdalla:
    Statistical properties of three quantized interacting oscillators,
    Phys. Scripta 63, 128-140 (2001).
  47. /328/ M. S. Abdalla, F. A. A. El-Orany, and J. Perina:
    Statistical Properties of a Solvable 3-Boson Squeeze Operator Model,
    Euro. Phys. J. D 13, 423-438 (2001).
  48. /329/ K. Piątek and W. Leoński:
    Wehrl's entropy and a measure of intermode correlations in phase space,
    J. Phys. A 34, 4951-4967 (2001).
  49. /330/ F. A. A. El-Orany, M. S. Abdalla, A. S. F. Obada, and G. M. Abd Al-kader:
    Influence of Squeezing Operator on the Quantum-Properties of Various Binomial States,
    Intern. J. Mod. Phys. B 15, 75-100 (2001).
  50. /331/ F. A. A. El-Orany, J. Perina:
    Phase Properties of Superposition of Pair-Coherent States,
    Opt. Commun. 197, 363-373 (2001).
  51. /332/ J. Fiurasek and J. Perina:
    Quantum phase properties of Raman scattering,
    Proc. of SPIE 4356, 32 (2001).
  52. /333/ J. Perina, Jr.:
    Nonclassical light in nonlinear optical couplers,
    Proc. of SPIE 4356, 15 (2001).
  53. /334/ J. Delgado, E. C. Yustas, L. L. Sanchez-Soto, and A. B. Klimov:
    Comprehensive theory of the relative phase in atom-field interactions,
    Phys. Rev. A 63, 063801 (2001); e-print arXiv:quant-ph/0102026 .
  54. /335/ V. V. Dodonov, V. I. Man'ko:
    Nonclassical states in quantum physics: brief historical review,
    in: Theory of Nonclassical States of Light, eds. V. V. Dodonov and V. I. Man'ko, Taylor & Francis, London, 2002, pp. 1-80.
  55. /336/ L. L. Sánchez-Soto, J. Delgado, A. B. Klimov, and G. Björk:
    A description of entanglement in terms of quantum phase,
    Phys. Rev. A 66, 042112 (2002); e-print arXiv:quant-ph/0202100 .
  56. /337/ V. V. Dodonov:
    `Nonclassical' states in quantum optics: a `squeezed' review of the first 75 years,
    J. Opt. B 4 (2002) R1-R33.
  57. /338/ Ch. C. Gerry, A. Benmoussa and K. M. Bruno:
    Single-mode squeezed vacuum states as approximate Schroedinger phase cats: relation to SU(1,1) phase operators,
    J. Opt. B : Quantum Semiclass. Opt. 5, 109-115 (2003).
  58. /339/ M. S. Abdalla, F. A. A. El-Orany, and J. Perina:
    Quantum statistical properties of highly correlated squeezed parametric system,
    Acta Univ. Palacki. Olomuc., Physica 39 (2000) 25-39.
  59. /340/ A. S. Shumovsky:
    The quantum multipole radiation,
    in: Modern Nonlinear Optics, ed. M. W. Evans, Adv. Chem. Phys. 119 (I) (Wiley, New York, 2001) pp. 395-490.
  60. /341/ G. Bjork, J. Soderholm, A. Trifonov, et al.:
    A theory of the relative phase and number difference of two quantized harmonic oscillators, Phys Scripta T 102, 133-146 (2002).
  61. /342/ H. H. Salah, M. Darwish, and A.-S. F. Obada:
    Quantum properties of odd excited negative binomial states of the radiation field,
    Int. J. Theor. Phys. 42 (2003) 549-567.
  62. /343/ F.A.A. El-Orany, M.H. Mahran, M.R.B. Wahiddin, and A.M. Hashim:
    Quantum phase properties of two-mode Jaynes-Cummings model for Schroedinger-cat states: Interference and entanglement,
    Opt. Commun. 240, 169-184 (2004), e-print arXiv:0908.1288 .
  63. /344/ F. A. A. El-Orany, M. S. Abdalla and J. Perina:
    Single-mode quantum properties of the codirectional Kerr nonlinear coupler:
    frequency mismatch and exact solution
    ,
    J. Opt. B 6, 460-471 (2004), e-print arXiv:0908.0381 .
  64. /345/ Q.Y. Yang, J.W. Sun, L.F. Wei, et al.:
    Wigner functions for the photon-added and photon-depleted even and odd coherent states,
    Acta Physica Sinica 54 (6), 2704-2709 (2005).
  65. /346/ T. Appl and D.H. Schiller:
    Cosine and sine operators related to orthogonal polynomial sets on the interval [-1,1],
    J. Phys. A  38 (29), 6485-6504 (2005); e-print arXiv:quant-ph/0503147 .
  66. /347/ A. Luis:
    Squeezed coherent states as feasible approximations to phase-optimized states,
    Phys. Lett. A 354 (1-2), 71-78 (2006).
  67. /348/ J. Ghiglieri and M.G.A. Paris:
    Quantum state reconstruction by entangled measurements,
    Euro. Phys. J. D 40, 139-146 (2006).
  68. /349/ H.J. Lan, H.F. Pang, L.F. Wei:
    Wigner functions of multiple-photon excited coherent states,
    Acta Phys. Sinica 58, Is. 12, 8281-8288 (2009).
  69. /350/ D. Martin and A. Luis:
    Nonclassicality in phase by breaking classical bounds on statistics,
    Phys. Rev. A 82, 033829 (2010).
  70. /351/ M. G. Genoni, S. Olivares, and M. G. A. Paris:
    Optical phase estimation in the presence of phase-diffusion,
    e-print arXiv:1012.1123v4 .
  71. /352/ Juha-Pekka Pellonpaa, Jussi Schultz, Matteo G. A. Paris:
    Balancing efficiencies by squeezing in realistic eight-port homodyne detection,
    Phys. Rev. A 83, 043818 (2011); e-print arXiv:1012.2794v2 .
  72. /353/ A. Luis:
    Nonclassicality in the statistics of noncommuting observables: Nonclassical states are more compatible than classical states,
    Phys. Rev. A 84, 012106 (2011).
  73. /354/ J. Perina and J. Krepelka:
    Two-dimensional quantum statistics of optical parametric processes,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 87-113.
  74. /355/ A. Luks and V. Perinová:
    Invariant-subspace method in quantum optics,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 115-173.
  75. /356/ Marchiolli, MA; Ruzzi, M:
    Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles,
    Annals Phys. 327, 1538-1561 (2012).
  76. /357/ de Guise, H.; Vourdas, A.; Sanchez-Soto, L. L.:
    Complementarity and phases in SU(3),
    J. Phys. A 45, 1751-8113 (2012).
  77. /358/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
12
A. Miranowicz, T. Opatrný, and J. Bajer:
Harmonic-oscillator states in finite-dimensional Hilbert space,
in: Quantum Optics and Spectroscopy of Solids:
Concepts and Advances
, eds. T. Hakioglu and A. S. Shumovsky, Kluwer Acad. Pub., Dordrecht, 1997, pp. 225-236.
CITATIONS:
  1. /359/ W. Leoński:
    Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models, Phys. Rev. A  45, 3874 (1997).
  2. /360/ B. Roy and P. Roy:
    Coherent states, even and odd coherent states in a finite- dimensional Hilbert space and their properties, J. Phys. A  31, 1307-1317 (1998).
  3. /361/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
13
A. Miranowicz, J. Bajer, A. Ekert, and W. Leoński:
Photon antibunching versus phantom antibunching,
Acta Phys. Slovaca 47, 319 (1997).
CITATIONS:
  1. /362/ V. Perinová, A. Luks and J. Perina:
    Phase in Optics,
    Ser. in: Contemporary Chem. Phys., Vol. 15, World Scientific, Singapore, 1998.
  2. /363/ M. S. Abdalla F. A. A. El-Orany and J. Perina:
    Quantum-Statistical Properties of Nondegenerate Optical Parametric Symmetrical Coupler,
    J. Phys. A 32, 3457-3483 (1999).
14
A. Miranowicz, H. Matsueda, M. R. B. Wahiddin, and J. Bajer:
Quasidistributions for frequency converter model,
Acta Phys. Slovaca 48, 293-300 (1998).
CITATIONS:
  1. /364/ F. A. A. El-Orany, J. Perina, and M. S. Abdalla:
    Statistical properties of three quantized interacting oscillators,
    Phys. Scripta 63, 128-140 (2001).
15
A. Miranowicz, W. Leoński, S. Dyrting, R. Tanaś:
Quantum state engineering in finite-dimensional Hilbert space,
Acta Phys. Slovaca 46, 451 (1996).
CITATIONS:
  1. /365/ M. A. Marchiolli, M. Ruzzi, D. Galetti:
    Discrete squeezed states and their analytic representations for finite-dimensional spaces,
    Phys. Rev. A 76 (3), 032102 (2007); arXiv:quant-ph/0703085 .
  2. /366/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  3. /367/ S. K. Goyal and T. Konrad:
    Teleporting photonic qudits using multimode quantum scissors
    Sc. Rep. 3, 3548 (2013),  e-print arXiv:1306.0427 .
  4. /368/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
16
A. Miranowicz, W. Leoński, R. Tanaś:
Finite-dimensional squeezed vacuum and its generation,
in: D. Han et al. (eds.), NASA Conference Publication 206855, 91-96 (1998).
CITATIONS:
  1. /369/ M. A. Marchiolli, M. Ruzzi, D. Galetti:
    Discrete squeezed states and their analytic representations for finite-dimensional spaces,
    arXiv:quant-ph/0703085 .
  2. /370/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
17
W. Leoński and A. Miranowicz:
Quasi-periodic and periodic field evolution in finite-dimensional Hilbert space,
Acta Phys. Slovaca 46 (1996) 433-438.
CITATIONS:
  1. /371/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
18
W. Leoński, A. Miranowicz, and R. Tanaś:
Quasi-periodic and periodic evolution of field in a nonlinear medium,
Laser Physics 7 (1997) 126-130.
CITATIONS:
  1. /372/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
19
A. Miranowicz, J. Bajer, H. Matsueda, M. Wahiddin and R. Tanaś:
Comparative study of photon antibunching of non-stationary fields (part I),
J. Opt. B : Quantum and Semicl. Optics 1, 511-516 (1999).
CITATIONS:
  1. /373/ M. S. Abdalla F. A. A. El-Orany and J. Perina:
    Quantum-Statistical Properties of Nondegenerate Optical Parametric Symmetrical Coupler,
    J. Phys. A 32, 3457-3483 (1999).
  2. /374/ M. Jakob, Y. Abranyos and J. A Bergou:
    Comparative study of hyperbunching in the fluorescence from a bichromatically driven atom,
    J. Opt. B : Quantum Semiclass. Opt. 3, 130 (2001).
  3. /375/ M. Jakob and J. A. Bergou:
    Polarization-correlated photon pairs in the fluorescence from a bichromatically driven four-level atom,
    J. Opt. B 4, 308-315 (2002).
  4. /376/ G. C. Hegerfeldt and D. Seidel:
    The intensity correlation function of 'blinking' quantum systems,
    J. Opt. B 4, 245-250 (2002); e-print arXiv:quant-ph/0205154 .
  5. /377/ W. Vogel:
    Nonclassical correlation properties of radiation fields,
    Phys. Rev. Lett. 100, 013605 (2008), e-print arXiv:0706.0951 .
  6. /378/ Lambert, N; Chen, YN; Nori, F:
    Unified single-photon and single-electron counting statistics: From cavity QED to electron transport,
    Phys. Rev. A 82 (6), 063840 (2010).
  7. /379/ Zhu, KC; Li, SX; Zheng, XJ; Zhou, YP:
    Two-mode superposition coherent states with spatial vortex structure for the quantized radiation field,
    J. Mod. Opt. 59, 873-877 (2012).
20
A. Miranowicz, H. Matsueda, J. Bajer, M. Wahiddin and R. Tanaś:
Comparative study of photon bunching of classical fields (part II),
J. Opt. B : Quantum and Semicl. Optics 1, 603-609 (1999).
CITATIONS:
  1. /380/ M. S. Abdalla F. A. A. El-Orany and J. Perina:
    Quantum-Statistical Properties of Nondegenerate Optical Parametric Symmetrical Coupler,
    J. Phys. A 32, 3457-3483 (1999).
  2. /381/ M. Jakob, Y. Abranyos and J. A Bergou:
    Comparative study of hyperbunching in the fluorescence from a bichromatically driven atom,
    J. Opt. B : Quantum Semiclass. Opt. 3, 130 (2001).
  3. /382/ M. Jakob and J. A. Bergou:
    Polarization-correlated photon pairs in the fluorescence from a bichromatically driven four-level atom,
    J. Opt. B 4, 308-315 (2002).
  4. /383/ W. Vogel:
    Nonclassical correlation properties of radiation fields,
    Phys. Rev. Lett. 100, 013605 (2008), e-print arXiv:0706.0951 .
21
A. Miranowicz, H. Matsueda, and M. Wahiddin:
Classical information entropy and phase distributions of optical fields,
J. Phys. A 33, 5159-5169 (2000).
CITATIONS:
  1. /384/ K. Piątek and W. Leoński:
    Wehrl's entropy and a measure of intermode correlations in phase space,
    J. Phys. A 34, 4951-4967 (2001).
  2. /385/ A. S. Obada and S. Abdel-Khalek:
    New features of the atomic Wehrl entropy and its density in multi-quanta two-level system,
    J. Phys. A 37, 6573-6585 (2004).
  3. /386/ G. P. Beretta:
    Maximal-entropy-production-rate nonlinear quantum dynamics compatible with second law, reciprocity, fluctuation-dissipation, and time-energy uncertainty relations,
    e-print arXiv:quant-ph/0112046 .
  4. /387/ G. P. Beretta:
    Nonlinear extensions of Schrödinger-von Neumann quantum dynamics:
    A set of necessary conditions for compatibility with thermodynamics
    , Mod. Phys. Lett. A 20, 977-984 (2005); e-print arXiv:quant-ph/0402180 .
  5. /388/ G. P. Beretta:
    Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution,
    Phys. Rev. E 73, 026113 (2006); e-print arXiv:quant-ph/0501178 .
  6. /389/ M. Abdel-Aty:
    Quantum information entropy and multi-qubit entanglement,
    Progress in Quantum Electronics 31, pp. 1-49 (2007).
  7. /390/ F. Pennini, A. Plastino:
    Localization estimation and global vs. local information measures,
    Phys. Lett. A 365 (4), 263-267 (2007).
  8. /391/ I.A. Al-Khayat:
    Statistical mechanical aspects of a spin-(1)/(2) entropy system, Chaos Solitons & Fractals 33 (5), 1635-1641 (2007).
  9. /392/ S. Abdel-Khalek:
    The effect of atomic motion and two-quanta JCM on the information entropy,
    Physica A 387, 779-786 (2008).
  10. /393/ Abdel-Aty M, Abdel-Khalek S, Obada ASF:
    Wehrl entropy and entanglement of a time-dependent two-level trapped ion interacting with a laser field,
    Int. J. Quant. Inform. 6, 331-339 (2008).
  11. /394/ El-Orany FAA, Abdel-Khalek S, Abdel-Aty M, et al.:
    Entanglement in the bimodal Jaynes-Cummings model with the two-mode squeezed vacuum state, International Journal of Theoretical Physics 47, 1182-1194 (2008).
  12. /395/ Abdel-Khalek S, Khalil EM, Ali SI:
    Entanglement of a two-level atom papered in a finite trio-coherent state, Laser Physics 18, 135-143 (2008).
  13. /396/ F. El-Orany:
    Marginal and density atomic Wehrl entropies for the Jaynes-Cummings model,
    J. Phys. A 41, 035303 (2008).
  14. /397/ F. El-Orany:
    Atomic Wehrl entropy for the Jaynes-Cummings model:
    explicit form and Bloch sphere radius
    ,
    J. Mod. Opt. 56, 99-103 (2009).
  15. /398/ S. Abdel-Khalek:
    Wehrl entropy and Wehrl phase distribution of a single-trapped ion interacting with a laser field,
    Phys. Scripta  80, 045302 (2009).
  16. /399/ S. Abdel-Khalek:
    Dynamics of Fisher information in Kerr medium,
    Int. J. Quant. Inform. 7, 1541-1548 (2009).
  17. /400/ A.-S.F. Obada, S. Abdel-Khalek:
    Entanglement evaluation with atomic Fisher information,
    Physica A 389 (2010) 891-898.
  18. /401/ M. S. Ateto:
    Entanglement Dynamics and Spin Squeezing of The non-linear Tavis-Cummings model mediated by a Nonlinear Binomial Field,
    Int. J. Quant. Inform. ???; e-print arXiv:0911.4240 .
  19. /402/ G.P. Beretta:
    Maximum entropy production rate in quantum thermodynamics,
    J. Phys.: Conf. Ser. 237, 012004 (2010).
  20. /403/ S. Abdel-Khalek and A.-S.F. Obada:
    New features of Wehrl entropy and Wehrl PD of a single Cooper-pair box placed inside a dissipative cavity, Annals of Physics 325, 2542 (2010).
  21. /404/ Obada, ASF; Abdel-Khalek, S; Plastino, A:
    Information quantifiers' description of weak field vs. strong field dynamics for a trapped ion in a laser field,
    Physica A 390 (3), 525-533 (2011).
  22. /405/ Abdel-Khalek, S.; Plastino, A.; Obada, A-S F.:
    Dynamics of the intensity-dependent Jaynes-Cummings model analyzed via Fisher information,
    e-print arXiv:1101.5978 .
  23. /406/ S. Abdel-Khalek, Sh. Barzanjeh, H. Eleuch:
    Entanglement Sudden Death and Sudden Birth in Semiconductor Microcavities,
    Int. J. Theor. Phys. 50, 2939-2950 (2011); e-print arXiv:1104.3105 .
  24. /407/ Abdel-Khalek, S.; Abdel-Hameed, H. F.; Abdel-Aty, M.:
    Atomic Wehrl entropy of a single qubit system,
    Int. J. Quant. Inform. 9, 967-979 (2011).
  25. /408/ Abdel-Khalek, S.; Plastino, A.; Obada, A.-S. F.:
    Interplay of information quantifiers and the modified Jaynes-Cummings model,
    Cent. Euro. J. Phys. 9, Number 6, 1426 (2011).
  26. /409/ Abdel-Khalek, S.; Berrada, K.; Eleuch, H.; Abel-Aty, M.:
    Dynamics of Wehrl entropy of a degenerate two-photon process with a nonlinear medium,
    Opt. Quant. Electr. 42, 887-897 (2011).
  27. /410/ Berrada, K.; Abdel-Khalek, S.:
    Entanglement of atom–field interaction for nonlinear optical fields,
    Physica E 44, 628-634 (2011).
  28. /411/ K. Berrada, S. Abdel-Khalek and A. S. Alaamer:
    Bipartite entanglement within the framework of real and ideal lasers,
    J. Russian Laser Res. 33, 276-282 (2012). 
  29. /412/ A-S F Obada, S Abdel-Khalek, E M Khali and S I Ali:
    Effects of Stark shift and decoherence terms on the dynamics of phase-space entropy of the multiphoton Jaynes Cummings model,
    Phys. Scr. 86, 055009 (2012). 
  30. /413/ Abdel-Khalek, S.; Mousa, A. A.; Nofal, T. A.:
    Dynamic properties of Wehrl information entropy and Wehrl phase distribution for a moving four-level atom,
    J. Russian Laser Research 33 (6), 547 (2012) .
  31. /414/ K. Berrada:
    Quantum and Classical Quantifiers for Atom-Nonlinear Field System under Decoherence,
    Open Systems Inform. Dynamics 20, 1350001 (2013). 
  32. /415/ MR von Spakovsky:
    Intrinsic quantum thermodynamics: what it is and what can be done with it,
    Proc. of 12th Joint European Thermodynamics Conference, p. 359 (2013). [pdf]
  33. /416/ A.-S. Obada, S. Abdel-Khalek, K. Berrada, M.E. Shaheen:
    Investigations of information quantifiers for the Tavis-Cummings model,
    Physica A 392 (2013) 6624–6632. 
  34. /417/ S Abdel-Khalek, M Al-Quthami, MMA Ahmed:
    Entanglement Quantifier Based on Atomic Wehrl Entropy for Non-Linear Interaction between a Single Two-Level Atom and SU(1,1) Quantum System,
    J. Quantum Inf. Sc. 4, 42-51 (2014) .
  35. /418/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
  36. /419/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  37. /420/ Popov, D; Pop, N; Popov, M; Simon, S:
    The Information-Theoretical Entropy of Some Quantum Oscillators,
    TIM 2013 Phys. Conf., AIP Conference Proceedings, 1634, 192-197 (2014). 
  38. /421/ Abdel-Khalek, S; Berrada, K; Obada, ASF; Wahiddin, MRB:
    Entropy squeezing for qubit-field system in the presence multi-photon process under decoherence effect,
    Opt. Quant. Electr. 47, 267 (2015). 
22
J. Bajer and A. Miranowicz:
Sub-Poissonian photon statistics of higher harmonics: Quantum predictions via classical trajectories,
J. Opt. B : Quantum and Semicl. Optics 2 (2000) L10-L14.
CITATIONS:
  1. /422/ G. Alvarez and R. F. Alvarez-Estrada:
    Third Harmonic-Generation as a third-Order Quasi-Exactly Solvable System,
    J. Phys. A 34, 10045-10056 (2001).
  2. /423/ G. Alvarez, F. Finkel, A. Gonzalez-Lopez, M. A. Rodriguez :
    Quasi-exactly solvable models in nonlinear optics,
    J. Phys. A  35 (41), 8705-8713 (2002); e-print arXiv:math-ph/0205043 .
  3. /424/ H. Tutunculer, R. Koc:
    Differential realizations of the two-mode bosonic and fermionic Hamiltonians: A unified approach,
    Pramana - J. Phys. 62, 993-1005 (2004); e-print arXiv:math-ph/0410025 .
  4. /425/ R. Koc, H. Tutunculer, and E. Olgar:
    Exactly and quasi-exactly solvable two-mode Bosonic Hamiltonians, Chin. J. Phys. 42 (5), 575-584 (2004).
  5. /426/ F. Pennini, A. Plastino, and G. Ferri:
    Statistical, noise-related non-classicality's indicator, Cent. Eur. J. Phys. 7(3), 624-629 (2009).
  6. /427/ F. Pennini and A. Plastino:
    Diverging Fano factors,
    J. Phys.: Conf. Ser. 246, 012030 (2010).
  7. /428/ F. Pennini and A. Plastino:
    Smoothed Wigner-distributions, decoherence, and the temperature-dependence of the classical-quantum frontier, Eur. J. Phys. D 61, 241 (2011).
  8. /429/ F. Pennini and A. Plastino:
    Quantum echoes in classical and semiclassical statistical treatments,
    Revista Mexicana de Fisica E 58, 120 (2012).
  9. /430/ F Pennini, A Plastino, GL Ferri:
    Temperature-driven nonclassical light,
    Phys. Rev. E 87, 064101 (2013).
  10. /431/ I. Aremua, M. Norbert Hounkonnou, E. Baloitcha:
    Coherent states for Landau levels: algebraic and thermodynamical properties,
    Rep. Math. Phys. 76, 247 (2015), e-print arXiv:1301.6280v1 .
  11. /432/ I. Aremua, M. Norbert Hounkonnou, E. Baloitcha:
    On nonlinear coherent states properties for electron-phonon dynamics,
    J. Nonl. Math. Phys. 21, 89-119 (2014),  e-print arXiv:1309.3100 .
  12. /433/ MN Hounkonnou, S Arjika, and E Baloitcha:
    Pöschl-Teller Hamiltonian: Gazeau-Klauder type coherent states, related statistics and geometry,
    J. Math. Phys. 55 (12) (2014);  e-print arXiv:1309.6181 .
  13. /434/ T Opatrný:
    Squeezing with classical Hamiltonians,
    Phys. Rev. A 92, 033801 (2015),  e-print arXiv:1508.04553 .
23
J. Bajer, O. Haderka, J. Perina, and A. Miranowicz:
Sub-Poissonian light in third-harmonic generation: Quantum predictions via classical trajectories,
Czech. J. Phys. 50, 717-726 (2000).
CITATIONS:
  1. /435/ R. Tanaś:
    Quantum noise in nonlinear optical phenomena,
    in: Modern Nonlinear Optics, ed. M. W. Evans, Advances in Chemical Physics, vol. 119 (I) (Wiley, New York, 2001) pp. 1-77.
  2. /436/ R. Tanaś:
    Quantum fluctuations in nonlinear systems, Acta Phys. Hungarica B:
    Quantum Electronics 1, 7-10 (2004).
24
A. Miranowicz, W. Leoński, and N. Imoto:
Quantum-optical states in finite-dimensional Hilbert space. I. General formalism,
in: Modern Nonlinear Optics, ed. M. W. Evans, Advances in Chemical Physics, vol. 119 (I) (Wiley, New York, 2001) pp. 155-193.
CITATIONS:
  1. /437/ S. Swain and Z. Ficek:
    The damped and coherently-driven Jaynes-Cummings model,
    J. Opt. B 4 S328-S336 (2002).
  2. /438/ A. Kenfack and K. Zyczkowski:
    Negativity of the Wigner function as an indicator of nonclassicality,
    J. Opt. B 6, 396-404 (2004); e-print arXiv:quant-ph/0406015 .
  3. /439/ W. K. Wootters:
    Picturing qubits in phase space, IBM J. Res. & Dev. 48, No. 1, 99 (2004).
  4. /440/ Edward W. Piotrowski and Jan Sladkowski:
    Quantum computer:
    An appliance for playing market games
    ,
    Int. J. Quant. Inform. 2, 495-509 (2004); e-print arXiv:quant-ph/0305017 .
  5. /441/ J. P. Gazeau, F. X. Josse-Michaux, and P. Monceau:
    Finite dimensional quantizations of the (q,p) plane:
    New space and momentum inequalities
    ,
    Int. J. Mod. Phys. B 20, 1778-1791 (2006); e-print arXiv:quant-ph/0411210 .
  6. /442/ V. V. Borzov, E. V. Damaskinsky:
    Coherent states for generalized oscillator with finite-dimensional Hilbert space,
    ZNS POMI 335, 75-99 (2006); e-print arXiv:quant-ph/0612166 .
  7. /443/ M. Mirzaee, M. Rezaee, M.A. Jafarizadeh:
    Finite quantum tomography and semidefinite programming,
    Int. J. Theor. Phys. 46 (6), 1471-1494 (2007).
  8. /444/ J.B. Geloun and M.N. Hounkonnou:
    New classes of nonlinear vector coherent states of generalized spin-orbit Hamiltonians,
    J. Phys. A 42, 295202 (2009); e-print arXiv:0902.1369 .
  9. /445/ T.S. Santhanam, B. Santhanam:
    The discrete Fourier transform and the quantum-mechanical oscillator in a finite-dimensional Hilbert space,
    J. Phys. A 42, 205303 (2009).
  10. /446/ Jafarov, EI; Stoilova, NI; Van der Jeugt, J:
    The su(2)(alpha) Hahn oscillator and a discrete Fourier-Hahn transform,
    J. Phys. A 44, 355205 (2011); e-print arXiv:1106.1083 .
  11. /447/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  12. /448/ Huang, JF; Ai, Q; Deng, YG; Sun, CP; Nori, F:
    Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,
    Phys. Rev. A 85, 023801 (2012); e-print arXiv:1109.6250v2 .
  13. /449/ A. Luks and V. Perinová:
    Invariant-subspace method in quantum optics,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 115-173.
  14. /450/ D. A. Trifonov:
    Nonlinear fermions and coherent states,
    J. Phys. A 45, 244037 (2012).
  15. /451/ Kowalewska-Kudlaszyk, A.:
    Dephasing in nonlinear quantum scissors systems,
    Opt. Commun. 285, 5543 (2012). 
  16. /452/ EI Jafarov, NI Stoilova, J Van der Jeugt:
    The u(2)α and su(2)α Hahn Harmonic Oscillators,
    Bulg. J. Phys. 40, 115–120 (2013).
  17. /453/ A. Pathak, J. Banerji:
    Wigner distribution, nonclassicality and decoherence of generalized and reciprocal binomial states,
    Phys. Lett. A 378, 117-123 (2013),  e-print arXiv:1307.0452v1 .
  18. /454/ Zarezadeh, M; Tavassoly, MK:
    Nonclassicality of quasi-dual of Gazeau-Klauder coherent states of Morse potential: their excited, symmetric and anti-symmetric superpositions ,
    Rep. Math. Phys. 72 (2), 153-178 (2013).
  19. /455/ S Sivakumar:
    Truncated Coherent States and Photon-Addition
    Int. J. Theor. Phys. 53, 1697 (2014) .
  20. /456/ K Thapliyal, S Banerjee, A Pathak:
    Tomograms for open quantum systems: in (finite) dimensional optical and spin systems,
    Ann. Phys. 366, 148 (2016), e-print arXiv:1507.02135 .
  21. /457/ K Thapliyal, S Banerjee, A Pathak, S Omkar, and V. Ravishankar:
    Quasiprobability distributions in open quantum systems: spin-qubit systems,
    Annals Phys. 362, 261-286 (2015),  e-print arXiv:1504.02030 .
25
W. Leoński and A. Miranowicz:
Quantum-optical states in finite-dimensional Hilbert space. II. State generation,
in: Modern Nonlinear Optics, ed. M. W. Evans, Adv. Chem. Phys. 119(I) (Wiley, New York, 2001) 195-213.
CITATIONS:
  1. /458/ J. P. Gazeau, F. X. Josse-Michaux, and P. Monceau:
    Finite dimensional quantizations of the (q,p) plane:
    New space and momentum inequalities
    ,
    Int. J. Mod. Phys. B 20, 1778-1791 (2006); e-print arXiv:quant-ph/0411210 .
  2. /459/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Generation of three-qubit entangled W state by nonlinear optical state truncation,
    J. Phys. B 39 1269-1274 (2006); e-print arXiv:quant-ph/0607161 .
  3. /460/ V. V. Borzov, E. V. Damaskinsky:
    Coherent states for generalized oscillator with finite-dimensional Hilbert space,
    ZNS POMI 335, 75-99 (2006); e-print arXiv:quant-ph/0612166 .
  4. /461/ J.B. Geloun and M.N. Hounkonnou:
    New classes of nonlinear vector coherent states of generalized spin-orbit Hamiltonians,
    e-print arXiv:0902.1369 .
  5. /462/ Wang, MF; Gu, WJ; Jin, QL; Zheng, YZ:
    Generation of two-color EPR-entangled optical beams in macroscopic atomic ensembles,
    Phys. Rev. A 82, 042323 (2010).
  6. /463/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  7. /464/ Huang, JF; Ai, Q; Deng, YG; Sun, CP; Nori, F:
    Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,
    Phys. Rev. A 85, 023801 (2012); e-print arXiv:1109.6250v2 .
  8. /465/ A. Luks and V. Perinová:
    Invariant-subspace method in quantum optics,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 115-173.
  9. /466/ Kowalewska-Kudlaszyk, A.:
    Dephasing in nonlinear quantum scissors systems,
    Opt. Commun. 285, 5543 (2012). 
  10. /467/ A. Pathak, J. Banerji:
    Wigner distribution, nonclassicality and decoherence of generalized and reciprocal binomial states,
    Phys. Lett. A 378, 117-123 (2013),  e-print arXiv:1307.0452v1 .
26
J. Bajer and A. Miranowicz:
Quantum, classical and semiclassical analyses of photon statistics in harmonic generation,
in: Modern Nonlinear Optics, ed. M. W. Evans, Adv. Chem. Phys. 119(I) (Wiley, New York, 2001) pp. 493-515.
CITATIONS:
  1. /468/ A. Luks and V. Perinová:
    Invariant-subspace method in quantum optics,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 115-173.
  2. /469/ S Sivakumar:
    Truncated Coherent States and Photon-Addition
    Int. J. Theor. Phys. 53, 1697 (2014) .
27
S. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto:
Quantum Scissors Device for Optical State Truncation:
A Proposal for Practical Realization
,
Phys. Rev. A  64, 063818 (2001).
CITATIONS:
  1. /470/ S. A. Babichev, J. Ries, and A. I. Lvovsky:
    Quantum scissors:
    teleportation of single-mode optical states by means of a nonlocal single photon
    ,
    Europhys. Lett. 64, 1-7 (2003); e-print arXiv:quant-ph/0208066 .
  2. /471/ J. Fiurasek:
    Encoding the quantum state of cavity mode into an atomic beam,
    Phys. Rev. A 66, 015801 (2002).
  3. /472/ R. M. Serra, C. J. Villas-Boas, N. G. de Almeida, et al.:
    High-fidelity teleportation of entanglements of running-wave field states,
    J. Opt. B 4, 316-325 (2002); e-print arXiv:quant-ph/0204057 .
  4. /473/ Akira Kitagawa and Katsuji Yamamoto:
    Teleportation-based number-state manipulation with number-sum measurement,
    Phys. Rev. A 68, 042324 (2003); e-print arXiv:quant-ph/0304164 .
  5. /474/ J. Clausen, L. Knöll, and D.-G. Welsch:
    Realization of multimode operators with passive linear optics and photodetection,
    Phys. Rev. A 68, 043822 (2003).
  6. /475/ J. Clausen, L. Knöll, and D.-G. Welsch:
    Linear optics substituting scheme for multi-mode operations,
    e-print arXiv:quant-ph/0303004 .
  7. /476/ J. Fiurasek, S. Massar, and N. J. Cerf:
    Conditional generation of arbitrary multimode entangled states of light with linear optics,
    Phys. Rev. A 68, 042325 (2003); e-print arXiv:quant-ph/0304005 .
  8. /477/ ŞK Özdemir, T Yamamoto, M Koashi, N Imoto:
    Quantum State Generation and Entanglement Manipulation Using Linear Optics,
    Turk. J. Phys. 27, 459 (2003).
  9. /478/ Akira Kitagawa and Katsuji Yamamoto:
    Analysis for practical realization of number-state manipulation by number-sum Bell measurement with linear optics,
    Phys. Rev. A 70, 052311 (2004); e-print arXiv:quant-ph/0312171 .
  10. /479/ K. Sanaka:
    Linear optical extraction of photon-number Fock states from coherent states,
    Phys. Rev. A 71, 021801 (2005).
  11. /480/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Generation of three-qubit entangled W state by nonlinear optical state truncation,
    J. Phys. B 39 1269-1274 (2006); e-print arXiv:quant-ph/0607161 .
  12. /481/ Yan Li, Hui Jing, Ming-Sheng Zhan:
    Optical generation of hybrid entangled state via entangling single-photon-added coherent state,
    J. Phys. B 39, 2107 (2006); e-print arXiv:quant-ph/0511083 .
  13. /482/ Qing Lin, Jian Li and Guang Can Guo:
    Experimental proposal of probabilistic superdense coding with linear optical elements,
    J. Phys. B 39 3649-3654 (2006).
  14. /483/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Squeezing in the multi-mode nonlinear optical state truncation,
    Phys. Lett. A  365, Iss. 5-6, 380-385 (2007); e-print arXiv:quant-ph/0608189 .
  15. /484/ Yan Li, Hui Jing, Ming-Sheng Zhan:
    Scheme for conditional generation of photon-added coherent state and optical entangled W state,
    e-print arXiv:quant-ph/0610143 .
  16. /485/ Yan Li, Hui Jing, Ming-Sheng Zhan:
    An optical scheme for conditional generation of W state and photon-added coherent state,
    Chinese Physics 16, 1883-1888 (2007).
  17. /486/ Yan Li, Hui Jing, Ming-Sheng Zhan:
    Simple scheme to enhance the generation probability of the single-photon-added coherent state, Physics Letters A, Volume 372, Issue 23, p. 4177-4179 (2008).
  18. /487/ Toshiyuki Tashima, Şahin Kaya Özdemir, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto:
    Elementary optical gate for expanding an entanglement web,
    Phys. Rev. A 77, 030302(R) (2008). 
  19. /488/ Toshiyuki Tashima, Şahin Kaya Özdemir, Takashi Yamamoto, Masato Koashi, Nobuyuki Imoto:
    An Elementary Optical Gate for Expanding Symmetrically Shared Entanglement,
    in: Theory of Quantum Computation, Communication, and Cryptography, Vol. 5106 of the series Lecture Notes in Computer Science, p. 70 (Springer 2008).
  20. /489/ Koji Azuma, Naoya Sota, Ryo Namiki, Şahin Kaya Özdemir, Takashi Yamamoto, Masato Koashi, and Nobuyuki Imoto:
    Optimal entanglement generation for efficient hybrid quantum repeaters,
    Phys. Rev. A 80, 060303(R) (2009) ; e-print arXiv:0811.3100 .
  21. /490/ A. I. Lvovsky and M. G. Raymer:
    Continuous-variable optical quantum-state tomography,
    Rev. Mod. Phys. 81, 299 (2009).
  22. /491/ C. Gerry and T. Bui:
    Approximate phase-coherent states and their generation,
    Phys. Rev. A 80, 033831 (2009).
  23. /492/ A. Scherer, R. B. Howard, B. C. Sanders, and W. Tittel:
    Quantum states prepared by realistic entanglement swapping,
    Phys. Rev. A 80, 062310 (2009).
  24. /493/ N. Metwally, L. Chotorlishvili, and V. Skrinnikov:
    Entanglement and teleportation via chaotic system,
    Physica 389, 5332 (2010); e-print arXiv:1008.0323 .
  25. /494/ Nair, Ranjith; Yen, Brent J.; Guha, Saikat; Shapiro, Jeffrey H.; Pirandola, Stefano:
    Symmetric M-ary phase discrimination using quantum-optical probe states,
    e-print arXiv:1206.0673  (2012).
  26. /495/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  27. /496/ S. Bugu, C. Yesilyurt, F. Ozaydin:
    Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,
    Phys. Rev. A 87, 032331 (2013) , e-print arXiv:1303.4008 .
  28. /497/ M. K. Olsen and J. F. Corney:
    Non-Gaussian continuous-variable entanglement and steering,
    Phys. Rev. A 87, 033839 (2013).
  29. /498/ S. K. Goyal and T. Konrad:
    Teleporting photonic qudits using multimode quantum scissors
    Sc. Rep. 3, 3548 (2013),  e-print arXiv:1306.0427 .
  30. /499/ Kevin Marshall and Daniel James:
    High-fidelity teleportation of continuous-variable quantum states with discrete-variable resources,
    J. Opt. Soc. Am. B 31, 423 (2014) .
  31. /500/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    Three-mode system of nonlinear quantum oscillators and quantum correlations,
    Proc. SPIE 9441, 94410U (2014). 
  32. /501/ M Cooper, E Slade, M Karpinski, BJ Smith:
    Characterization of conditional state-engineering quantum processes by coherent state quantum process tomography,
    New J. Phys. 17, 033041 (2015);  e-print arXiv:1410.6920 .
  33. /502/ K Thapliyal, S Banerjee, A Pathak, S Omkar, and V. Ravishankar:
    Quasiprobability distributions in open quantum systems: spin-qubit systems,
    Annals Phys. 362, 261-286 (2015),  e-print arXiv:1504.02030 .
  34. /503/ Rosado, W; Neto, GDD; Prado, FO; Moussa, MHY:
    Upper bounded and sliced Jaynes- and anti-Jaynes-Cummings Hamiltonians and Liouvillians in cavity quantum electrodynamics,
    J. Mod. Opt.  62, 1561 (2015),  e-print arXiv:1410.5457 .
  35. /504/ RF Rossetti, GD Neto, FO Prado, F Brito, MHY Moussa:
    Slicing the Fock space for state production and protection,
    e-print arXiv:1409.2691 .
28
A. Miranowicz, S. K. Özdemir, Yu-xi Liu, M. Koashi, N. Imoto, and Y. Hirayama:
Generation of maximum spin entanglement induced by cavity field in quantum-dot systems,
Phys. Rev. A 65, 062321 (2002).
CITATIONS:
  1. /505/ T. Itakura and Y. Tokura:
    Dephasing due to background charge fluctuations, Phys. Rev. B 67, 195320 (2003); e-print arXiv:cond-mat/0303412 .
  2. /506/ X.X. Yang and Y. Wu:
    Quasiparticle spectrum of quantum degenerate Fermi gas in the presence of self-consistent magnetization field,
    Comm. Theor. Phys. 39, 543-548 (2003).
  3. /507/ X.X. Yang and Y. Wu:
    Coherent superposition states of atoms and molecules in a Bose-Einstein condensate with exactly balanced photo-associations and photo-dissociations,
    Chinese Phys. Lett. 20, 189-191 (2003).
  4. /508/ T. Itakura and Y. Tokura:
    Effect of multiple charge traps on dephasing rates of a Josephson charge qubit system,
    J. Phys. Soc. Jpn. 72, 2726-2729 (2003); e-print arXiv:cond-mat/0309208 .
  5. /509/ W. S. Li and K. D. Zhu:
    Rabi oscillation of exciton dressed by phonons in a quantum dot,
    Chinese Phys. Lett. 20 (9), 1568-1570 (2003).
  6. /510/ K. D. Zhu and W. S. Li:
    Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system,
    Phys. Lett. A 314 (5-6), 380-385 (2003).
  7. /511/ Tetsufumi Tanamoto and Xuedong Hu:
    Measurement of two-qubit states by a two-island single electron transistor, Phys. Rev. B 69, 115301 (2004); e-print arXiv:cond-mat/0309648 .
  8. /512/ Ka-Di Zhu, Zhuo-Jie Wu, Xiao-Zhong Yuan, and Hang Zheng:
    Excitonic dynamics in a single quantum dot within a microcavity, Phys. Rev. B 71, 235312 (2005).
  9. /513/ G. Chimczak:
    Teleportation of atomic states via quantum interference of fields leaking from two cavities,
    Ph.D. Thesis, Adam Mickiewicz University, Poznan, 2005.
  10. /514/ Jun Jing, Z. G. Lü, H. R. Ma:
    Entanglement evolution for excitons of two separate quantum dots in a cavity driven by magnetic field; e-print arXiv:quant-ph/0611266 .
  11. /515/ Di Mei, Chong Li, Guo-Hui Yang, He-Shan Song:
    Quantum states transfer by the analogous Bell states,
    Comm. Theor. Phys. 49, Issue 2, pp. 347-350 (2008); e-print arXiv:quant-ph/0703175 .
  12. /516/ J. Larson and H. Moya-Cessa:
    Rabi oscillations in a quantum dot-cavity system coupled to a non-zero temperature phonon bath,
    Phys. Scripta 77, Issue 6, 065704 (2008), e-print arXiv:cond-mat/0703552 .
  13. /517/ S. Moskal, S. Bednarek, and J. Adamowski:
    Controlled exchange interaction for quantum logic operations with spin qubits in coupled quantum dots, Phys. Rev. A 76, 032302 (2007).
  14. /518/ Mei D, Li C, Yang GH, et al.:
    Quantum states transfer by analogous Bell states,
    Comm. Theor. Phys. 49, Issue 2, 347-350 (2008).
  15. /519/ Ping Dong, Ming Yang, Zhuo-Liang Cao:
    Quantum computation with quantum-dot spin qubits inside a cavity,
    Phys. Lett. A 373, 1527 (2009); e-print arXiv:0712.3182 .
  16. /520/ Hu KX (Hu, Ke-Xiang), Jin BQ (Jin, Bai-Qi):
    QDs-cavity approach to teleportation of multipartite GHZ-like entangled state,
    Int. J. Quant. Inform. 7, 573-586 (2009).
  17. /521/ Dong Ping, Zheng Xiao-Hu, Zhang Gang, and Cao Zhuo-Liang:
    Implementation of Quantum Fourier Transform and Its Applications via Quantum-Dot Spins and Microcavity,
    Comm. Theor. Phys.  (Beijing, China) 52, 425-430 (2009).
  18. /522/ Aidong Zhu, Kyu-Hwang Yeon, Seong-Cho Yu:
    Optimal universal and phase-covariant quantum cloning machines with quantum-dot spins in cavity QED,
    J. Phys. B 42, 235501 (2009).
  19. /523/ Arnab Mitra and Reeta Vyas:
    Entanglement and bistability in coupled quantum dots inside a driven cavity,
    Phys. Rev. A 81, 012329 (2010).
  20. /524/ Tian Li-Jun, Qin Li-Guo, Jiang Ying, Zhang Hong-Biao, and Xue Kang:
    Application of Y(sl(2)) Algebra for Entanglement of Two-Qubit System,
    Comm. Theor. Phys. 53, 1039 (2010).
  21. /525/ Bao-Quan Sun, Xiao-Qiang Shao, Ai-Dong Zhu, Kyu-Hwang Yeon and Seong-Cho Yu:
    Physical realization of a multi-purpose quantum cloning machine with electron spins in quantum dots,
    Phys. Scripta 82, 045006 (2010).
  22. /526/ Zheng, SB; Yang, CP; Nori, F:
    Arbitrary control of coherent dynamics for distant qubits in a quantum network, Phys. Rev. 82, 042327 (2010).
  23. /527/ Zheng, L; Yang, CP; Nori, F:
    Quantum dynamics of spatial decoherence of two atoms in a ring cavity,
    Phys. Rev. A 82 (6), 062106 (2010).
  24. /528/ J. Ma, X. Wang, C. P. Sun, F. Nori:
    Quantum spin squeezing,
    Phys. Rep. 509, 89-165 (2011), e-print arXiv:1011.2978 .
  25. /529/ Xiang, Shao-Hua; Deng, Xiao-Peng; Song, Ke-Hui; Wen, Wei; Shi, Zhen-Gang:
    Entanglement dynamics of two electron-spin qubits in a strongly detuned and dissipative quantum-dot-cavity system ,
    Phys. Scripta 84, 065010 (2011).
  26. /530/ Huang, JF; Ai, Q; Deng, YG; Sun, CP; Nori, F:
    Quantum statistics of the collective excitations of an atomic ensemble inside a cavity,
    Phys. Rev. A 85, 023801 (2012); e-print arXiv:1109.6250v2 .
  27. /531/ Shao-Hua Xiang, De-Hua Lu and Ke-Hui Song:
    Realization of Optimal Universal Quantum Cloner for Electron-Spin Qubits via Nearest-Neighbor Quantum Controlled Gates,
    Int. J. Theor. Phys. 51 (12), 4006-4016 (2012). 
  28. /532/ Yan-Qiang Ji, Tao Yu, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang, Kyu-Hwang Yeon, Seong-Cho Yu:
    Realization of optimal symmetric universal and phase-covariant quantum cloning with quantum dot spins in cavity QED,
    J. Mod. Opt. 59 (14), 1272 (2012).
  29. /533/ W. Leoński; V. Cao Long:
    Nonlinear quantum scissors and quantum states engineering: numerical simulations,
    Proc. SPIE 8697, 869728 (2012). 
  30. /534/ M. Bula, K. Bartkiewicz, A. Cernoch, and K. Lemr:
    Photonic scheme for non-demolition detection of single photon presence,
    Phys. Rev. A 87, 033826 (2013); e-print arXiv:1212.5366 .
  31. /535/ Yu, Yang; Ye, Liu:
    Proposal for a general quantum cloning machine via distant qubits in a quantum network,
    Int. J. Mod. Phys. B 27, 1350154 (2013) .
  32. /536/ Z Jin, YQ Ji, AD Zhu, HF Wang, S Zhang:
    A robust scheme for implementing optimal economical phase-covariant quantum cloning with quantum-dot spins in optical microcavities,
    Opt. Commun. 315, 265-269 (2014).
  33. /537/ Grzegorz Chimczak:
    High fidelity state mapping performed in a V-type level structure via stimulated Raman transition,
    e-print arXiv:1401.0057 .
  34. /538/ A. V. Tsukanov, I. Yu. Kateev:
    Quantum calculations on quantum dots in semiconductor microcavities. Part III,
    Russian Microelectronics 44, 61-78 (2015). 
  35. /539/ G. Chimczak:
    High fidelity state mapping performed in a V-type level structure via stimulated Raman transition,
    J. Phys. B 48, 055502 (2015). 
29
S. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto:
Pulse-mode quantum projection synthesis:
Effects of mode mismatch on optical state truncation and preparation
,
Phys. Rev. A 66, 053809 (2002).
CITATIONS:
  1. /540/ S. A. Babichev, J. Ries, and A. I. Lvovsky:
    Quantum scissors:
    teleportation of single-mode optical states by means of a nonlocal single photon
    ,
    Europhys. Lett. 64, 1-7 (2003); e-print arXiv:quant-ph/0208066 .
  2. /541/ Akira Kitagawa and Katsuji Yamamoto:
    Teleportation-based number-state manipulation with number-sum measurement,
    Phys. Rev. A 68, 042324 (2003); e-print arXiv:quant-ph/0304164 .
  3. /542/ Akira Kitagawa and Katsuji Yamamoto:
    Analysis for practical realization of number-state manipulation by number-sum Bell measurement with linear optics,
    e-print arXiv:quant-ph/0312171 .
  4. /543/ A.I. Lvovsky and M.G. Raymer:
    Continuous-variable optical quantum state tomography,
    e-print arXiv:quant-ph/0511044 .
  5. /544/ Rui-Bo Jin, Jun Zhang, Ryosuke Shimizu, Nobuyuki Matsuda, Yasuyoshi Mitsumori, Hideo Kosaka, Keiichi Edamatsu:
    High-visibility nonclassical interference between intrinsically pure heralded single photons and photons from a weak coherent field,
    Phys. Rev. A 83, 031805 (2011); e-print arXiv:1010.5638 .
  6. /545/ Xiao, Xiao-Qi; Liu, Jin-Ming; Zeng, Guihua:
    Joint remote state preparation of arbitrary two- and three-qubit states,
    J. Phys. B 44, 075501 (2011).
  7. /546/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  8. /547/ JY Peng, MX Luo, ZW Mo:
    Joint remote state preparation of arbitrary two-particle states via GHZ-type states,
    Quant. Inform. Process. (2013). 
  9. /548/ S. Bugu, C. Yesilyurt, F. Ozaydin:
    Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,
    Phys. Rev. A 87, 032331 (2013) , e-print arXiv:1303.4008 .
  10. /549/ Min Jiang, LiuLei Zhou, XiaoPing Chen, Shanhong You :
    Deterministic joint remote preparation of general multi-qubit states,
    Opt. Commun. 301, 39–45 (2013) .
  11. /550/ Min Jiang, Frank Jiang:
    Deterministic joint remote preparation of arbitrary multi-qudit states,
    Phys. Lett. A  377 (38), 2524-2530 (2013) .
  12. /551/ Jia-Yin Peng, Ming-Xing Luo, Zhi-Wen Mo:
    Joint remote state preparation of arbitrary two-particle states via GHZ-type states,
    Quant. Inform. Process. 12 (7), 2325-2342 (2013). 
  13. /552/ S. K. Goyal and T. Konrad:
    Teleporting photonic qudits using multimode quantum scissors
    Sc. Rep. 3, 3548 (2013),  e-print arXiv:1306.0427 .
  14. /553/ TJ Wang, C Wang:
    High-efficient entanglement distillation from photon loss and decoherence,
    Optics Express 23, 31550 (2015). 
30
Yu-xi Liu, A. Miranowicz, M. Koashi, and N. Imoto:
 Realization of symmetric sharing of entanglement in semiconductor microcrystallites coupled by a cavity field,
Phys. Rev. A 66, 062309 (2002).
CITATIONS:
  1. /554/ Gao-xiang Li, Ya-ping Yang, K. Allaart, and D. Lenstra:
    Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum,
    Phys. Rev. A 69, 014301 (2004).
  2. /555/ Gao-xiang Li, Hua-tang Tan, Shao-ping Wu, and Ya-ping Yang:
    Entanglement for excitons in two quantum dots placed in two separate single-mode cavities,
    Phys. Rev. A 70, 034307 (2004).
  3. /556/ E. Paspalakis and A.F. Terzis:
    Creation of entangled states of excitons in coupled quantum dots,
    Phys. Lett. A 350 (5-6), 396-399 (2006).
  4. /557/ R. Migliore, K. Yuasa, H. Nakazato, and A. Messina:
    Generation of multipartite entangled states in Josephson architectures, Phys. Rev. B 74, 104503 (2006).
  5. /558/ Chun-Hua Yuan, Ka-Di Zhu, and Xiao-Zhong Yuan:
    Exciton entanglement in coupled quantum dots in a microcavity,
    Phys. Rev. A  75, 062309 (2007).
  6. /559/ Ping Dong, Ming Yang, Zhuo-Liang Cao:
    Quantum computation with quantum-dot spin qubits inside a cavity,
    Phys. Lett. A 373, 1527 (2009); e-print arXiv:0712.3182 .
  7. /560/ Yin Miao, Cheng Ze and Shen Lei-Lei:
    Generation of Entanglement for Coherent Excitonic States in Coupled Quantum Dots in a Microcavity,
    Comm. Theor. Phys. 50 661-663 (2008).
  8. /561/ Dong Ping, Zheng Xiao-Hu, Zhang Gang, and Cao Zhuo-Liang:
    Implementation of Quantum Fourier Transform and Its Applications via Quantum-Dot Spins and Microcavity,
    Comm. Theor. Phys.  52, 425-430 (2009).
  9. /562/ Binbin Zhang and Yu Liu:
    A postselection-based linear optical scheme for generation of a three-photon W state,
    J. Phys. B  42, 195504 (2009).
  10. /563/ Aidong Zhu, Kyu-Hwang Yeon, Seong-Cho Yu:
    Optimal universal and phase-covariant quantum cloning machines with quantum-dot spins in cavity QED,
    J. Phys. B 42, 235501 (2009).
  11. /564/ Dong Ping, Zhang Gang and Cao Zhuo-Liang:
    Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators, Chin. Phys. Lett. 27, 030301 (2010).
  12. /565/ Arnab Mitra and Reeta Vyas:
    Entanglement and bistability in coupled quantum dots inside a driven cavity,
    Phys. Rev. A 81, 012329 (2010).
  13. /566/ Khoshnegar, M; Majedi, AH:
    Entangled photon pair generation in hybrid superconductor-semiconductor quantum dot devices,
    Phys. Rev. B 84, 104504 (2011), e-print arXiv:1106.5521 .
  14. /567/ Li, X; Shapiro, M:
    Generation and control of spin-orbit entanglement in atomic pairs,
    Phys. Rev. A 85, 043413 (2012).
  15. /568/ S. Bugu, C. Yesilyurt, F. Ozaydin:
    Enhancing the W-state quantum-network-fusion process with a single Fredkin gate,
    Phys. Rev. A 87, 032331 (2013) , e-print arXiv:1303.4008 .
  16. /569/ N. Behzadi, B. Ahansaz, S. Shojaei:
    Genuine entanglement among coherent excitonic states of three quantum dots located individually in separated coupled QED cavities ,
    Eur. Phys. J. D 67, 5 (2013). 
  17. /570/ Zhang Jin-Li; Liu Jin-Ming:
    Dynamical Entanglement of Vibrations in Integrable Dimer and Small Molecules ,
    Comm. Theor. Phys. 60, 210 (2013).
  18. /571/ A. V. Tsukanov, I. Yu. Kateev:
    Quantum calculations on quantum dots in semiconductor microcavities. Part III,
    Russian Microelectronics 44, 61-78 (2015). 
31
J. Bajer, A. Miranowicz, and R. Tanas:
  Limits of noise squeezing in Kerr effect, Czech. J. Phys. 52, 1313 (2002); e-print arXiv:quant-ph/0212158 .
CITATIONS:
  1. /572/ X. Wang and B. C. Sanders:
    Relations between bosonic quadrature squeezing and atomic spin squeezing,
    Phys. Rev. A 68, 033821 (2003); Photonic principle squeezing and atomic spin squeezing,
    e-print arXiv:quant-ph/0305066 .
  2. /573/ H. Prakash, P. A. Kumar:
    Scaling law for amplitude-squared squeezing in Kerr effect,
    Int. J. Mod. Phys. B 20 (11-13), 1458-1464 (2006).
  3. /574/ Yang Yang, Wanfang Liu, Zhe Sun, and Xiaoguang Wang:
    Global versus local quantum squeezing in composite systems,
    Phys. Rev. A  79, 054104 (2009).
  4. /575/ Lijun Song, Dong Yan, Jian Ma, and Xiaoguang Wang:
    Spin squeezing as an indicator of quantum chaos in the Dicke model, Phys. Rev. E 79, 046220 (2009).
  5. /576/ A. B. Klimov and S. M. Chumakov:
    A Group-Theoretical Approach to Quantum Optics: Models of Atom-Field Interactions (Wiley-VCH, Weinheim, 2009).
  6. /577/ Prakash, H; Kumar, R; Kumar, P:
    Higher-order Hong-Mandel's squeezing in superposed coherent states,
    Opt. Commun.  284 (1): 289-293 (2011).
  7. /578/ P. Kumar, R. Kumar:
    Simultaneous higher-order Hong and Mandel's squeezing of both quadrature components in orthogonal even coherent state,
    Optik-International Journal for Light and Electron Optics 124 (15), 2229 (2012). 
  8. /579/ Y Huang, ZD Hu:
    Spin and field squeezing in a spin-orbit coupled Bose-Einstein condensate,
    Scientific Reports 5, 8006 (2015). 
32
A. Miranowicz and K. Tamaki:
Introduction to Quantum Teleportation, Math. Sciences (Suri-Kagaku)473, 28-34 (2002).
CITATIONS:
  1. /580/ J.F. Wang, Y.M. Wang, X.Q. Li,
    Breakdown of entanglement during the teleportation,
    High Energy Phys. & Nucl. Phys. - Chinese Ed. 29, 14-18 (2005).
33
S. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto: Optical qubit generation by state truncation using an experimentally feasible scheme, J. Mod. Opt. 49, 977-984 (2002); e-print arXiv:quant-ph/0204059 .
CITATIONS:
  1. /581/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
34
Yu-xi Liu, A. Miranowicz, S. K. Özdemir, M. Koashi, and N. Imoto:
Size-dependent decoherence of excitonic states in semiconductor microcrystallites,
Phys. Rev. A 67, 034303 (2003); e-print arXiv:quant-ph/0304021 .
CITATIONS:
  1. /582/ Gao-xiang Li, Ya-ping Yang, K. Allaart, and D. Lenstra:
    Entanglement for excitons in two quantum dots in a cavity injected with squeezed vacuum,
    Phys. Rev. A 69, 014301 (2004).
  2. /583/ Gao-xiang Li, Hua-tang Tan, Shao-ping Wu, and Ya-ping Yang:
    Entanglement for excitons in two quantum dots placed in two separate single-mode cavities,
    Phys. Rev. A 70, 034307 (2004).
  3. /584/ E. Paspalakis and A.F. Terzis:
    Creation of entangled states of excitons in coupled quantum dots,
    Phys. Lett. A 350 (5-6), 396-399 (2006).
  4. /585/ R. Migliore, K. Yuasa, H. Nakazato, and A. Messina:
    Generation of multipartite entangled states in Josephson architectures, Phys. Rev. B 74, 104503 (2006).
35
A. Miranowicz, J. Bajer, M.R.B. Wahiddin, and N. Imoto:
Wehrl information entropy and phase distributions of Schrödinger cat and cat-like states,
J. of Physics A 34, 3887 (2001); e-print arXiv:quant-ph/0107107 .
CITATIONS:
  1. /586/ J. Rogel-Salazar, S. Choi, G.H.C. New, and K. Burnett:
    Characterisation of the dynamical quantum state of a zero temperature Bose-Einstein condensate,
    Phys. Lett. A 299, 476-482 (2002).
  2. /587/ A. S. Obada and S. Abdel-Khalek:
    New features of the atomic Wehrl entropy and its density in multi-quanta two-level system,
    J. Phys. A 37, 6573-6585 (2004).
  3. /588/ J. Rogel-Salazar, S. Choi, G. H. C. New and K. Burnett:
    Methods of quantum field theory for trapped Bose-Einstein condensates,
    J. Opt. B 6, R33-R59 (2004).
  4. /589/ M. Abdel-Aty:
    Quantum information entropy and multi-qubit entanglement,
    Progress in Quantum Electronics 31, pp. 1-49 (2007).
  5. /590/ I.A. Al-Khayat:
    Statistical mechanical aspects of a spin-(1)/(2) entropy system,
    Chaos Solitons & Fractals 33 (5), 1635-1641 (2007).
  6. /591/ S. Abdel-Khalek:
    The effect of atomic motion and two-quanta JCM on the information entropy,
    Physica A 387, 779-786 (2008).
  7. /592/ Abdel-Aty M, Abdel-Khalek S, Obada ASF:
    Wehrl entropy and entanglement of a time-dependent two-level trapped ion interacting with a laser field,
    Int. J. Quant. Inform. 6, 331-339 (2008).
  8. /593/ El-Orany FAA, Abdel-Khalek S, Abdel-Aty M, et al.:
    Entanglement in the bimodal Jaynes-Cummings model with the two-mode squeezed vacuum state, International Journal of Theoretical Physics 47, 1182-1194 (2008).
  9. /594/ Abdel-Khalek S, Khalil EM, Ali SI:
    Entanglement of a two-level atom papered in a finite trio-coherent state, Laser Physics 18, 135-143 (2008).
  10. /595/ S. Abdel-Khalek:
    Wehrl entropy and Wehrl phase distribution of a single-trapped ion interacting with a laser field,
    Phys. Scripta  80, 045302 (2009).
  11. /596/ S. Abdel-Khalek:
    Dynamics of Fisher information in Kerr medium,
    Int. J. Quant. Inform. 7, 1541-1548 (2009).
  12. /597/ A.-S.F. Obada, S. Abdel-Khalek:
    Entanglement evaluation with atomic Fisher information,
    Physica A 389 (2010) 891-898.
  13. /598/ M. S. Ateto:
    Entanglement Dynamics and Spin Squeezing of The non-linear Tavis-Cummings model mediated by a Nonlinear Binomial Field,
    Int. J. Quant. Inform. ???; e-print arXiv:0911.4240 .
  14. /599/ Sh. Barzanjeh and H. Eleuch:
    Dynamical behavior of entanglement in semiconductor microcavities,
    Physica E 42, Is. 8, p. 2091-2096 (2010).
  15. /600/ S. Abdel-Khalek and A.-S.F. Obada:
    New features of Wehrl entropy and Wehrl PD of a single Cooper-pair box placed inside a dissipative cavity, Annals of Physics 325, 2542 (2010).
  16. /601/ Obada, ASF; Abdel-Khalek, S; Plastino, A:
    Information quantifiers' description of weak field vs. strong field dynamics for a trapped ion in a laser field,
    Physica A 390 (3), 525-533 (2011).
  17. /602/ Abdel-Khalek, S.; Plastino, A.; Obada, A-S F.:
    Dynamics of the intensity-dependent Jaynes-Cummings model analyzed via Fisher information,
    e-print arXiv:1101.5978 .
  18. /603/ S. Abdel-Khalek, Sh. Barzanjeh, H. Eleuch:
    Entanglement Sudden Death and Sudden Birth in Semiconductor Microcavities,
    Int. J. Theor. Phys. 50, 2939-2950 (2011); e-print arXiv:1104.3105 .
  19. /604/ Abdel-Khalek, S.; Abdel-Hameed, H. F.; Abdel-Aty, M.:
    Atomic Wehrl entropy of a single qubit system,
    Int. J. Quant. Inform. 9, 967-979 (2011).
  20. /605/ Abdel-Khalek, S.; Plastino, A.; Obada, A.-S. F.:
    Interplay of information quantifiers and the modified Jaynes-Cummings model,
    Cent. Euro. J. Phys. 9, Number 6, 1426 (2011).
  21. /606/ Abdel-Khalek, S.; M. A. Ahmed, M.; A-S, F. Obada :
    New Aspects of Field Entropy Squeezing as an Indicator for Mixed State Entanglement in an Effective Two-Level System with Stark Shift ,
    Chin. Phys. Lett. 28, 120305 (2011).
  22. /607/ Abdel-Khalek, S.; Berrada, K.; Eleuch, H.; Abel-Aty, M.:
    Dynamics of Wehrl entropy of a degenerate two-photon process with a nonlinear medium,
    Opt. Quant. Electr. 42, 887-897 (2011).
  23. /608/ Berrada, K.; Abdel-Khalek, S.:
    Entanglement of atom–field interaction for nonlinear optical fields,
    Physica E 44, 628-634 (2011).
  24. /609/ D. Nath, P. K. Das:
    Wehrl entropy of the state in a two-atom Tavis-Cummings model,
    Banach Center Publ. 96, 277-285 (2012).
  25. /610/ K. Berrada, S. Abdel-Khalek and A. S. Alaamer:
    Bipartite entanglement within the framework of real and ideal lasers, J. Russian Laser Res. 33, 276-282 (2012). 
  26. /611/ A-S F Obada, S Abdel-Khalek, E M Khali and S I Ali:
    Effects of Stark shift and decoherence terms on the dynamics of phase-space entropy of the multiphoton Jaynes Cummings model,
    Phys. Scr. 86, 055009 (2012). 
  27. /612/ Abdel-Khalek, S.; Mousa, A. A.; Nofal, T. A.:
    Dynamic properties of Wehrl information entropy and Wehrl phase distribution for a moving four-level atom,
    J. Russian Laser Research 33 (6), 547 (2012). 
  28. /613/ K. Berrada:
    Quantum and Classical Quantifiers for Atom-Nonlinear Field System under Decoherence,
    Open Systems Inform. Dynamics 20, 1350001 (2013). 
  29. /614/ A.-S. Obada, S. Abdel-Khalek, K. Berrada, M.E. Shaheen:
    Investigations of information quantifiers for the Tavis-Cummings model,
    Physica A 392 (2013) 6624–6632 
  30. /615/ A.-S.F. Obada, S. Abdel-Khalek, A.-B. A. Mohamed:
    Information entropy and entanglement of a superconducting qubit coupled to a cavity field with its spontaneous decay,
    Opt. Quant. Electron. 45, 1287 (2013). 
  31. /616/ EO Abdel-Rahman, ZSA Malki, S Abdel-Khalek:
    Fisher Information Flow and Bifurcation Properties of Wehrl Entropy of a Single Qubit System Under the Damping Effect,
    Journal of Russian Laser Research 35, 590 (2014) 
  32. /617/ T. J. Volkoff:
    Macroscopic quantum phenomena in interacting bosonic systems: Josephson flow in liquid 4He and multimode Schrödinger cat states,
    Ph.D. Thesis, Univ. of California, Berkeley.
  33. /618/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  34. /619/ Abdel-Khalek, S; Berrada, K; Obada, ASF; Wahiddin, MRB:
    Entropy squeezing for qubit-field system in the presence multi-photon process under decoherence effect,
    Opt. Quant. Electr. 47, 267 (2015). 
  35. /620/ Chakrabarti, R.; Jenisha, B. Virgin:
    Quasi-Bell states in a strongly coupled qubit-oscillator system and their delocalization in the phase space,
    Physica A 435, 95 (2015). 
  36. /621/ M Rohith, C Sudheesh:
    Visualizing revivals and fractional revivals in a Kerr medium using an optical tomogram,
    Phys. Rev. A 92, 053828 (2015),  e-print arXiv:1507.03724 .
  37. /622/ R Chakrabarti, V Yogesh:
    Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation,
    e-print arXiv:1509.07030 .
36
J. Bajer and A. Miranowicz:
Quantum vs classical descriptions of sub-Poissonian light generation in three-wave mixing,
J. Optics B 3 (2001) 251-259; e-print arXiv:arXiv:quant-ph/0107104 .
CITATIONS:
  1. /623/ R Ferreira de Morais, EO Serqueira, NO Dantas:
    Effects of OH radicals and the silicon network on the lifetime of Eu3+-doped sodium silicate glasses,
    Optical Materials Express 3, 853 (2013).
37
W. Leoński, A. Miranowicz, and K. Piątek:
Classical information entropy for single and two mode quantum fields,
Proc. SPIE Int. Soc. Opt. Eng. 5259, 37-41 (2003).
CITATIONS:
  1. /624/ A.-S.F. Obada, S. Abdel-Khalek, A.-B. A. Mohamed:
    Information entropy and entanglement of a superconducting qubit coupled to a cavity field with its spontaneous decay,
    Opt. Quant. Electron. 45, 1287 (2013). 
  2. /625/ S Abdel-Khalek, M Al-Quthami, MMA Ahmed:
    Entanglement Quantifier Based on Atomic Wehrl Entropy for Non-Linear Interaction between a Single Two-Level Atom and SU(1,1) Quantum System,
    J. Quantum Inf. Sc. 4, 42-51 (2014) .
  3. /626/ EO Abdel-Rahman, ZSA Malki, S Abdel-Khalek:
    Fisher Information Flow and Bifurcation Properties of Wehrl Entropy of a Single Qubit System Under the Damping Effect,
    Journal of Russian Laser Research 35, 590 (2014) 
38
A. Miranowicz:
Decoherence of two maximally entangled qubits in a lossy nonlinear cavity,
J. Phys. A  37, 7909 (2004); e-print arXiv:quant-ph/0402025 .
CITATIONS:
  1. /627/ A. N. Salgueiro:
    Entanglement of a multiparticle Schroedinger cat state,
    e-print arXiv:quant-ph/0402190 .
  2. /628/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Generation of three-qubit entangled W state by nonlinear optical state truncation,
    J. Phys. B 39 1269-1274 (2006); e-print arXiv:quant-ph/0607161 .
  3. /629/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Squeezing in the multi-mode nonlinear optical state truncation,
    Phys. Lett. A  365, Iss. 5-6, 380-385 (2007); e-print arXiv:quant-ph/0608189 .
  4. /630/ Ph. Blanchard and M. Hellmich, P. Lugiewicz and R. Olkiewicz:
    Quantum dynamical semigroups for finite and infinite Bose systems,
    J. Math. Phys. 48, 012106 (2007).
  5. /631/ R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki:
    Quantum entanglement,
    Rev. Mod. Phys. 81, 865 (2009), e-print arXiv:quant-ph/0702225 .
  6. /632/ J. Li and G.S. Paraoanua:
    Decay of entanglement in coupled, driven systems with bipartite decoherence,
    Euro. Phys. J. D 56, 255-264 (2010).
  7. /633/ A. Kowalewska-Kudlaszyk and W. Leonski:
    Squeezed vacuum reservoir effect for entanglement decay in nonlinear quantum scissors system,
    J. Phys. B 43, 205503 (2010); e-print arXiv:1009.1068 .
  8. /634/ Yao, Y., Li, H.-W., Yin, Z.-Q., Guo, G.-C., Han, Z.-F.:
    The effect of channel decoherence on entangled coherent states: A theoretical analysis,
    Phys. Lett. A 375, 3762 (2011).
  9. /635/ Okrasa, M.; Walczak, Z.:
    On two-qubit states ordering with quantum discords,
    Europhysics Letters 98, 40003 (2012).
  10. /636/ B. Bellomo, R. Lo Franco, and G. Compagno:
    Dynamics of geometric and entropic quantifiers of correlations in open quantum systems,
    Phys. Rev. A 86, 012312 (2012).
  11. CL Liu, XD Yu, GF Xu, DM Tong:
    Ordering states with coherence measures,
    e-print arXiv:1601.03936 
39
Yu-xi Liu, S. K. Özdemir, A. Miranowicz, M. Koashi, and N. Imoto:
Exciton entanglement in two coupled semiconductor microcrystallites,
J. Phys. A 37, 4423 (2004); e-print arXiv:quant-ph/0401182 .
CITATIONS:
  1. /637/ Xi-Wen Hou, Jing-Hua Chen, and Bambi Hu:
    Entanglement and bifurcation in the integrable dimer,
    Phys. Rev. A 71, 034302 (2005).
  2. /638/ S. Javad Akhtarshenas, Two-photon entanglement in a two-mode supersymmetric model,
    Int. J. Theor. Phys. 45, 1005-1015 (2006); e-print arXiv:quant-ph/0507079 .
  3. /639/ Xi-Wen Hou, Zi Hui, Rui-Min Ding, Xiao-Yang Chen, and Yu Gao:
    Entanglement and decoherence in a quantum dimer,
    Chinese Phys. 15, Iss. 11, pp. 2510-2513 (2006).
  4. /640/ S. J. Akhtarshenas:
    Entanglement Degree of Parasupersymmetric Coherent States of Harmonic Oscillator,
    Int. J. Theor. Phys. 45, 1572-9575 (2006), e-print arXiv:quant-ph/0511080 .
  5. /641/ Xi-Wen Hou, Jing-Hua Chen, and Zhong-Qi Ma:
    Dynamical entanglement of vibrations in an algebraic model,
    Phys. Rev. A  74, 062513 (2006).
  6. /642/ Hou, Xi-Wen; Wan, Ming-Fang; Ma, Zhong-Qi:
    Entanglement correlation in mixed states for anharmonic vibrations in ozone,
    Opt. Commun. 281, Issue 13, 3587-3591 (2008).
  7. /643/ Yan Liu, Yujun Zheng, Weiyi Ren, and Shiliang Ding:
    Dynamical entanglement of vibrations in small molecules through an analytically algebraic approach,
    Phys. Rev. A 78, 032523 (2008).
  8. /644/ Xi-Wen Hou, Jing-Hua Chen, Ming-Fang Wan and Zhong-Qi Ma:
    Entropy correlation and entanglement for mixed states in an algebraic model,
    J. Phys. A 42 075301 (2009).
  9. /645/ Xi-Wen Hou, Ming-Fang Wan, and Zhong-Qi Ma:
    Entropy and negativity of Fermi-resonance coupling vibrations in a spectroscopic Hamiltonian,
    Phys. Rev. A 79, 022308 (2009).
  10. /646/ Hou Xi-Wen and Cheng Chuan-Ming:
    Dynamical entanglement for Fermi coupled stretching and bending modes,
    Chinese Phys. B 18, 2719-2723 (2009).
  11. /647/ Li, X; Shapiro, M:
    Generation and control of spin-orbit entanglement in atomic pairs,
    Phys. Rev. A 85, 043413 (2012).
  12. /648/ Kowalewska-Kudlaszyk, A.:
    Dephasing in nonlinear quantum scissors systems,
    Opt. Commun. 285, 5543 (2012). 
40
A. Miranowicz:
Violation of Bell inequality and entanglement of decaying Werner states, Phys. Letters A 327, 272-283 (2004); e-print arXiv:quant-ph/0402023 .
CITATIONS:
  1. /649/ Shang-Bin Li, Jing-Bo Xu:
    Robust and fragile Werner states in the collective dephasing,
    Euro. Phys. J. D 41, 377-383 (2007); e-print arXiv:quant-ph/0503143 .
  2. /650/ Shang-Bin Li, Jing-Bo Xu:
    Enhancing stationary entanglement of two qubits or qutrits by collectively interacting with a common thermal reservoir,
    Int. J. Quant. Inform. 6, 1165-1181 (2008); e-print arXiv:quant-ph/0505216 .
  3. /651/ A. Kowalewska-Kudlaszyk and W. Leoński:
    Finite-dimensional states and entanglement generation for a nonlinear coupler,
    Phys. Rev. A 73, 042318 (2006); e-print arXiv:quant-ph/0603090 .
  4. /652/ L. Roa, R. Pozo-Gonzalez, M. Schaefer, P. Utreras-SM:
    Narrow entanglement beats,
    e-print arXiv:quant-ph/0612079 .
  5. /653/ Luis Roa, R. Pozo-Gonzalez, Marius Schaefer, and P. Utreras-Sm:
    Entanglement generation by a dispersive vacuum,
    Phys. Rev. A  75, 062316 (2007).
  6. /654/ Luis Roa, R. Pozo-Gonzalez, Marius Schaefer, and P. Utreras-Sm:
    Entanglement recovered periodically,
    J. Phys.: Conf. Ser. 134, 012002 (2008).
  7. /655/ T. Radtke, A. Surzhykov and S. Fritzsche:
    Polarization correlation in the two-photon decay of atomic hydrogen: nonlocality versus entanglement,
    Euro. Phys. J. D 49, 7-12 (2008).
  8. /656/ Li SB (Li, Shang-Bin), Xu JB (Xu, Jing-Bo):
    Enhancing stationary entanglement of two qubits or qutrits by collectively interacting with a common thermal reservoir,
    Int. J. Quant. Inform. 6, 1165-1181 (2008).
  9. /657/ Bruno Bellomo, Rosario Lo Franco, and Giuseppe Compagno:
    Dynamics of non-classically reproducible entanglement,
    Phys. Rev. A  78, 062309 (2008); e-print arXiv:quant-ph/0806.3182 .
  10. /658/ T. Radtke and S. Fritzsche:
    Simulation of n-qubit quantum systems. IV. Parametrizations of quantum states, matrices and probability distributions,
    Comp. Phys. Commun. 179, 647-664 (2008).
  11. /659/ R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki:
    Quantum entanglement,
    Rev. Mod. Phys. 81, 865 (2009), e-print arXiv:quant-ph/0702225 .
  12. /660/ F. L. Levkovich-Maslyuk:
    Two destructive effects of decoherence on Bell inequality violation,
    Phys. Rev. A 79, 054101 (2009), e-print arXiv:0812.3736 .
  13. /661/ L. Mazzola, S. Maniscalco, J. Piilo, and K. -A. Suominen:
    Exact dynamics of entanglement and entropy in structured environments,
    e-print arXiv:0904.2857 .
  14. /662/ L. Mazzola, S. Maniscalco, J. Piilo, and K.-A. Suominen:
    Interplay between entanglement and entropy in two-qubit systems,
    J. Phys. B 43, 085505 (2010).
  15. /663/ F. Altintas and R. Eryigit:
    Dynamics of entanglement and Bell-nonlocality for two stochastic qubits with dipole-dipole interaction,
    J. Phys. A 43, 415306 (2010); e-print arXiv:1007.2987 .
  16. /664/ F. Altintas and R. Eryigit:
    Quantum correlations in non-Markovian environments,
    Phys. Lett. A 374 (42), 4283-4296 (2010).
  17. /665/ Bellomo, B.; Compagno, G.; D'Arrigo, A.; Falci, G.; Lo Franco, R.; Paladino, E.:
    Decay of nonlocality due to adiabatic and quantum noise in the solid state,
    Int. J. Quant. Inform. 9, 63-71 (2011).
  18. /666/ Nawaz, A.; Toor, A. H.:
    Quantum Games and Quantum Discord,
    e-print arXiv:1012.1428 .
  19. /667/ Yao, Y., Li, H.-W., Yin, Z.-Q., Guo, G.-C., Han, Z.-F.:
    The effect of channel decoherence on entangled coherent states: A theoretical analysis,
    Phys. Lett. A 375, 3762 (2011).
  20. /668/ Hu, Ming-Liang; Fan, Heng:
    Robustness of quantum correlations against decoherence,
    Annals Phys. 327, 851-860 (2011); e-print arXiv:1111.2646v2 .
  21. /669/ Hu, Ming-Liang; Fan, Heng:
    Dynamics of entropic measurement-induced nonlocality in structured reservoirs,
    Annals Phys. 327, 2343-2353 (2012); e-print arXiv:1201.6430 .
  22. /670/ Lo Franco, Rosario; Bellomo, Bruno; Maniscalco, Sabrina; Compagno, Giuseppe:
    Dynamics of quantum correlations in two-qubit systems within non-Markovian environments,
    Int. J. Mod. Phys. B ??? (2012), special issue "Classical Vs Quantum correlations in composite systems", edited by L. Amico, S. Bose, V. Korepin and V. Vedral, e-print arXiv:1205.6419  (2012).
  23. /671/ Okrasa, M.; Walczak, Z.:
    On two-qubit states ordering with quantum discords,
    Europhysics Letters 98, 40003 (2012).
  24. /672/ Qiu, L:
    Quantum correlations at finite temperature,
    Int. J. Quant. Inform. 10 (2), 1250027 (2012). 
  25. /673/ A De Pasquale:
    Bipartite entanglement of large quantum systems,
    e-print arXiv:1206.6749 .
  26. /674/ Yao, Y.; Li, H. W.; Li, M.; Yin, Z. Q.; Chen, W.; Han, Z. F.:
    Bell violation versus geometric measure of quantum discord and their dynamical behavior,
    Euro. Phys. J. D 66, 295 (2012). 
  27. /675/ Ming-Liang Hu, Heng Fan, and Dong-Ping Tian:
    Dual roles of weak measurements in quantum discord,
    e-print arXiv:1304.5074v1 .
  28. /676/ K. Bartkiewicz, K. Lemr, A. Cernoch, and J. Soubusta:
    Measuring nonclassical correlations of two-photon states,
    Phys. Rev. A 87, 062102 (2013); e-print arXiv:1302.1221v2 .
  29. /677/ ML Hu, H Fan, DP Tian:
    Role of Weak Measurements on States Ordering and Monogamy of Quantum Correlation,
    Int. J. Theor. Phys. ??? (2014) .
  30. /678/ V Erol, F Ozaydin, AA Altintas:
    Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems,
    Scientific Reports 4, 5422 (2014). 
  31. /679/ A Kowalewska-Kudlaszyk, W Leonski:
    Nonlinear coupler operating on Werner-like states-entanglement creation, its enhancement, and preservation,
    J. Opt. Soc. Am. B 31, 1290 (2014). 
  32. /680/ R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, and E. Paladino:
    Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling,
    Phys. Rev. B 90 , 054304 (2014).
  33. /681/ WC Ma, JD Shi, S Xu, XK Song, L Ye:
    Probing the relationship between quantum entanglement and non-locality for different states,
    Mod. Phys. Lett. B 28, 1450146 (2014). 
  34. /682/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
  35. /683/ A. Nawaz:
    Werner-like States and Strategic Form of Quantum Games,
    e-print arXiv:1307.5508 .
  36. CL Liu, XD Yu, GF Xu, DM Tong:
    Ordering states with coherence measures,
    e-print arXiv:1601.03936 
41
W. Leonski and A. Miranowicz:
Kerr nonlinear coupler and entanglement,
J. Opt. B 6, S37-S42 (2004).
CITATIONS:
  1. /684/ A. A. Hnilo:
    Three-photon frequency down-conversion as an event-ready source of entangled states,
    Phys. Rev. A 71, 033820 (2005).
  2. /685/ F. A. A. El-Orany, M. Sebawe Abdalla and J. Perina:
    Quantum properties of the codirectional three-mode Kerr nonlinear coupler,
    Euro. Phys. J. D 33, 453 (2005), e-print arXiv:0907.5291 .
  3. /686/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Generation of three-qubit entangled W state by nonlinear optical state truncation,
    J. Phys. B 39, 1269-1274 (2006); e-print arXiv:quant-ph/0607161 .
  4. /687/ Murray K. Olsen:
    Bright entanglement in the intracavity nonlinear coupler,
    Phys. Rev. A 73, 053806 (2006), e-print arXiv:quant-ph/0603037 .
  5. /688/ F. Dell'Anno, S. De Siena, F. Illuminati:
    Multiphoton quantum optics and quantum state engineering,
    Phys. Rep. 428, 53-168 (2006).
  6. /689/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Squeezing in the multi-mode nonlinear optical state truncation,
    Phys. Lett. A  365, Iss. 5-6, 380-385 (2007); e-print arXiv:quant-ph/0608189 .
  7. /690/ Hua-tang Tan, Gao-xiang Li, Shi-yao Zhu:
    Macroscopic three-mode squeezed and fully inseparable entangled beams from triply coupled intracavity Kerr nonlinearities,
    Phys. Rev. A 75, 063815 (2007).
  8. /691/ Filho AFGF, Sousa JRR, Lima FT, Fraga WB, Guimaraes GF, Mendonca JWM, Sombra ASB:
    A performance study of a nonlinear all Fibre Michelson interferometer, add-drop multiplexer, based in Fibre Bragg grating mirrors, Optical and Quantum Electronics 40, 525-534 (2008).
  9. /692/ S. Sivakumar:
    Entanglement of bosonic modes of nonplanar molecules,
    J. Phys. B 42 095502 (2009); e-print arXiv:0812.0273 .
  10. /693/ M. Kurpas, J. Dajka, and E. Zipper:
    Entanglement of qubits via a nonlinear resonator,
    J. Phys.: Condens. Matter 21, 235602 (2009); e-print arXiv:0812.3791v3 .
  11. /694/ A.F.G.F. Filho, J.R.R. De Sousa, G.F. Guimaraes, H.H.B. Rocha, A.C. Ferreira, F.T. Lima, A.S.B. Sombra:
    Add-Drop Demultiplexer Operating in an Optical Michelson Interferometer Based in Fiber Bragg Gratings for Time Division Multiple Access Systems,
    Fiber and Integrated Optics 29 (4): 239-253 (2010).
  12. /695/ D. Mogilevtsev, V.S. Shchesnovich:
    Single-photon generation by correlated loss in a three-core optical fiber,
    Opt. Lett. 35 (20), 3375-3377 (2010).
  13. /696/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  14. /697/ M.R. Abbasi, M.M. Golshan:
    Dynamics of photon–photon entanglement in a bimodal nonlinear nanocavity,
    Opt. Commun. 285, 3982-3987 (2012).
  15. /698/ Kowalewska-Kudlaszyk, A.:
    Dephasing in nonlinear quantum scissors systems,
    Opt. Commun. 285, 5543 (2012). 
  16. /699/ A. Kowalewska-Kudłaszyk:
    Nonlinear coupler and qutrit-qubit entanglement,
    Proc. SPIE 8697, 869729 (2012). 
  17. /700/ A. Kowalewska-Kudłaszyk:
    Entanglement in a nonlinear coupler: the cross-action effect,
    Phys. Scr. T153, 014039 (2013). 
  18. /701/ A Voje, A Isacsson, A Croy:
    Nonlinear-dissipation induced Entanglement of Coupled Nonlinear Oscillators,
    Phys. Rev. A 88, 022309 (2013),  e-print arXiv:1305.6514 .
  19. /702/ M.R. Abbasi, M.M. Golshan:
    Thermal entanglement of a two-level atom and bimodal photons in a Kerr nonlinear coupler,
    Physica A 392, 6161 (2013) .
  20. /703/ K Thapliyal, A Pathak, B Sen, J Perina :
    Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing and antibunching,
    Phys. Rev. A 90, 013808 (2014); e-print arXiv:1403.6647 .
  21. /704/ K Thapliyal, A Pathak, B Sen, J Perina:
    Nonclassical properties of a contradirectional nonlinear optical coupler,
    Phys. Lett. A 378, 3431 (2014),  e-print arXiv:1406.0355 .
  22. /705/ GH Hovsepyan, AR Shahinyan, GY Kryuchkyan:
    Multiphoton blockades in pulsed regimes beyond the stationary limits,
    Phys. Rev. A 90, 013839 (2014); e-print arXiv:1406.1057 .
  23. /706/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
  24. /707/ A Voje, A Croy, A Isacsson:
    Entanglement Dynamics of Quantum Oscillators Nonlinearly Coupled to Thermal Environments,
    Phys. Rev. A 92, 012313 (2015),  e-print arXiv:1412.1999 .
  25. /708/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  26. /709/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    Three-mode system of nonlinear quantum oscillators and quantum correlations,
    Proc. SPIE 9441, 94410U (2014). 
  27. /710/ S Alizadeh, R Safaiee, MM Golshan:
    Effect of temperature on photon–photon entanglement in a nonlinear nanocavity
    Physica A 428, 133 (2015). 
  28. /711/ MR Abbasi:
    Thermal atom–atom entanglement in a nonlinear cavity,
    Physica A 426, 1 (2015). 
  29. /712/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  30. /713/ M. A. Al-Rajhi,
    Photon added coherent states for nonharmonic oscillators in a nonlinear Kerr medium,
    Mod. Phys. Lett. B, 29, 1550035 (2015). 
42
A. Miranowicz and A. Grudka:
A comparative study of relative entropy of entanglement, concurrence and negativity,
J. Opt. B 6, 542-548 (2004); e-print arXiv:quant-ph/0409153 .
CITATIONS:
  1. /714/ M. B. Plenio and S. Virmani:
    An introduction to entanglement measures, Quant. Inf. Comp. 7, 1-51 (2007); e-print arXiv:quant-ph/0504163 .
  2. /715/ I. Bengtsson and K. Zyczkowski:
    Geometry of Quantum States: An Introduction to Quantum Entanglement
    (Cambridge Univ. Press, Cambridge, 2006).
  3. /716/ K. Zyczkowski and I. Bengtsson:
    An introduction to quantum entanglement: A geometric approach,
    e-print arXiv:quant-ph/0606228 .
  4. /717/ M. Paternostro:
    Theoretical proposals on efficient schemes for quantum information processing,
    Ph.D. Thesis, Queen's University, Belfast, UK, 2005.
  5. /718/ Heng-Na, X. Hong, G. Jian, J. Jun, C. Li-Yan, T.:
    The relation between the entanglement of two atoms and the entanglement of two-mode fields,
    Acta Physica Sinica (Chinese edition) 55(6), 2725-2728 (2006).
  6. /719/ Yuma Kinoshita, Ryo Namiki, Takashi Yamamoto, Masato Koashi and Nobuyuki Imoto:
    Selective entanglement breaking,
    Phys. Rev. A  75, 032307 (2007); e-print arXiv:quant-ph/0611171 .
  7. /720/ M. B. Plenio and S. Virmani:
    Entanglement Measures,
    in: "Lectures on Quantum Information", eds. D. Bruss and G. Leuchs, Wiley-VCH Verlag, 2007.
  8. /721/ C. Sabin, G. Garcia-Alcaine:
    A classification of entanglement in three-qubit systems,
    Euro. Phys. J. D 48, Issue 3, 435-442 (2008); e-print arXiv:0707.1780 .
  9. /722/ S. Bhardwaj, V. Ravishankar:
    Characteristics and benchmarks of entanglement of mixed states - the two qubit case,
    Phys. Rev. A  77, 022322 (2008); e-print arXiv:0801.1545 .
  10. /723/ R. Augusiak, M. Demianowicz, P. Horodecki:
    Universal observable detecting all two-qubit entanglement and determinant-based separability tests,
    Phys. Rev. A 77, 030301 (2008).
  11. /724/ L. K. Shalm, R. B. A. Adamson, A. M. Steinberg:
    Squeezing and over-squeezing of triphotons, Nature 457, 67-70 (1 January 2009).
  12. /725/ R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki:
    Quantum entanglement,
    Rev. Mod. Phys. 81, 865 (2009), e-print arXiv:quant-ph/0702225 .
  13. /726/ S. Bhardwaj and V. Ravishankar:
    A Complete Characterization of Mixed State Entanglement using Probability Density Functions,
    e-print arXiv:quant-ph/070301 .
  14. /727/ S. Adhikari:
    Quantum Cloning and Deletion in Quantum Information Theory, Ph.D. Thesis (Bengal Engineering and Science University, 2006), e-print arXiv:0902.1622 .
  15. /728/ S. N. Sandhya, and V. Ravishankar:
    Tomography, Control and Characterization of Entanglement in Three level Atomic System,
    Phys. Rev. A 82, 062301 (2010), e-print arXiv:1004.4739 .
  16. /729/ Laura Mazzola, Bruno Bellomo, Rosario Lo Franco, and Giuseppe Compagno:
    Connection among entanglement, mixedness and nonlocality in a dynamical context,
    Phys. Rev. A 81, 052116 (2010); e-print arXiv:1003.5153 .
  17. /730/ R.X. Dong and D.L. Zhou:
    Correlation function and mutual information,
    J. Phys. A 43, 445302 (2010); e-print arXiv:1005.5064 .
  18. /731/ Sperling, J.; Vogel, W.:
    The Schmidt number as a universal entanglement measure,
    Phys. Scripta 83, 045002 (2011).
  19. /732/ Okrasa, M.; Walczak, Z.:
    On two-qubit states ordering with quantum discords,
    Europhysics Letters 98, 40003 (2012).
  20. /733/ Pagel, D; Fehske, H; Sperling, J; Vogel, W:
    Strongly entangled light from planar microcavities,
    Phys. Rev. A 86, 052313 (2012).
  21. /734/ Yao, Y.; Li, H. W.; Li, M.; Yin, Z. Q.; Chen, W.; Han, Z. F.:
    Bell violation versus geometric measure of quantum discord and their dynamical behavior,
    Euro. Phys. J. D 66, 295 (2012). 
  22. /735/ S Xu, X Song, L Ye:
    Measurement-induced disturbance and negativity in mixed-spin XXZ model,
    Quant. Inform. Process. 13, 1013-1024 (2014). 
  23. /736/ M. Bina, A. Mandarino, S. Olivares, M.G.A. Paris:
    Drawbacks of the use of fidelity to assess quantum resources,
    Phys. Rev. A 89, 012305 (2014).
  24. /737/ X Song, T Wu, S Xu, J He, L Ye:
    Renormalization of quantum discord and Bell nonlocality in the XXZ model with Dzyaloshinskii–Moriya interaction
    Annals of Physics 349, 220 (2014) 
  25. /738/ V Erol, S Bugu, F Ozaydin, AA Altintas:
    An analysis of concurrence entanglement measure and quantum Fisher information of quantum communication networks of two-qubits,
    Signal Processing and Communications Applications Conference (SIU), 317-320 (2014) 
  26. /739/ V Erol, F Ozaydin, AA Altintas:
    Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems,
    Scientific Reports 4, 5422 (2014) 
  27. /740/ WC Ma, JD Shi, S Xu, XK Song, L Ye:
    Probing the relationship between quantum entanglement and non-locality for different states,
    Mod. Phys. Lett. B 28, 1450146 (2014). 
  28. /741/ Eltschka, C; Siewert, J:
    Quantifying entanglement resources,
    J. Phys. A 47, ??? (2014). 
  29. /742/ V. Erol:
    A comparative study of concurrence and negativity of general three-level quantum systems of two particles,
    AIP Conf. Proc. 1653, 020037 (2015). 
  30. /743/ C. Eltschka, G. Tóth, and J. Siewert:
    Partial transposition as a direct link between concurrence and negativity,
    Phys. Rev. A 91, 032327 (2015). 
  31. /744/ Yuan, HC; Wang, Z; Chen, QM; Dou, XM:
    Quantifying micro-macro entanglement of a single-photon entangled state by virtue of Wigner function method,
    A 30, 1550109 (2015). 
  32. /745/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
  33. /746/ MA Jafarizadeh, N Karimi, D Amidi, H Zahir:
    Quantum discord of 2n-dimensional Bell-diagonal states,
    e-print arXiv:1504.01134 .
  34. CL Liu, XD Yu, GF Xu, DM Tong:
    Ordering states with coherence measures,
    e-print arXiv:1601.03936 
43
J. Bajer, A. Miranowicz, M. Andrzejewski:
Quantum noise and mixedness of a pumped dissipative nonlinear oscillator,
J. Opt. B 6, 387-395 (2004).
CITATIONS:
  1. /747/ F. A. A. El-Orany, M. Sebawe Abdalla and J. Perina:
    Quantum properties of the codirectional three-mode Kerr nonlinear coupler,
    Euro. Phys. J. D 33, 453 (2005), e-print arXiv:0907.5291 .
  2. /748/ Alessio Serafini:
    Decoherence and entanglement in continuous variable quantum information,
    Ph.D. Thesis, Univ. of Salerno, Italy, 2004.
  3. /749/ F.A.A. El-Orany, A.-S.F. Obada, Z. M. Asker and J. Perina:
    Quantum properties of a superposition of squeezed displaced two-mode vacuum and single-photon states,
    Phys. Scripta 79, 035402 (2009); e-print arXiv:0808.2681 .
  4. /750/ MS Abdalla, ASF Obada, S Abdel-Khalek:
    Some statistical properties for a moving three-level atom in interaction with a bimodal cavity field,
    Euro. Phys. J. Plus 128:26 (2013) 
44
A. Miranowicz, A. Grudka:
Ordering two-qubit states with concurrence and negativity,
Phys. Rev. A  70, 032326 (2004); e-print arXiv:quant-ph/0404053 .
CITATIONS:
  1. /751/ M. Ziman, V. Buzek:
    Concurrence vs. purity:
    Influence of local channels on Bell states of two qubits
    ,
    Phys. Rev. A 72, 052325 (2005); e-print arXiv:quant-ph/0508106 .
  2. /752/ M. Ziman, V. Buzek:
    Entanglement-induced state ordering under local operations,
    Phys. Rev. A 73, 012312 (2006); e-print arXiv:quant-ph/0510017 .
  3. /753/ Jun-Hong An, Shun-Jin Wang, Hong-Gang Luo:
    Entanglement dynamics of qubits in a common environment,
    Physica A 382, Is. 2, 753-764 (2007), e-print arXiv:quant-ph/0604020 .
  4. /754/ H.N. Xiong, G. Hong, J. Jian, et al.:
    The relation between the entanglement of two atoms and the entanglement of two-mode fields, Acta. Phys. Sin. (Ch. Ed.) 55 (6), 2720-2725 (2006).
  5. /755/ Yuma Kinoshita, Ryo Namiki, Takashi Yamamoto, Masato Koashi and Nobuyuki Imoto:
    Selective entanglement breaking,
    Phys. Rev. A  75, 032307 (2007); e-print arXiv:quant-ph/0611171 .
  6. /756/ S. J. Akhtarshenas, M. Farsi:
    Negativity as Entanglement Degree of the Jaynes-Cummings Model,
    Phys. Scripta 75, 608-614 (2007); e-print arXiv:quant-ph/0702101 .
  7. /757/ C. Sabin, G. Garcia-Alcaine:
    A classification of entanglement in three-qubit systems,
    Euro. Phys. J. D 48, Issue 3, 435-442 (2008); e-print arXiv:0707.1780 .
  8. /758/ Mario Ziman, Vladimir Buzek:
    Entanglement measures:
    state ordering vs local operations
    ,
    in: Quantum Communication and Security (ed. by M. Zukowski et al.), pp. 196-204 (IOS Press, 2007); e-print arXiv:0707.4401 .
  9. /759/ Xiao San Ma and An Min Wang:
    The effect of stochastic dephasing on the entanglement and coherence of qutrits,
    Physica A 386, Issue 1, pp. 590-596 (2007).
  10. /760/ J. Dajka, M. Mierzejewski, and J. Luczka:
    Non-Markovian entanglement evolution of two uncoupled qubits,
    Phys. Rev. A 77, 042316 (2008).
  11. /761/ J. Dajka, J. Luczka, P. Hanggi:
    Entanglement swapping in presence of dephasing,
    Physica Status Solidi B 246, Issue 5, 936-940 (2009).
  12. /762/ S. Campbell and M. Paternostro:
    Dissipative scheme to approach the boundary of two-qubit entangled mixed states,
    Phys. Rev. A  79, 032314 (2009).
  13. /763/ S. Campbell, and M. Paternostro:
    Teleporting bipartite entanglement using maximally entangled mixed channels,
    Int. J. Quant. Inform.  8 (1-2), 105-119 (2010); e-print arXiv:0905.4362 .
  14. /764/ Xi-Wen Hou, Ming-Fang Wan, and Zhong-Qi Ma:
    Entropy and negativity of Fermi-resonance coupling vibrations in a spectroscopic Hamiltonian,
    Phys. Rev. A 79, 022308 (2009).
  15. /765/ M. Avellino:
    Entanglement and Quantum Information Transfer in Arrays of Interacting Quantum Systems,
    e-print arXiv:0909.0655 .
  16. /766/ K. Berrada, M. El Baz, H. Eleuch, and Y. Hassouni:
    A comparative study of negativity and concurrence based on spin coherent states,
    Int. J. Mod. Phys. C 21 (3), 291-305, 2010.
  17. /767/ Li Jiao-Jiao and Wang Zhi-Xi:
    Monogamy relations in tripartite quantum system,
    Chinese Phys. B 19, 100310 (2010).
  18. /768/ Berrada, K.; Hassouni, Y.:
    Entanglement measure of bipartite system states,
    Int. J. of Geometrical Methods in Modern Physics 7 (6), 1051-1064 (2010).
  19. /769/ Chiuri, Andrea; Vallone, Giuseppe; Paternostro, Mauro; Mataloni, Paolo:
    Extremal Quantum Correlations: Experimental Study with Two-qubit States ,
    Phys. Rev. A 84, 020304 (2011), e-print arXiv:1105.2109 .
  20. /770/ Xu, YP; Yang, Y; Zhu, SQ; Ren, J; Wu, L:
    Entanglement Resonance of End Spins in Different Spin Chains,
    Comm. Theor. Phys. 56 (1), 83-90 (2011).
  21. /771/ Yao, Y., Li, H.-W., Yin, Z.-Q., Guo, G.-C., Han, Z.-F.:
    The effect of channel decoherence on entangled coherent states: A theoretical analysis,
    Phys. Lett. A 375, 3762 (2011).
  22. /772/ Berrada, K.; Hassouni, Y.; Eleuch, H.:
    Degree of Entanglement and Violation of Bell Inequality by Two-Spin-1/2 States,
    Comm. Theor. Phys. 56, 679 (2011).
  23. /773/ Bellomo, Bruno; Giorgi, Gian Luca; Galve, Fernando; Lo Franco, Rosario; Compagno, Giuseppe; Zambrini, Roberta:
    Unified view of correlations using the square norm distance,
    Phys. Rev. A 85, 032104 (2012); arXiv:1112.6370 .
  24. /774/ Adhikari, S.; Majumdar, A. S.; Home, D.; Pan, A. K.; Joshi, P.:
    Quantum teleportation using non-orthogonal entangled channels,
    Phys. Scripta 85, 045001 (2012).
  25. /775/ Okrasa, M.; Walczak, Z.:
    On two-qubit states ordering with quantum discords,
    Europhysics Letters 98, 40003 (2012).
  26. /776/ B. Bellomo, R. Lo Franco, and G. Compagno:
    Dynamics of geometric and entropic quantifiers of correlations in open quantum systems,
    Phys. Rev. A 86, 012312 (2012).
  27. /777/ S. Campbell:
    Predominance of entanglement of formation over quantum discord under quantum channels,
    Quant. Inform. Process. 12 (7), 2623 (2013); e-print arXiv:1207.6562 .
  28. /778/ C.S. Lestayo:
    Bipartite entanglement of localized separated systems,
    Ph.D. Thesis, CSIC, Madrid, 2012.
  29. /779/ A. Bhar, I. Chattopadhyay, D. Sarkar:
    A Comparative Study on Correlation Measures of Pure Bipartite States through Incomparability,
    J. Quant. Inform. Science, 2, 90 (2012).
  30. /780/ K. Berrada, A. Chafik, H. Eleuch, Y. Hassouni:
    Concurrence in the framework of coherent states,
    Quant. Inform. Process. 9(1), 13-26 (2012). 
  31. /781/ K. Berrada, M. El Baz, H. Eleuch, Y. Hassouni, M. E. Baz:
    Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra,
    Quant. Inform. Process. 11, 351-372 (2012).
  32. /782/ SANG Ming-huang, DAI Hai-Lang, WANG Xian-Ping, ZHOU Hang :
    Effect of the Stark Shift on Atom Entanglement in a Two Identity Atoms Tavis-Cummings Model,
    Acta Photonica Sinica 42(5), 627 (2013) 
  33. /783/ C Yu, B Li, H Fan:
    The witness of sudden change of geometric quantum correlation,
    Quant. Inform. Comp. 14, 454 (2014); e-print arXiv:1309.0934 .
  34. /784/ Swapan Rana and Preeti Parashar:
    Maximally discordant separable two qubit X states,
    Quant. Inform. Process. 13, 2815 (2014),  e-print arXiv:1311.1671v1 .
  35. /785/ Leandro Aolita, Fernando de Melo, and Luiz Davidovich:
    Open-system dynamics of entanglement: A key issues review,
    Rep. Prog. Phys. 78, 042001 (2015),  e-print arXiv:1402.3713 .
  36. /786/ V Erol, S Bugu, F Ozaydin, AA Altintas:
    An analysis of concurrence entanglement measure and quantum Fisher information of quantum communication networks of two-qubits,
    Signal Processing and Communications Applications Conference (SIU), 317-320 (2014) 
  37. /787/ V Erol, F Ozaydin, AA Altintas:
    Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems,
    Scientific Reports 4, 5422 (2014) 
  38. /788/ S Rastgoo, MM Golshan:
    Spin–spin entanglement in moving frames: Properties of negativity,
    PRAMANA - J. Phys. 83 (6), 915-923 (2014) 
  39. /789/ HS Borges:
    Dinâmica coerente de estados quânticos em nanoestruturas semicondutoras acopladas
    Ph.D. Thesis, Universidade Federal de Uberlândia, e-print repositorio.ufu.br (2014).
  40. /790/ V. Erol:
    A comparative study of concurrence and negativity of general three-level quantum systems of two particles,
    AIP Conf. Proc. 1653, 020037 (2015). 
  41. /791/ C. Eltschka, G. Tóth, and J. Siewert:
    Partial transposition as a direct link between concurrence and negativity,
    Phys. Rev. A 91, 032327 (2015). 
  42. /792/ S Rana, P Parashar, M Lewenstein:
    Trace distance measure of coherence
    e-print arXiv:1511.01854 .
  43. CL Liu, XD Yu, GF Xu, DM Tong:
    Ordering states with coherence measures,
    e-print arXiv:1601.03936 
45
A. Miranowicz and W. Leoński:
Dissipation in systems of linear and nonlinear quantum scissors, J. Optics B 6, S43-S46 (2004).
CITATIONS:
  1. /793/ F. Dell'Anno, S. De Siena, F. Illuminati:
    Multiphoton quantum optics and quantum state engineering,
    Phys. Rep. 428, 53-168 (2006).
  2. /794/ T. V. Gevorgyan, A. R. Shahinyan, and G. Yu. Kryuchkyan:
    Generation of Fock states and qubits in periodically pulsed nonlinear oscillators,
    Phys. Rev. A 85, 053802 (2012).
  3. /795/ T. V. Gevorgyan, A. R. Shahinyan, Lock Yue Chew, G. Yu. Kryuchkyan:
    Bistability and chaos at low-level of quanta,
    Phys. Rev. E 88, 022910 (2013), e-print arXiv:1303.0946 .
  4. /796/ MA Al-Rajhi, S Abdel-Khalek:
    Generalized Heisenberg Algebra Coherent States for Nonharmonic Oscillators
    Int. J. Theor. Phys. 54, 1470 (2014) .
  5. /797/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    Three-mode system of nonlinear quantum oscillators and quantum correlations,
    Proc. SPIE 9441, 94410U (2014). 
  6. /798/ M. A. Al-Rajhi,
    Photon added coherent states for nonharmonic oscillators in a nonlinear Kerr medium,
    Mod. Phys. Lett. B, 29, 1550035 (2015). 
46
G. Chimczak, R. Tanaś, and A. Miranowicz:
Teleportation with insurance of an entangled atomic state via cavity decay,
Phys. Rev. A 71, 032316 (2005); e-print arXiv:quant-ph/0407007 .
CITATIONS:
  1. /799/ Zheng-Yuan Xue, Ming Yang, You-Ming Yi, Zhuo-Liang Cao:
    Teleportation for atomic entangled state by entanglement swapping with separate measurements in cavity QED,
    Opt. Commun. 258, 315-320 (2006); e-print arXiv:quant-ph/0508040 .
  2. /800/ Yuan Liang Lim, Sean D. Barrett, Almut Beige, Pieter Kok, Leong Chuan Kwek:
    Repeat-Until-Success quantum computing using stationary and flying qubits,
    Phys. Rev. A 73, 012304 (2006); e-print arXiv:quant-ph/0508218 .
  3. /801/ Yan-Qing Guo, Hai-Jing Cao, and He-Shan Song:
    Field tuned atom-atom entanglement via dipole-dipole interaction,
    e-print arXiv:quant-ph/0509142 .
  4. /802/ Yan-Qing Guo, Jing Chen, He-Shan Song:
    Local field modulated entanglement among three distant atoms,
    e-print arXiv:quant-ph/0509143 .
  5. /803/ Zhuo-Liang Cao, Li-Hua Zhang, Ming Yang:
    Concentration for unknown atomic entangled states via cavity decay,
    Phys. Rev. A  73, 014303 (2006), e-print arXiv:quant-ph/0510044 .
  6. /804/ Yan-Qing, Guo, Hai-Jing Cao, and He-Shan Song:
    A position dependent atom-atom entanglement in real-time cavity QED system,
    e-print arXiv:quant-ph/0512211 .
  7. /805/ Yan-Qing Guo, Jing Chen, He-Shan Song:
    An effective entanglement among three fibre-connected distant atoms,
    Chinese Phys. Lett. 23, 1088-1091 (2006).
  8. /806/ Li-Hua Zhang, Zheng-Yuan Xue, Ming Yang, Zhuo-Liang Cao:
    Scheme for Teleportation of Unknown Entangled Atomic States via Cavity Decay,
    Comm. in Theor. Phys. 46, no. 10, p. 610-612 (2006).
  9. /807/ Zhang G (Zhang, Gang), Yang M (Yang, Ming), Xue ZY (Xue, Zheng-Yuan), Cao ZL (Cao, Zhuo-Liang):
    Concentration for atomic entanglement states via cavity decay,
    Int. J. Quant. Inform. 4 (5), 837-841 (2006).
  10. /808/ Xiao-Wei Zhang, Xiang Liu, Xiao-Fang, You-Liang Tang:
    Scheme for concentration of unknown Greeberger-Horne-Zeilinger entangled states via cavity decay,
    Chinese Phys. Lett. 24, Issue 3, pp. 602-605 (2007).
  11. /809/ V.I. Koroli:
    Squeezing oscillations of a quantized field interacting with pair of cold atoms via intensity-dependent coupling,
    Int. J. Quant. Inform. 5, Issue 1-2, 199-205 (2007).
  12. /810/ Di Mei, Chong Li, Guo-Hui Yang, He-Shan Song:
    Quantum states transfer by the analogous Bell states,
    Comm. Theor. Phys. 49, Issue 2, pp. 347-350 (2008); e-print arXiv:quant-ph/0703175 .
  13. /811/ Zheng-Yuan Xue, Ping Dong, You-Min Yi and Zhuo-Liang Cao:
    Quantum information processing via superconducting quantum interference device coupled to imperfect cavity,
    Physica C: Superconductivity, Volume 458, Issues 1-2, pp. 58-63 (2007).
  14. /812/ Wang Dong, Liu Yi-Min, Gao Gan, Shi Shou-Hua, Zhang Zhan-Jun:
    Teleportation of an arbitrary two-atom entangled state via thermal cavity,
    Comm. Theor. Phys. 47 (3), 437-440 (2007).
  15. /813/ Guo Yan-Qing, Cao Hai-Jing, Song He-Shan:
    A position-dependent two-atom entanglement in real-time cavity QED system,
    Comm. Theor. Phys. 47 (1), 59-62 (2007).
  16. /814/ Zhuo-Liang Cao, Da-Chuang Li:
    Scheme for teleportation of an unknown atomic state via a cluster state in cavity QED,
    Chinese Phys. B , Volume 17, Issue 1, pp. 55-59 (2008).
  17. /815/ Cao Zhuo-Liang and Li Da-Chuang:
    Teleportation of an unknown atomic entangled state without any joint Bell-state measurement via a cluster state,
    Comm. Theor. Phys. 49, 369-372 (2008).
  18. /816/ Li Da-Chuang, Zheng Xiao-Hu, Dong Ping and Cao Zhuo-Liang, Teleportation for an Unknown Entangled State Without Any Joint Measurement via Josephson Charge Qubits,
    Comm. Theor. Phys. 49, 1195-1198 (2008).
  19. /817/ Wu B (Wu, Bo), Li DC (Li, Da-Chuang), Dai H (Dai, Hong):
    Teleportation of an arbitrary and unknown Josephson charge-qubit entangled state via a cluster state,
    Int. J. Quant. Inform.  7, 403-411 (2009).
  20. /818/ K. Harkonen, F. Plastina, S. Maniscalco:
    Dicke model and environment-induced entanglement in ion-cavity QED,
    Phys. Rev. A  80, 033841 (2009); e-print arXiv:0907.0778 .
  21. /819/ Peng, ZH; Zou, J; Liu, XJ; Kuang, LM:
    Teleportation of atomic and photonic states in low-Q cavity QED,
    Opt. Commun. 285, 5558 (2012). 
  22. /820/ Yan-Lin Liao and Yan Zhao:
    Transfer of Entangled States for Two Atoms Via Cavity Decay,
    Int. J. Theor. Phys. 52 (1), 246 (2012). 
  23. /821/ K Marshall, DFV James:
    What is the best way to teleport a qudit?,
    e-print arXiv:1310.3187 .
  24. /822/ LH Zhang, M Yang, ZL Cao:
    Directly measuring the concurrence of atomic two-qubit states through the detection of cavity decay,
    Euro. Phys. J. D 68, 109 (2014). 
  25. /823/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014) 
  26. /824/ AB Bhattacherjee:
    Optomechanical Entanglement between an Ion and an Optical Cavity Field,
    e-print arXiv:1505.06507 .
47
Yu-xi Liu, S. K. Özdemir, A. Miranowicz, and N. Imoto:
Kraus representation of a damped harmonic oscillator and its application,
Phys. Rev. A 70, 042308 (2004); e-print arXiv:quant-ph/0407263 .
CITATIONS:
  1. /825/ I. Garcia-Mata, M. Saraceno, M. E. Spina, and G. Carlo:
    Phase space contraction and quantum operations,
    Phys. Rev. A 72, 062315 (2005), e-print arXiv:quant-ph/0508190 .
  2. /826/ C. Uchiyama:
    Non-Markovian dynamical maps and spin relaxation,
    Phys. Lett. A 356, 294-305 (2006).
  3. /827/ M. S. Tame, M. Paternostro, C. Hadley, S. Bose, M. S. Kim:
    Decoherence-based exploration of d-dimensional one-way quantum computation: Information transfer and basic gates,
    Phys. Rev. A  74, 042330 (2006); e-print arXiv:quant-ph/0605212 .
  4. /828/ S. Pirandola, S. Mancini, S. L. Braunstein, and D Vitali:
    Minimal qudit code for a qubit in phase damping channel,
    Phys. Rev. A  77, 032309 (2008); e-print arXiv:0705.1099 .
  5. /829/ Xia Zhu, Le-Man Kuang:
    The influence of entanglement and decoherence on the quantum Stackelberg duopoly game,
    J. Phys. A  40, Issue 27, 7729-7744 (2007).
  6. /830/ Tong Zhao-yang, Liao Ping and Kuang Le-man:
    Quantum repeaters based on CNOT gate under decoherence,
    Frontiers of Physics in China, Volume 2, Issue 4, 389-402 (2007).
  7. /831/ Zhu Xia and Kuang Le-Man:
    Quantum Stackelberg Duopoly Game in Depolarizing Channel,
    Comm. Theor. Phys. 49, 111-116 (2008).
  8. /832/ Ivan, J. S.; Sabapathy, K.; Simon, R.:
    Operator-sum representation for bosonic Gaussian channels,
    Phys. Rev. A 84, 042311 (2011), e-print arXiv:1012.4266 .
  9. /833/ Carlo, Gabriel G.; Rivas, Alejandro M. F.; Spina, María E.:
    Spectral behavior of contractive noise,
    Phys. Rev. E 84, 066201 (2011), e-print arXiv:1109.6623 .
  10. /834/ Li, J.; McKeown, G.; Semiao, F. L.; Paternostro, M.:
    Non-Markovian effects on the nonlocality of a qubit-oscillator system,
    Phys. Rev. A 85, 022116 (2012); e-print arXiv:1109.0133v2 .
  11. /835/ Biswas, A; Brumer, P:
    Generic Construction of Kraus Operators: d-level Systems in a Thermal Bosonic Bath,
    Israel J. Chem. 52, 461-466 (2012).
  12. /836/ M. Arsenijevic, J. Jeknic-Dugic, M. Dugic:
    Asymptotic dynamics of the alternate degrees of freedom for a two-mode system: an analytically solvable model,
    Chinese Phys. B 22, 1674 (2013);  e-print arXiv:1207.5260 . v
  13. /837/ Y Ouyang, WH Ng:
    Truncated channel representations for coupled harmonic oscillators,
    J. Phys. A 46, 1751 (2013) ; e-print arXiv:1301.4547 .
  14. /838/ J Lockhart, C Di Franco, M Paternostro:
    Performance of continuous time quantum walks under phase damping,
    e-print arXiv:1303.5319 .
  15. /839/ Yingkai Ouyang:
    Transmitting Quantum Information Reliably across Various Quantum Channels,
    Ph.D. thesis, Waterloo University, 2013. PDF
  16. /840/ Xinyu Zhao, Samuel R. Hedemann, Ting Yu :
    Restoration of a quantum state in a dephasing channel via environment-assisted error correction,
    Phys. Rev. A 88, 022321 (2013), , e-print arXiv:1305.4627 .
  17. /841/ Jasmina Jeknic-Dugic, Momir Arsenijevic, Miroljub Dugic :
    Quantum Structures: A View of the Quantum World,
    e-print arXiv:1306.5471v2 .
  18. /842/ J Lockhart, C di Franco, M Paternostro:
    Glued trees algorithm under phase damping,
    Phys. Lett. A 378, 338 (2014). 
  19. /843/ Wang, Kelvin; Zhao, Xinyu; Yu, Ting:
    Environment-assisted quantum state restoration via weak measurements,
    Phys. Rev. A 89, 042320 (2014);  arXiv:1404.4110 
  20. /844/ KA Smolinski:
    Many Unstable Particles from an Open Quantum System's Perspective,
    Open Systems Inform. Dynamics 21, 1230 (2014) 
  21. /845/ F Ozaydin:
    Phase damping destroys quantum Fisher information of W states,
    Phys. Lett. A 43, 3161 (2014). 
  22. /846/ Joydip Ghosh:
    Emulating quantum state transfer through a spin-1 chain on a one-dimensional lattice of superconducting qutrits,
    Phys. Rev. A 90, 062318 (2014) 
  23. /847/ A Sohbi, I Zaquine, E Diamanti, D Markham:
    Decoherence Effects on the Non-locality of Symmetric States,
    Phys. Rev. A 91, 022101 (2015),  e-print arXiv:1411.4489 .
  24. /848/ E Zahedinejad, J Ghosh, BC Sanders:
    High-Fidelity Single-Shot Toffoli Gate via Quantum Control,
    Phys. Rev. Lett. 114, 200502 (2015),  e-print arXiv:1501.04676 .
  25. /849/ Fan-Zhen Kong, Jun-Long Zhao, Ming Yang, and Zhuo-Liang Cao:
    Entangling power and operator entanglement of nonunitary quantum evolutions,
    Phys. Rev. A 92, 012127 (2015). 
  26. /850/ KA Smoliński:
    Neutral kaons as an open quantum system in a second quantization approach,
    Phys. Rev. A 92, 032128 (2015). 
  27. /851/ TJ Wang, C Wang:
    High-efficient entanglement distillation from photon loss and decoherence,
    Optics Express 23, 31550 (2015). 
  28. /852/ A Andersson:
    Detailed balance as a quantum-group symmetry of Kraus operators,
    e-print arXiv:1506.00411 .
  29. /853/ E Zahedinejad, J Ghosh, BC Sanders:
    Designing high-fidelity single-shot three-qubit gates: A machine learning approach,
    e-print arXiv:1511.08862 .
48
A. Miranowicz:
Optical-state truncation and teleportation of qudits by conditional eight-port interferometry,
J. Opt. B 7, 142-150 (2005); e-print arXiv:quant-ph/0512257 .
CITATIONS:
  1. /854/ A.V. Dodonov, S.S. Mizrahi, and V.V. Dodonov:
    Engineering quantum jump superoperators for single-photon detectors,
    Phys. Rev. A  74, 033823 (2006), e-print arXiv:quant-ph/0601037 .
  2. /855/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Squeezing in the multi-mode nonlinear optical state truncation,
    Phys. Lett. A  365, Iss. 5-6, 380-385 (2007); e-print arXiv:quant-ph/0608189 .
  3. /856/ M. Genovese, P. Traina:
    Review on qudits production and their application to quantum communication and studies on local realism,
    e-print arXiv:0711.1288 .
  4. /857/ Jiyong Park, Su-Yong Lee, Ho-Joon Kim and Hai-Woong Lee:
    Cavity-QED-based scheme for verification of the photon commutation relation,
    New J. Phys. 12, 033019 (2010).
  5. /858/ Ho-Joon Kim, Jiyong Park, and Hai-Woong Lee:
    Cavity-QED based scheme for realization of photon annihilation and creation operations and their combinations,
    J. Opt. Soc. Am. B 27, 464-475 (2010).
  6. /859/ Y. Ben-Aryeh:
    Multiport beam-splitter controlled transformations with postselection of superposition single-photon states,
    Opt. Commun. 283 (14), 2863-2865 (2010).
  7. /860/ A. Kowalewska-Kudlaszyk and W. Leonski:
    Squeezed vacuum reservoir effect for entanglement decay in nonlinear quantum scissors system,
    J. Phys. B 43, 205503 (2010); e-print arXiv:1009.1068 .
  8. /861/ Jeffers, J:
    Nondeterministic amplifier for two-photon superpositions,
    Phys. Rev. A 82 (6), 063828 (2010).
  9. /862/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  10. /863/ S. K. Goyal and T. Konrad:
    Teleporting photonic qudits using multimode quantum scissors
    Sc. Rep. 3, 3548 (2013),  e-print arXiv:1306.0427 .
  11. /864/ Kevin Marshall and Daniel James:
    High-fidelity teleportation of continuous-variable quantum states with discrete-variable resources,
    J. Opt. Soc. Am. B 31, 423 (2014) .
  12. /865/ H. Kim, J. Park, and H. Jeong:
    Transfer of different types of optical qubits over a lossy environment,
    Phys. Rev. A 89, 042303 (2014);  e-print arXiv:1403.1042 .
  13. /866/ RM Wickert:
    Optical Implementations of Quantum Error Correction Codes,
    Ph.D. Thesis, Max-Planck-Institut für die Physik des Lichts, Erlangen, 2015.
49
A. Miranowicz and W. Leoński:

Two-mode optical state truncation and generation of maximally entangled states in pumped nonlinear couplers,
J. Phys. B 39 1683-1700 (2006).
CITATIONS:
  1. /867/ R. S. Said, M. R. B. Wahiddin and B. A. Umarov:
    Generation of three-qubit entangled W state by nonlinear optical state truncation,
    J. Phys. B 39 1269-1274 (2006); e-print arXiv:quant-ph/0607161 .
  2. /868/ S. Sivakumar:
    Entanglement of bosonic modes of nonplanar molecules,
    J. Phys. B 42 095502 (2009); e-print arXiv:0812.0273 .
  3. /869/ Seung-Woo Lee and Dieter Jaksch:
    Maximal violation of tight Bell inequalities for maximal high-dimensional entanglement,
    Phys. Rev. A 80, 010103(R) (2009); e-print arXiv:0803.3097 .
  4. /870/ Chen, LX; She, WL:
    Hybrid entanglement swapping of photons: Creating the orbital angular momentum Bell states and Greenberger-Horne-Zeilinger states,
    Phys. Rev. A 83 (1), 012306 (2011).
  5. /871/ Le Kien, F; Hakuta, K:
    Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity ,
    Phys. Rev. A 84, 053801 (2011).
  6. /872/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Prog. Optics 56, 131-185 (2011).
  7. /873/ Li, X; Shapiro, M:
    Generation and control of spin-orbit entanglement in atomic pairs,
    Phys. Rev. A 85, 043413 (2012).
  8. /874/ M.R. Abbasi, M.M. Golshan:
    Dynamics of photon–photon entanglement in a bimodal nonlinear nanocavity,
    Opt. Commun. 285, 3982-3987 (2012).
  9. /875/ Kowalewska-Kudłaszyk, A.:
    Dephasing in nonlinear quantum scissors systems,
    Opt. Commun. 285, 5543 (2012). 
  10. /876/ A. Kowalewska-Kudłaszyk:
    Entanglement in a nonlinear coupler: the cross-action effect,
    Phys. Scr. T153, 014039 (2013). 
  11. /877/ M.R. Abbasi, M.M. Golshan:
    Thermal entanglement of a two-level atom and bimodal photons in a Kerr nonlinear coupler,
    Physica A 392, 6161 (2013) .
  12. /878/ K Thapliyal, A Pathak, B Sen, J Perina:
    Nonclassical properties of a contradirectional nonlinear optical coupler,
    Phys. Lett. A 378, 3431 (2014),  e-print arXiv:1406.0355 .
  13. /879/ K Thapliyal, A Pathak, B Sen, J Perina :
    Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing and antibunching,
    Phys. Rev. A 90, 013808 (2014).
  14. /880/ S Alizadeh, R Safaiee, MM Golshan:
    Effect of temperature on photon–photon entanglement in a nonlinear nanocavity
    Physica A 428, 133 (2015). 
  15. /881/ MR Abbasi:
    Thermal atom–atom entanglement in a nonlinear cavity,
    Physica A 426, 1–8 (2015). 
50
A. Miranowicz and M. Piani:
Comment on "Inseparability Criteria for Continuous Bipartite Quantum States", Phys. Rev. Lett. 97, 058901 (2006).
CITATIONS:
  1. /882/ E. Shchukin and W. Vogel:
    Reply to Comment,
    Phys. Rev. Lett.  97, 058902 (2006).
  2. /883/ E. Shchukin and W. Vogel:
    Conditions for multipartite continuous-variable entanglement,
    Phys. Rev. A 74, 030302(R) (2006) , e-print arXiv:quant-ph/0605154 .
  3. /884/ P. Marek, M. S. Kim, M. Paternostro:
    Characterization of the entanglement of two squeezed states,
    Phys. Rev. A 74, 032311 (2006); e-print arXiv:quant-ph/0604152 .
  4. /885/ W. Vogel and D.-G. Welsch:
    Quantum Optics, 3rd revised and extended edition, Wiley-VCH, Berlin, 2006.
  5. /886/ A. R. Usha Devi, R. Prabhu, A. K. Rajagopal:
    Characterizing multiparticle entanglement in symmetric N-qubit states via negativity of covariance matrices,
    Phys. Rev. Lett. 98, 060501 (2007); e-print arXiv:quant-ph/0609055 .
  6. /887/ G. Adesso and F. Illuminati:
    Entanglement in continuous variable systems:
    Recent advances and current perspectives
    ,
    J. Phys. A 40, Is. 28, 7821-7880 (2007); e-print arXiv:quant-ph/0701221 .
  7. /888/ W. Vogel and E. Shchukin:
    Nonclassicality and entanglement:
    observable conditions
    , J. Phys.:
    Conf. Ser. 84, 012020 (2007).
  8. /889/ H. Häseler, T. Moroder, N. Lütkenhaus:
    Testing Quantum Devices: Practical Entanglement Verification in Bipartite Optical Systems,
    Phys. Rev. A 77, 032303 (2008); e-print arXiv:0711.2709 .
  9. /890/ Lijun Song, Xiaoguang Wang, Dong Yan, and Zhong-Sheng Pu:
    Entanglement conditions for tripartite systems via indeterminacy relations,
    J. Phys. B 41, 015505 (2008), e-print arXiv:0705.2264v2 .
  10. /891/ Alejo Salles, Daniel Cavalcanti, and Antonio Acín:
    Quantum Nonlocality and Partial Transposition for Continuous-Variable Systems,
    Phys. Rev. Lett. 101, 040404 (2008).
  11. /892/ J. Sperling, W. Vogel:
    Necessary and sufficient conditions for bipartite entanglement,
    Phys. Rev. A 79, 022318 (2009), e-print arXiv:0805.1318 .
  12. /893/ Kazuo Fujikawa:
    Analytic solution of the separability criterion for continuous-variable systems,
    Phys. Rev. A 79, 032334 (2009), e-print arXiv:0902.2059 .
  13. /894/ Kazuo Fujikawa:
    Separability criteria for continuous-variable systems,
    Phys. Rev. A 80, 012315 (2009), e-print arXiv:0906.3387 .
  14. /895/ R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki:
    Quantum entanglement,
    Rev. Mod. Phys. 81, 865 (2009), e-print arXiv:quant-ph/0702225 .
  15. /896/ Ryo Namiki:
    Non-Gaussian Entangled States,
    e-print arXiv:0906.1659 .
  16. /897/ Ryo Namiki:
    Non-Gaussian Entangled States and Entangled Orthonormal Basis,
    J. Phys. Soc. Jpn. 79, 013001 (2010).
  17. /898/ Michele Allegra, Paolo Giorda, and Matteo G. A. Paris:
    Robustness of Gaussian entanglement,
    e-print arXiv:1003.3331 .
  18. /899/ Michele Allegra, Paolo Giorda, and Matteo G. A. Paris:
    Role of Initial Entanglement and Non-Gaussianity in the Decoherence of Photon-Number Entangled States Evolving in a Noisy Channel,
    Phys. Rev. Lett. 105, 100503 (2010).
  19. /900/ Cheng-Jie Zhang, Hyunchul Nha, Yong-Sheng Zhang, Guang-Can Guo:
    Detection of bound entanglement in continuous variable systems,
    Phys. Rev. A 82, 032323 (2010); e-print arXiv:1006.1494 .
  20. /901/ van Loock, P:
    Optical hybrid approaches to quantum information,
    Laser Photonics Reviews 5 (2), 167-200 (2011), e-print arXiv:1002.4788 .
  21. /902/ Gorbachev, VN; Trubilko, AI:
    Transfer of quantum correlations from light to atoms in the case of irreversible evolution,
    J. Exp. Theor. Phys. 111 (4), 544-556 (2010).
  22. /903/ Allegra, M; Giorda, P; Paris, MGA:
    Decoherence of gaussian and nongaussian photon-number entangled states in a noisy channel,
    Int. J. Quant. Inform. 9, 27-38 (2011).
  23. /904/ Kreis, Karsten; van Loock, Peter:
    Classifying, quantifying, and witnessing qudit-qumode hybrid entanglement,
    Phys. Rev. A 85, 032307 (2012), e-print arXiv:1111.0478 .
  24. /905/ Kazuo Fujikawa:
    Explicit formula of the separability criterion for continuous variables systems,
    Int. J. Mod. Phys. B 26, 1243006 (2012). 
  25. /906/ K. Bartkiewicz, K. Lemr, A. Cernoch, and J. Soubusta:
    Measuring nonclassical correlations of two-photon states,
    Phys. Rev. A 87, 062102 (2013); e-print arXiv:1302.1221v2 .
  26. /907/ Yichen Huang:
    Complexity and Shannon Entropic Criteria,
    IEEE Trans. Inform. Theory ??? (2013).
  27. /908/ R. Di Candia, E. P. Menzel, L. Zhong, F. Deppe, A. Marx, R. Gross, E. Solano:
    Dual-Path Methods for Propagating Quantum Microwaves,
    New J. Phys. 16, 015001 (2014),  e-print arXiv:1308.3117 .
  28. /909/ Huang, YC:
    Entanglement Detection: Complexity and Shannon Entropic Criteria,
    IEEE Trans. Infor. Thoery, 59 (10), 6774 (2013).
  29. /910/ A. Biswas:
    Inseparability criteria based on bipartitions of N-spin systems,
    Quant. Inform. Process. 14, 979 (2015) , e-print arXiv:1312.4462v1 .
  30. /911/ Chang-Woo Lee, Junghee Ryu, Jeongho Bang, and Hyunchul Nha :
    Inseparability Criterion Using Higher-Order Schrödinger-Robertson Uncertainty Relation,
    J. Opt. Soc. Am. B 31, 656-663 (2014). 
  31. /912/ Antonio A. Valido, Federico Levi, Florian Mintert:
    Hierarchies of multipartite entanglement for continuous variable states,
    e-print arXiv:1409.5347 . J. Opt. Soc. Am. B  90, 052321 (2014). 
51
Y. Hirayama, A. Miranowicz, T. Ota, G. Yusa, K. Muraki, S. K. Özdemir, and N. Imoto:
Nanometre-scale nuclear-spin device for quantum information processing,
J. Phys.: Condens. Matter 18, S885 (2006).
CITATIONS:
  1. /913/ S. Ashhab, Koji Maruyama, Franco Nori:
    Observing quantum non-locality in the entanglement between modes of massive particles,
    Phys. Rev. A 75, 022108 (2007); e-print arXiv:quant-ph/0609131 .
  2. /914/ J. Teles, E. R. Deazevedo, R. Auccaise, R. S. Sarthour; I. S. Oliveira; T. J. Bonagamba:
    Quantum state tomography for quadrupolar nuclei using global rotations of the spin system,
    J. Chem. Phys. 126, Issue 15, 154506 (2007).
  3. /915/ A. S. Ermilov, V. E. Zobov:
    Representation of the quantum Fourier transform on multilevel basic elements by a sequence of selective rotation operators,
    Optics and Spectroscopy 103, Issue 6, 969-975 (2007).
  4. /916/ Y. Kondo, M. Ono, S. Matsuzaka, K. Morita, H. Sanada, Y. Ohno, and H. Ohno:
    Multipulse Operation and Optical Detection of Nuclear Spin Coherence in a GaAs/AlGaAs Quantum Well,
    Phys. Rev. Lett.  101, 207601 (2008).
  5. /917/ R. Takahashi, K. Kono, S. Tarucha, and K. Ono:
    Voltage Switching Technique for Detecting Nuclear Spin Polarization in a Quantum Dot,
    Jpn. J. Appl. Phys. 49 (2010) 04DJ07.
  6. /918/ M. Ono, S. Matsuzaka, Y. Ohno, et al.:
    Gate Voltage Control of Nuclear Spin Relaxation in GaAs Quantum Well,
    J. Superconduct. Novel Magn. 23, Is. 1, 131-133 (2010).
  7. /919/ Souza, A. M.; Gavini-Viana, A.; Oliveria, I. S.; Sarthor, R. S.; Auccaise, R.; Deazevedo, E. R.; Bonagamba, T. J.:
    Nuclear spin 3/2 electric quadrupole relaxation as a quantum computation process, Quantum Inform. Comput. 10, 653 (2010).
  8. /920/ Planat, M:
    Pauli graphs when the Hilbert space dimension contains a square:
    Why the Dedekind psi function?
    ,
    J. Phys. A 44 (4), 045301 (2011).
  9. /921/ Planat, M:
    About the Dedekind psi function in Pauli graphs,
    Revista Mexicana De Fisica 57, 107-112 (2011).
  10. /922/ Planat, M.:
    On the geometry and invariants of qubits, quartits and octits,
    Int. J. Geom. Meth. Mod. Phys. 8, 303-313 (2011).
  11. /923/ Souza, A. M.; Gavini-Viana, A.; Oliveira, I. S.; Sarthour, R. S.; Auccaise, R.; Teles, J.; deAzevedo, E. R.; Bonagamba, T. J.:
    Nuclear Spin 3=2 Electric Quadrupole Relaxation As A Quantum Computation,
    e-print arXiv:1105.2539 .
  12. /924/ Planat, M.:
    Modular geometry of the symplectic group attached to a q-level system and to multiple q-dit mixtures,
    J. Phys. Conf. Ser. 284, 012050 (2011).
  13. /925/ Akifumi Matsuda, Ryosuke Yamauchi, Geng Tan, Hirokazu Nakai, Koji Koyama, Kazuhiko Sunakawa, Satoru Kaneko, Mamoru Yoshimoto :
    Anisotropic magnetization of epitaxial Ni nanogroove-arrays prepared by reduction of self-organized oxides,
    Appl. Surf. Sc. 259, 208(2012). 
  14. /926/ R Takahashi:
    Study of Electrical Control of Nuclear Spins in Quantum Dot Device ,
    Ph.D. thesis, Tokyo Institute of Technology.
  15. T Liu, SJ Xiong, XZ Cao, QP Su, CP Yang:
    Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics,
    Optics Letters 40, 5602 (2015). 
52
A. Miranowicz, M. Piani, P. Horodecki and R. Horodecki:
Inseparability criteria based on matrices of moments,
Phys. Rev. A 80, 052303 (2009); e-print arXiv:quant-ph/0605001 .
CITATIONS:
  1. /927/ E. Shchukin and W. Vogel:
    Conditions for multipartite continuous-variable entanglement,
    Phys. Rev. A 74, 030302(R) (2006), e-print arXiv:quant-ph/0605154 .
  2. /928/ O. Gühne, M. Mechler, G. Tóth, and P. Adam:
    Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion,
    Phys. Rev. A 74, 010301(R) (2006), e-print arXiv:quant-ph/0604050 .
  3. /929/ F. Dell'Anno, S. De Siena, F. Illuminati:
    Test of inseparability criteria for squeezed number states of the radiation field, Open Syst. Inf. Dyn. 13, 383-392 (2006).
  4. /930/ D. McHugh, V. Buzek, M. Ziman:
    When non-Gaussian states are Gaussian:
    generalization of non-separability criterion for continuous variables
    ,
    Phys. Rev. A 74, 050306 (2006); e-print arXiv:quant-ph/0611028 .
  5. /931/ Wenhai Ji, Chunbai Wu, S.J. van Enk, M.G. Raymer:
    Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,
    Phys. Rev. A 75, 052305 (2007), e-print arXiv:quant-ph/0612057 .
  6. /932/ M. A. Marchiolli:
    Quantitative aspects of entanglement in the driven Jaynes-Cummings model,
    J. Mod. Opt. 53, 2733-2751 (2006).
  7. /933/ O. Gühne, P. Hyllus, O. Gittsovich, J. Eisert:
    Covariance matrices and the separability problem,
    Phys. Rev. Lett. 99, 130504 (2007), e-print arXiv:quant-ph/0611282 .
  8. /934/ O. Gühne, N. Lütkenhaus:
    Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states, J. Phys.:
    Conf. Ser. 67, 012004 (2007); e-print arXiv:quant-ph/0612108 .
  9. /935/ Zong-Guo Li, Shao-Ming Fei, Zhi-Xi Wang, and Ke Wu:
    Entanglement conditions for multimode states,
    Phys. Rev. A 75, 012311 (2007), e-print arXiv:quant-ph/0701069 .
  10. /936/ G. Adesso and F. Illuminati:
    Entanglement in continuous variable systems: Recent advances and current perspectives,
    J. Phys. A 40, Is. 28, 7821-7880 (2007); e-print arXiv:quant-ph/0701221 .
  11. /937/ C. V. Usenko:
    Production of Information and Entropy in Measurement of Entangled States,
    in: "Quantum Communication and Security", eds. S. Kilin, M. Zukowski, J. Kowalik (IOS Press Original, 2007) p. 89; e-print arXiv:quant-ph/0702043 .
  12. /938/ C. Lupo:
    On the realignment criterion and beyond; e-print arXiv:0705.2328 .
  13. /939/ W. Vogel:
    Nonclassical correlation properties of radiation fields,
    Phys. Rev. Lett. 100, 013605 (2008), e-print arXiv:0706.0951 .
  14. /940/ W. Vogel and E. Shchukin:
    Nonclassicality and entanglement:
    observable conditions
    ,
    J. Phys.: Conf. Ser. 84, 012020 (2007).
  15. /941/ H. Häseler, T. Moroder, N. Lütkenhaus:
    Testing Quantum Devices: Practical Entanglement Verification in Bipartite Optical Systems,
    Phys. Rev. A 77, 032303 (2008); e-print arXiv:0711.2709 .
  16. /942/ C. Lupo, P. Aniello, A. Scardicchio:
    Bipartite quantum systems:
    on the realignment criterion and beyond
    ,
    J. Phys. A  41, 415301 (2008); e-print arXiv:0802.2019 .
  17. /943/ T. Moroder, M. Keyl, N. Lütkenhaus:
    Truncated su(2) moment problem for spin and polarization states,
    J. Phys. A 41 275302 (2008); e-print arXiv:0803.1873 .
  18. /944/ O. Gittsovich, O. Gühne, P. Hyllus, and J. Eisert:
    Covariance matrix criterion for separability, new title:
    Unifying several separability conditions using the covariance matrix criterion,
    Phys. Rev. A 78, 052319 (2008), e-print arXiv:0803.0757 .
  19. /945/ J. Sperling, W. Vogel:
    Necessary and sufficient conditions for bipartite entanglement,
    Phys. Rev. A 79, 022318 (2009), e-print arXiv:0805.1318 .
  20. /946/ J. Sperling, W. Vogel:
    Verifying continuous-variable entanglement in finite spaces,
    Phys. Rev. A 79, 052313 (2009); e-print arXiv:0809.3197 .
  21. /947/ Tobias Moroder, Otfried Gühne and Norbert Lütkenhaus:
    Iterations of nonlinear entanglement witnesses,
    Phys. Rev. A 78, 032326 (2008); e-print arXiv:0806.0855 .
  22. /948/ Otfried Gühne and Geza Toth:
    Entanglement detection,
    Physics Reports 474, 1-75 (2009); e-print arXiv:0811.2803 .
  23. /949/ Ling Zhou, Yong Hong Ma, Xin Yu Zhao:
    Entanglement generation in a double-Lambda system,
    J. Phys. B 41, 215501 (2008); e-print arXiv:0809.4736 .
  24. /950/ G. Tóth, and O. Gühne:
    Entanglement and Permutational Symmetry,
    Phys. Rev. Lett. 102, 170503 (2009); e-print arXiv:0812.4453 .
  25. /951/ R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki:
    Quantum entanglement,
    Rev. Mod. Phys. 81, 865 (2009), e-print arXiv:quant-ph/0702225 .
  26. /952/ Ryo Namiki:
    Non-Gaussian Entangled States,
    e-print arXiv:0906.1659 .
  27. /953/ Ryo Namiki:
    Non-Gaussian Entangled States and Entangled Orthonormal Basis, J. Phys. Soc. Jpn. 79, 013001 (2010).
  28. /954/ Saboia, A.; Toscano, F.; Walborn, S. P.:
    Family of continuous-variable entanglement criteria using general entropy functions,
    Phys. Rev. A 83, 032307 (2011):
    A Family of Continuous Variable Entanglement Criteria using General Entropy Functions,
    e-print arXiv:1005.1045 .
  29. /955/ Cheng-Jie Zhang, Hyunchul Nha, Yong-Sheng Zhang, Guang-Can Guo:
    Detection of bound entanglement in continuous variable systems,
    Phys. Rev. A 82, 032323 (2010); e-print arXiv:1006.1494 .
  30. /956/ S. P. Walborn, C. H. Monken, S. Padua, P. H. Souto Ribeiro:
    Spatial correlations in parametric down-conversion,
    Physics Reports 495, 87-139 (2010); e-print arXiv:1010.1236 .
  31. /957/ B. Jungnitsch, T. Moroder, and O. Gühne:
    Taming multiparticle entanglement,
    Phys. Rev. Lett. 106, 190502 (2011); e-print arXiv:1010.6049 .
  32. /958/ Kiesel, T.; Vogel, W.; Hage, B.; Schnabel, R.:
    Entangled Qubits in a non-Gaussian Quantum State,
    Phys. Rev. A 83, 062319 (2011); e-print arXiv:1012.0686 .
  33. /959/ Ivan, J. Solomon; Chaturvedi, S.; Ercolessi, E.; Marmo, G.; Morandi, G.; Mukunda, N.; Simon, R.:
    Entanglement and nonclassicality for multimode radiation-field states,
    Phys. Rev. A 83, 032118 (2011).
  34. /960/ R. Namiki:
    Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and inseparability of two-mode Gaussian states,
    J. Phys. Soc. Jap. 82 (1), 014001 (2013);  e-print arXiv:1109.0349 .
  35. /961/ Ivan, JS; Mukunda, N; Simon, R:
    Generation and distillation of non-Gaussian entanglement from nonclassical photon statistics,
    Quant. Inform. Process. 11, 873 (2012).
  36. /962/ Ivan, JS; Mukunda, N; Simon, R:
    Moments of non-Gaussian Wigner distributions and a generalized uncertainty principle: I. The single-mode case,
    J. Phys. A 45, 1751 (2012).
  37. /963/ R. Namiki:
    Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems,
    Phys. Rev. A 85, 062307 (2012); e-print arXiv:1205.6878 .
  38. /964/ Stobinska, M; Toppel, F; Sekatski, P; Chekhova, MV:
    Entanglement witnesses and measures for bright squeezed vacuum,
    Phys. Rev. A 86, 022323 (2012).
  39. /965/ K. Bartkiewicz, K. Lemr, A. Cernoch, and J. Soubusta:
    Measuring nonclassical correlations of two-photon states,
    Phys. Rev. A 87, 062102 (2013); e-print arXiv:1302.1221v2 .
  40. /966/ T. Moroder, J.-D. Bancal, Y.-C. Liang, M. Hofmann, O. Gühne:
    Device-Independent Entanglement Quantification and Related Applications,
    Phys. Rev. Lett. 111, 030501 (2013); e-print arXiv:1302.1336v1 .
  41. /967/ Megan R. Ray, S.J. van Enk:
    Missing data outside the detector range: application to continuous variable entanglement verification and quantum cryptography,
    Phys. Rev. A 88, 042326 (2013), e-print arXiv:1302.5087v1 .
  42. /968/ R. Di Candia, E. P. Menzel, L. Zhong, F. Deppe, A. Marx, R. Gross, E. Solano:
    Dual-Path Methods for Propagating Quantum Microwaves,
    New J. Phys. 16, 015001 (2014),  e-print arXiv:1308.3117 .
  43. /969/ M. Ray:
    Verifying Optical Entanglement,
    Ph.D. Thesis (University of Oregon, 2013).
  44. /970/ A. Biswas:
    Inseparability criteria based on bipartitions of N-spin systems,
    Quant. Inform. Process. 14, 979 (2015) , e-print arXiv:1312.4462v1 .
  45. /971/ F. Shahandeh, J. Sperling, and W. Vogel:
    Operational Gaussian Schmidt-number witnesses,
    e-print Phys. Rev. A 88, 062323 (2013).
  46. /972/ Chang-Woo Lee, Junghee Ryu, Jeongho Bang, and Hyunchul Nha :
    Inseparability Criterion Using Higher-Order Schrödinger-Robertson Uncertainty Relation,
    J. Opt. Soc. Am. B 31, 656-663 (2014). 
  47. /973/ K Thapliyal, A Pathak, B Sen, J Perina :
    Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing and antibunching,
    Phys. Rev. A 90, 013808 (2014).
  48. /974/ R Namiki and K Azuma:
    Quantum Benchmark via an Uncertainty Product of Canonical Variables,
    e-print arXiv:1404.2643 .
  49. /975/ K Thapliyal, A Pathak, B Sen, J Perina:
    Nonclassical properties of a contradirectional nonlinear optical coupler,
    Phys. Lett. A 378, 3431 (2014),  e-print arXiv:1406.0355 .
  50. /976/ SK Giri, K Thapliyal, B Sen, A Pathak:
    Higher-order nonclassical properties of atom-molecule Bose-Einstein Condensate,
    e-print arXiv:1407.1780 .
  51. /977/ A Saboia, AT Avelar, SP Walborn, F Toscano:
    Systematic Construction of Genuine Multipartite Entanglement Criteria using Uncertainty Relations,
    e-print arXiv:1407.7248 .
  52. /978/ Antonio A. Valido, Federico Levi, Florian Mintert:
    Hierarchies of multipartite entanglement for continuous variable states,
    e-print arXiv:1409.5347 .
  53. /979/ S. Gerke, J. Sperling, W. Vogel, Y. Cai, J. Roslund, N. Treps, and C. Fabre :
    Full multipartite entanglement of frequency comb Gaussian states,
    Phys. Rev. Lett. 114, 050501 (2015);  e-print arXiv:1409.5692 .
  54. /980/ Dariusz Chruscinski and Gniewomir Sarbicki:
    Entanglement witnesses: construction, analysis and classification,
    J. Phys. A 47, ??? (2014)  
  55. /981/ O Gittsovich, T Moroder, A Asadian, O Gühne, P Rabl :
    Non-classicality tests and entanglement witnesses for macroscopic mechanical superposition states,
    Phys. Rev. A 91, 022114 (2015),  e-print arXiv:1412.2167v1 .
  56. /982/ Ryo Namiki:
    Converting separable conditions to entanglement breaking conditions,
    e-print arXiv:1503.07109v1 .
53
S. K. Özdemir, K. Bartkiewicz, Yu-xi Liu, A. Miranowicz:
Teleportation of qubit states through dissipative channels:
Conditions for surpassing the no-cloning limit
,
Phys. Rev. A 76, 042325 (2007); e-print arXiv:0709.1662 .
CITATIONS:
  1. /983/ Qurrat-ul-Ain Gulfam, Rameez-ul-Islam, and Manzoor Ikram:
    Quantum teleportation of a high-dimensional entangled state,
    J. Phys. B 41, 165502 (2008).
  2. /984/ G. Chimczak and R. Tanaś:
    High-fidelity atomic-state teleportation protocol with non-maximally-entangled states,
    Phys. Rev. A 79, 042311 (2009); e-print arXiv:0904.1232 .
  3. /985/ Zhao, Ming-Jing; Li, Zong-Guo; Fei, Shao-Ming; Wang, Zhi-Xi:
    A note on fully entangled fraction,
    J. Phys. A 43, 275203 (2010).
  4. /986/ Li, Yan-Ling; Fang, Mao-Fa; Xiao, Xing; Wu, Chao; Hou, Li-Zhen:
    Noisy teleportation of qubit states via the Greenberger-Horne-Zeilinger state or the W state,
    Chinese Phys. B  19, 060306 (2010).
  5. /987/ Ying-Jie Zhang, Xu-Bo Zou, Yun-Jie Xia, and Guang-Can Guo:
    Different entanglement dynamical behaviors due to initial system-environment correlations,
    Phys. Rev. A 82, 022108 (2010).
  6. /988/ Wang, ZJ; Zhang, K; Fan, CY:
    Scheme for teleportation of unknown single qubit state via continuous variables entangling channel,
    Chinese Phys. B 19 (11), 110311 (2010).
  7. /989/ Adhikari, S.; Majumdar, A. S.; Home, D.; Pan, A. K.; Joshi, P.:
    Quantum teleportation using non-orthogonal entangled channels,
    Phys. Scripta 85, 045001 (2012).
  8. /990/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
  9. /991/ J. Dajka and J. Łuczka
    Swapping of correlations via teleportation with decoherence,
    Phys. Rev. A 87, 022301 (2013). 
  10. /992/ Hua-Qiu Liang, Jin-Ming Liu, Shang-Shen Feng, Ji-Gen Chen:
    Quantum teleportation with partially entangled states via noisy channels,
    Quant. Inform. Process. 12, 2671 (2013). 
  11. /993/ Min Jiang and Frank Jiang:
    Deterministic joint remote preparation of arbitrary multi-qudit states,
    Phys. Lett. A 377, 2524 (2013). 
  12. /994/ WANG Zhong-jie, LI Cong:
    Teleportation of unknown atomic state through entangled cavity field channel,
    Laser Technology (JGJS) 812-815, 37(6) (2013) (in Chinese) .
  13. /995/ A. Milne, D. Jennings, S. Jevtic, and T. Rudolph:
    Quantum correlations of two-qubit states with one maximally mixed marginal,
    Phys. Rev. A 90, 024302 (2014), e-print arXiv:1404.3951 .
  14. /996/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014) 
  15. /997/ Huang, CH; Wu, BC:
    High fidelity quantum teleportation assistance with quantum neural network,
    Mod. Phys. Lett. B 28, 1450189 (2014). .
  16. /998/ ZF Feng, Y Ou-Yang, L Zhou, YB Sheng:
    Entanglement assisted single-photon W state amplification,
    Opt. Commun. 340, 80 (2014). 
  17. /999/ MJ Zhao:
    Maximally entangled states and fully entangled fraction,
    Phys. Rev. A 91, 012310 (2015). 
  18. /1000/ Qiongyi He, Laura Rosales-Zárate, Gerardo Adesso, and Margaret D. Reid:
    Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering,
    Phys. Rev. Lett. 115, 180502 (2015). 
  19. /1001/ TJ Wang, C Wang:
    High-efficient entanglement distillation from photon loss and decoherence,
    Optics Express 23, 31550 (2015). 
54
E. Jakimowicz, A. Miranowicz (eds.):
Stefan Banach - Remarkable life, Brilliant mathematics, Gdańsk University Press and Adam Mickiewicz University Press, 2007.
CITATIONS:
  1. /1002/ K. Ciesielski:
    On Stefan Banach and Some of His Results,
    Banach J. Math. Anal. 1 (2007), no. 1, 1-10.
  2. /1003/ R. Duda:
    Lwowska Szkoła Matematyczna,
    Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, 2008.
  3. /1004/ A review of the book Stefan Banach - Remarkable life, Brilliant mathematics (in Polish),
    Cracovia Leopolis, vol. 52, p. 60-61 (2007).
  4. /1005/ Roman Duda:
    Facts and Myths about Stefan Banach,
    Newsletter of the European Mathematical Society 71 (2009) 29-34.
  5. /1006/ Krystyna Nowicka:
    Stefan Banach - nasz matematyczny geniusz,
    Pismo Politechniki Gdańskiej, No. 8 (2009) 54-56.
  6. /1007/ Jan Waszkiewicz:
    Wbrew wszelkim przeciwnościom,
    Matematyka, No. 10 (2009) 633-635.
  7. /1008/ K. Ciesielski, T. M. Rassias:
    On Stan Ulam And His Mathematics,
    Australian J. of Math. Analysis and Applications (AJMAA) 6, Iss. 1, pp. 1-9, 2009.
  8. /1009/ K. Ciesielski and M.S. Moslehian:
    Some remarks on the history of functional analysis,
    Ann. Funct. Anal. 1, no. 1, 1-12 (2010).
55
Lian-Ao Wu, Adam Miranowicz, XiangBin Wang, Yu-xi Liu, Franco Nori:
Perfect Function Transfer and Interference Effects in Interacting Boson Lattices,
Phys. Rev. A  80, 012332 (2009); e-print arXiv:0902.3564 .
CITATIONS:
  1. /1011/ D. Zueco, F. Galve, S. Kohler, P. Hänggi:
    Quantum router based on ac control of qubit chains,
    Phys. Rev. A 80, 042303 (2009); e-print arXiv:0905.4677 .
  2. /1012/ Jose Reslen and Sougato Bose:
    Long Range Free Bosonic Models in Block Decimation Notation:
    Applications and Entanglement
    ,
    e-print arXiv:0907.4315 .
  3. /1013/ S. L'Innocente, C. Lupo and S. Mancini:
    Quantum state transfer in a q-deformed chain,
    J. Phys. A 42, 475305 (2009).
  4. /1014/ M. A. Jafarizadeh, R. Sufiani, M. Azimia, F. E. Fama:
    Perfect state transfer over interacting boson networks associated with group schemes,
    Quant. Inform. Proc. 11, 171 (2012); e-print arXiv:1007.2106 .
  5. /1015/ C. Chudzicki, F. W. Strauch:
    Parallel State Transfer and Efficient Quantum Routing on Quantum Networks,
    Phys. Rev. Lett. 105 (26), 260501 (2010), e-print arXiv:1008.1806 .
  6. /1016/ Wang, Zhao-Ming; Bishop, C. Allen; Gu, Yong-Jian; Shao, Bin:
    Duplex quantum communication through a spin chain,
    Phys. Rev. A 84, 022345 (2011), e-print arXiv:1106.3502 .
  7. /1017/ Yao, Norman Y.; Gong, Zhe-Xuan; Laumann, Chris R.; Bennett, Steven D.; Duan, L.-M.; Lukin, Mikhail D.; Jiang, Liang; Gorshkov, Alexey V.:
    Quantum Logic between Remote Quantum Registers,
    Phys. Rev. A 87, 022306 (2013);  e-print arXiv:1206.0014 .
  8. /1018/ Marek Sawerwain and Roman Gielerak:
    Transfer of Quantum Continuous Variable and Qudit States in Quantum Networks,
    Comm. Comp. Infor. Sci. 291, 63-72 (2012).
  9. /1019/ Y. Guo, Y. Liu, and D.L. Zhou:
    Sudden switch of correlation building velocity in a strong transverse field Ising spin chain,
    Eur. Phys. J. D 66, 250 (2012). 
  10. /1020/ ZM Wang, YJ Gu:
    Quantum Communication Through a Two-Dimensional Spin Network,
    Commun. Theor. Phys. 58, 835 (2012).
  11. /1021/ M. Sawerwain, J. Wisniewska:
    Transfers of entanglement qudit states in quantum networks,
    Computer Networks 370, 344-353 (2013); e-print arXiv:1302.0366 .
  12. /1022/ W Zhao-Ming, Z Zhong-Jun, G Yong-Jian:
    Effect of Phase Shift in Dual-Rail Perfect State Transfer, Comm. Theor. Phys. 61, 299–304 (2014). 
  13. /1023/ Wang, ZM; Zhang, ZJ; Gu, YJ:
    Effect of Phase Shift in Dual-Rail Perfect State Transfer,
    Comm. Theor. Phys. 61, 299 (2014).
  14. /1024/ Wei Qin, Chuan Wang, Ye Cao, and Gui Lu Long:
    Multiphoton quantum communication in quantum networks,
    Phys. Rev. A 89, 062314 (2014). 
  15. /1025/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014). 
  16. /1026/ SJ Large, MS Underwood, DL Feder:
    Perfect quantum state transfer of hard-core bosons on weighted path graphs,
    91, 032319 (2015);  e-print arXiv:1412.1022 .
  17. /1027/ J Jing, LA Wu, A del Campo:
    Fundamental Speed Limits to the Generation of Quantumness,
    e-print arXiv:1510.01106 .
56
A. Miranowicz, S. K. Özdemir, Yu-xi Liu, G. Chimczak, M. Koashi and N. Imoto:
Quantum entanglement and teleportation of quantum-dot states in microcavities, e-Journal of Surface Science and Nanotechnology 5, 51-59 (2007); e-print arXiv:quant-ph/0702026 .
CITATIONS:
  1. /1028/ Wang YW, Wang MF, Zheng YZ:
    Controlled teleportation of electron spin state in quantum dot via single photon,
    Int. J. Quant. Inform. 6, 553-560 (2008).
  2. /1029/ Dong Ping, Zheng Xiao-Hu, Zhang Gang, and Cao Zhuo-Liang:
    Implementation of Quantum Fourier Transform and Its Applications via Quantum-Dot Spins and Microcavity,
    Comm. Theor. Phys.  52, 425-430 (2009).
  3. /1030/ J. Ma, X. Wang, C. P. Sun, F. Nori:
    Quantum spin squeezing,
    Phys. Rep. 509, 89-165 (2011), e-print arXiv:1011.2978 .
  4. /1031/ Li, X; Shapiro, M:
    Generation and control of spin-orbit entanglement in atomic pairs,
    Phys. Rev. A 85, 043413 (2012).
57
K. Bartkiewicz, A. Miranowicz, and Ş. K. Özdemir:
Optimal mirror phase-covariant cloning,
Phys. Rev. A  80, 032306 (2009).
CITATIONS:
  1. /1032/ Aidong Zhu, Kyu-Hwang Yeon, Seong-Cho Yu:
    Optimal universal and phase-covariant quantum cloning machines with quantum-dot spins in cavity QED,
    J. Phys. B 42, 235501 (2009).
  2. /1033/ Bao-Quan Sun, Xiao-Qiang Shao, Ai-Dong Zhu, Kyu-Hwang Yeon and Seong-Cho Yu:
    Physical realization of a multi-purpose quantum cloning machine with electron spins in quantum dots,
    Phys. Scripta 82, 045006 (2010).
  3. /1034/ X. Wu and F. Wu:
    Designing the optimal quantum cloning machine for qubit case,
    Quant. Inform. Proc. 11, 1 (2012); e-print arXiv:1004.5210 .
  4. /1035/ Xuanmin Zhu, Shengshi Pang, Shengjun Wu, Quanhui Liu:
    The classicality and quantumness of a quantum ensemble,
    Phys. Lett. A 375, 1855-1859 (2011), e-print arXiv:1010.5065 .
  5. /1036/ Chui-Ping Yang:
    A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED,
    J. Phys.: Condens. Matter 23, 225702 (2011); e-print arXiv:1105.1496 .
  6. /1037/ Wen-Hai Zhang, Long-Bao Yu, Zhuo-Liang Cao, and Liu Ye:
    Optimal cloning of two known nonorthogonal quantum states,
    Phys. Rev. A 86, 022322 (2012).
  7. /1038/ Yan-Qiang Ji, Tao Yu, Ai-Dong Zhu, Hong-Fu Wang, Shou Zhang, Kyu-Hwang Yeon, Seong-Cho Yu:
    Realization of optimal symmetric universal and phase-covariant quantum cloning with quantum dot spins in cavity QED,
    J. Mod. Opt. 59 (14), 1272 (2012).
  8. /1039/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
  9. /1040/ Luo, MX; Deng, Y:
    Distort one qubit from copying and deleting,
    Quant. Inform. Process. 12, 1701-1717 (2013). 
  10. /1041/ Yu, Yang; Ye, Liu:
    Proposal for a general quantum cloning machine via distant qubits in a quantum network,
    Int. J. Mod. Phys. B 27, 1350154 (2013). 
  11. /1042/ W Tao, F Bao-Long, Y Liu:
    Quantum cloning machines and their implementation in physical systems,
    Chin. Phys. B 22, 110311 (2013). 
  12. /1043/ Z Jin, YQ Ji, AD Zhu, HF Wang, S Zhang:
    A robust scheme for implementing optimal economical phase-covariant quantum cloning with quantum-dot spins in optical microcavities,
    Opt. Commun. 315, 265-269 (2014).
  13. /1044/ MZ Zhu, L Ye:
    Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus,
    Phys. Rev. A 91, 042319 (2015). 
58
A. Miranowicz and S. Ishizaka:
Closed formula for the relative entropy of entanglement,
Phys. Rev. A 78, 032310 (2008).
CITATIONS:
  1. /1045/ M. Hajdusek and V. Vedral:
    Entanglement in pure and thermal cluster states,
    New J. Phys. 12, 053015 (2010).
  2. /1046/ H. Kim, M. R. Hwang, E. Jung, and D. K. Park:
    Difficulties in analytic computation for relative entropy of entanglement,
    Phys. Rev. A 81, 052325 (2010), e-print arXiv:1002.4695 .
  3. /1047/ H. Zhu, L. Chen, and M. Hayashi:
    Additivity and non-additivity of multipartite entanglement measures,
    New J. Phys.  12 083002 (2010); e-print arXiv:1002.2511 .
  4. /1048/ Xi-Wen Hou, Ming-Fang Wan, and Zhong-Qi Ma:
    Entropy, energy and negativity in Fermi-resonance coupled states of substituted methanes,
    J. Phys. A 43, 205301 (2010).
  5. /1049/ S. Friedland, G. Gour:
    An explicit expression for the relative entropy of entanglement in all dimensions,
    J. Math. Phys. 52, 052201 (2011), e-print arXiv:1007.4544 .
  6. /1050/ DaeKil Park:
    Relative Entropy of Entanglement for Two-Qubit State with z-directional Bloch Vectors,
    Int. J. Quant. Inform. 8 (5), 869-879 (2010); e-print arXiv:1005.4777 .
  7. /1051/ Streltsov, A; Kampermann, H; Bruss, D:
    Linking a distance measure of entanglement to its convex roof,
    New J. Phys. 12, 123004 (2010).
  8. /1052/ Huang, JH; Liu, NH; Liu, JT; Yu, TB; He, XA:
    Relative entropy of entanglement of two-qubit 'X' states,
    Chinese Phys. B 19 (11), 110307 (2010).
  9. /1053/ Zinchenko, Y; Friedland, S; Gour, G:
    Numerical estimation of the relative entropy of entanglement,
    Phys. Rev. A 82 (5), 052336 (2010).
  10. /1054/ Girard M. W., Zinchenko, Y; Friedland, S; Gour, G:
    Erratum: Numerical estimation of the relative entropy of entanglement [Phys. Rev. A 82, 052336 (2010)],
    Phys. Rev. A 91, 029901 (2015).
  11. /1055/ Parashar, P; Rana, S:
    Entanglement and discord of the superposition of Greenberger-Horne-Zeilinger states,
    Phys. Rev. A 83, 032301 (2011).
  12. /1056/ Xi-Wen Hou, Ming-Fang Wan and Zhong-Qi Ma:
    Dynamical correlations of negativity and entropy for pure and mixed states in two coupled quartic oscillators,
    Euro. Phys. J. D 62, 279 (2011).
  13. /1057/ Xi-Wen Hou, Ming-Fang Wan and Zhong-Qi Ma:
    Tripartite entanglement dynamics for mixed states in the Tavis-Cummings model with intrinsic decoherence,
    Euro. Phys. J. D 66 (6), 152 (2012).
  14. /1058/ Michal Hajdusek, Mio Murao:
    Direct evaluation of pure graph state entanglement,
    New J. Phys. 15, ??? (2013);  e-print arXiv:1207.5877 .
  15. /1059/ Zhen Wang, Xiu-Hong Gao, Zhi-Xi Wang:
    Monogamous property of generalized W states in three-qubit systems in terms of relative entropy of entanglement,
    Rep. Math. Phys. 70, 229 (2012); e-print arXiv:1208.3588 .
  16. /1060/ Alexander Streltsov:
    The role of quantum correlations beyond entanglement in quantum information theory,
    Ph.D. Thesis, Universität Düsseldorf (2013). [pdf]
  17. /1061/ Evan Meyer-Scott, Marek Bula, Karol Bartkiewicz, Antonín Cernoch, Jan Soubusta, Thomas Jennewein, and Karel Lemr:
    Entanglement-based linear-optical qubit amplifier,
    Phys. Rev. A 88, 012327 (2013), e-print arXiv:1306.1342v1 .
  18. /1062/ Y Guo, Z Bai, S Du:
    Local Channels Preserving Maximal Entanglement or Schmidt Number,
    Int. J. Theor. Phys. 52 (11), 3820-3829 (2013) 
  19. /1063/ MW Girard, G Gour, S Friedland:
    On convex optimization problems in quantum information theory,
    J. Phys. A 47, 505302 (2014),  e-print arXiv:1402.0034 .
  20. /1064/ E Jung, DK Park:
    REE from EOF,
    e-print arXiv:1404.7708 .
  21. /1065/ PEMF Mendonca, MA Marchiolli, D Galetti:
    Entanglement universality of two-qubit X-states,
    Annals of Physics 351, 79 (2014);  e-print arXiv:1407.3021 .
  22. /1066/ Hou, Mo; Xia, Ying-Qing; Hou, Xi-Wen:
    Dynamical correlations of mutual information and tripartite entanglement for vibrational states in a trimer molecule,
    Int. J. Mod. Phys. B 29, ??? (2015). 
  23. /1067/ MA Jafarizadeh, N Karimi, D Amidi, H Zahir:
    Quantum discord of 2n-dimensional Bell-diagonal states,
    e-print arXiv:1504.01134 .
  24. /1068/ E Jung, DK Park:
    Entanglement of Four-Qubit Rank-2 Mixed States,
    Quant. Inform. Process. 14, 3317 (2015),  e-print arXiv:1505.06261 .
  25. /1069/ T Chanda, T Das, D Sadhukhan, AK Pal, AS De, U Sen:
    Statistics of leading digits leads to unification of quantum correlations,
    e-print arXiv:1509.09295 .
59
Adam Miranowicz, Satoshi Ishizaka, Bohdan Horst, and Andrzej Grudka:
Comparison of the relative entropy of entanglement and negativity, Phys. Rev. A 78, 052308 (2008).
CITATIONS:
  1. /1070/ Xi-Wen Hou, Ming-Fang Wan, and Zhong-Qi Ma:
    Entropy, energy and negativity in Fermi-resonance coupled states of substituted methanes,
    J. Phys. A 43, 205301 (2010).
  2. /1071/ K. Berrada, M. El Baz, H. Eleuch, and Y. Hassouni:
    A comparative study of negativity and concurrence based on spin coherent states,
    Int. J. Mod. Phys. C 21 (3), 291-305, 2010.
  3. /1072/ DaeKil Park:
    Relative Entropy of Entanglement for Two-Qubit State with z-directional Bloch Vectors,
    Int. J. Quant. Inform. 8 (5), 869-879 (2010); e-print arXiv:1005.4777 .
  4. /1073/ Laura Mazzola, Bruno Bellomo, Rosario Lo Franco, and Giuseppe Compagno:
    Connection among entanglement, mixedness and nonlocality in a dynamical context,
    e-print arXiv:1003.5153 .
  5. /1074/ Berrada, K.; Hassouni, Y.:
    Entanglement measure of bipartite system states,
    Int. J. Geom. Methods Modern Physics 7 (6), 1051-1064 (2010).
  6. /1075/ Hou, Xi-Wen; Wan, Ming-Fang; Ma, Zhong-Qi:
    Dynamical correlations of negativity and entropy for pure and mixed states in two coupled quartic oscillators,
    Euro. Phys. J. D 62, 279-288 (2011).
  7. /1076/ Xu, Y.P.; Yang, Y.; Zhu, S.Q.; Ren, J.; Wu, L.:
    Entanglement Resonance of End Spins in Different Spin Chains,
    Comm. Theor. Phys. 56 (1), 83-90 (2011).
  8. /1077/ Li, Z. G.; Zhao, M. J.; Fei, S. M.; Fan, H.; Liu, W. M.:
    Mixed maximally entangled states,
    Quantum Inf. Comp. 12, 63-73 (2012).
  9. /1078/ Guo, Y.; Bai, Z.:
    When local channel preserves the maximal entanglement,
    e-print arXiv:1206.3119 .
  10. /1079/ Zhen Wang, Xiu-Hong Gao, Zhi-Xi Wang:
    Monogamous property of generalized W states in three-qubit systems in terms of relative entropy of entanglement,
    Rep. Math. Phys. 70, 229 (2012); e-print arXiv:1208.3588 .
  11. /1080/ Y Guo, Z Bai:
    When local channel preserves the maximal entanglement,
    e-print arXiv:1206.3119 .
  12. /1081/ A. Milne, S. Jevtic, D. Jennings, H. Wiseman, T. Rudolph:
    Quantum steering ellipsoids, extremal physical states and monogamy,
    New J. Phys. 16, 083017 (2014) ; e-print arXiv:1403.0418v1 .
  13. /1082/ Longyan Gong, Yongcui Zheng, Haihong Wang, Weiwen Cheng, Shengmei Zhao:
    The relations among Shannon information entropy, quantum discord, concurrence and localization properties of one-dimensional single-electron wave functions,
    Euro. Phys. J. B 87, 193 (2014).
  14. /1083/ WC Ma, JD Shi, S Xu, XK Song, L Ye:
    Probing the relationship between quantum entanglement and non-locality for different states,
    Mod. Phys. Lett. B 28, 1450146 (2014). 
  15. /1084/ A. Milne, D. Jennings, S. Jevtic, and T. Rudolph:
    Quantum correlations of two-qubit states with one maximally mixed marginal,
    Phys. Rev. A 90, 024302 (2014), e-print arXiv:1404.3951 .
  16. /1085/ Girard M. W., Zinchenko, Y; Friedland, S; Gour, G:
    Erratum: Numerical estimation of the relative entropy of entanglement [Phys. Rev. A 82, 052336 (2010)],
    Phys. Rev. A 91, 029901 (2015).
  17. /1086/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
  18. /1087/ S Rana, P Parashar, M Lewenstein:
    Trace distance measure of coherence
    e-print arXiv:1511.01854 .
60
X. Wang, A. Miranowicz, Yu-xi Liu, C. P. Sun, and F. Nori:
Sudden vanishing of spin squeezing under decoherence, Phys. Rev. A 81, 022106 (2010).
CITATIONS:
  1. /1088/ Jing Zhang, Yu-xi Liu, Re-Bing Wu, Chun-Wen Li, and Tzyh-Jong Tarn:
    Transition from weak to strong measurements by nonlinear quantum feedback control,
    Phys. Rev. A 82, 022101 (2010). 
  2. /1089/ Wei Cui, Zai-Rong Xi, and Yu Pan:
    Non-Markovian entanglement dynamics in coupled superconducting qubit systems,
    Euro. Phys. J. D 59, 479-485 (2010), e-print arXiv:1004.4303 .
  3. /1090/ Xiaoqian Wang, Jian Ma, Lijun Song, Xihe Zhang, and Xiaoguang Wang:
    Spin squeezing, negative correlations, and concurrence in the quantum kicked top model,
    Phys. Rev. E 82, 056205 (2010). 
  4. /1091/ Li Zheng, Chui-Ping Yang, and Franco Nori:
    Quantum dynamics of spatial decoherence of two atoms in a ring cavity,
    Phys. Rev. A 82, 062106 (2010). 
  5. /1092/ A. Kowalewska-Kudlaszyk and W. Leonski:
    Squeezed vacuum reservoir effect for entanglement decay in nonlinear quantum scissors system,
    J. Phys. B 43, 205503 (2010); e-print arXiv:1009.1068 .
  6. /1093/ Z. R. Gong, Xiaoguang Wang, and C. P. Sun:
    Adiabatic creation of atomic squeezing in dark states versus decoherences,
    Phys. Rev. A 82, 012112 (2010). 
  7. /1094/ XM Lu, ZJ Xi, Z Sun, X Wang:
    Geometric measure of quantum discord under decoherence,
    e-print arXiv:1004.5281 .
  8. /1095/ M. Scala, R. Migliore, A. Messina and L. L. Sánchez-Soto:
    Robust stationary entanglement of two coupled qubits in independent environments,
    Euro. Phys. J. D 61, 199-205 (2011).
  9. /1096/ X Yin, X Wang, J Ma, X Wang:
    Spin squeezing and concurrence,
    J. Phys. B: At. Mol. Opt. Phys. 44 015501 (2011). 
  10. /1097/ Luo, SL; Fu, SS; Li, N:
    Decorrelating capabilities of operations with application to decoherence,
    Phys. Rev. A 82 (5), 052122 (2010).
  11. /1098/ Liu, Wan-Fang; Yin, Xun-Chang; Zhang, Li-Hua:
    Storage of maximal Wigner-Yanase skew information of two-qubit system using nonlinear interactions with decay,
    Int. J. Theor. Phys. 50, 3375-3384 (2011).
  12. /1099/ J Ma, Y Huang, X Wang, CP Sun:
    Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels,
    Phys. Rev. A 84, 022302 (2011). 
  13. /1100/ J. Ma, X. Wang, C. P. Sun, F. Nori:
    Quantum spin squeezing,
    Phys. Rep. 509, 89-165 (2011), e-print arXiv:1011.2978 .
  14. /1101/ Sun, Z.:
    Spin squeezing under decoherence: Role of the quantum phase transition,
    Phys. Rev. A 84, 052307 (2011).
  15. /1102/ GUI Weijun, JIANG Minbin:
    Geometric measurement of quantum correlation for a kind of X-state,
    Chinese Journal of Quantum Electronics 28(4) 446-450 (2011).
  16. /1103/ Song, Wei; Yu, Long-Bao; Dong, Ping; Li, Da-Chuang; Yang, Ming; Cao, Zhuo-Liang:
    Geometric measure of quantum discord and the geometry of a class of two-qubit states,
    Science China Physics (2013),  e-print arXiv:1112.4318 .
  17. /1104/ Sun Hong-Gui; Zhang Li-Hua; Liu Wan-Fang; Li Chun-Jie:
    Maximal and total skew information of three-qubit system obtained using nonlinear interaction models,
    Chinese Phys. B 21, 1674 (2012).
  18. /1105/ Huang Yi-Xiao, Ma Jian, Jing Xiao-Xing, and Wang Xiao-Guang:
    Spin Squeezing and Fixed-Point Bifurcation,
    Comm. Theor. Phys. 58, 800 (2012). 
  19. /1106/ Xiaolei Yin, Jian Ma, Xiaoguang Wang, and Franco Nori:
    Spin squeezing under non-Markovian channels by the hierarchy equation method,
    Phys. Rev. A 86, 012308 (2012). 
  20. /1107/ Yang, Rong-Can; Zhang, Peng-Fei; Guo, Yan-Qiang; Zhang, Tian-Cai:
    Quantum Entanglement Dynamics of Two Atoms in Two Coupled Cavities,
    Comm. Theor. Phys. 57, 195-200 (2012).
  21. /1108/ Hao, Xiang; Sha, Jin-Qiao; Sun, Jian; Zhu, Shi-Qun:
    Dynamics of Quantum Entanglement in Reservoir with Memory Effects,
    Comm. Theor. Phys. 57, 29-33 (2012).
  22. /1109/ Yin, Miao; Liang, Wen-Yao; Li, Chao; Cheng, Ze:
    Sudden Vanishing of Atomic Dipole-Squeezing in a Kerr Nonlinear Blackbody,
    Int. J. Theor. Phys. 51, 2359-2369 (2012).
  23. /1110/ A. Z. Chaudhry, J. Gong:
    Protecting and Enhancing Spin Squeezing via Continuous Dynamical Decoupling,
    Phys. Rev. A 86, 012311 (2012), e-print arXiv:1203.4631 .
  24. /1111/ Peng Xue:
    Spin Squeezing Property of Weighted Graph States,
    Phys. Rev. A 86, 023812 (2012),  e-print arXiv:1204.6479 .
  25. /1112/ Song-Song Li, Yan-Hu Jiang and Zhen-Ya Liu:
    Spin Squeezing in Two-Species Bose-Einstein Condensate,
    Int. J. Theor. Phys. 51 (12), 3925 (2012). 
  26. /1113/ Peng Xue:
    Non-Markovian Dynamics of Spin Squeezing,
    e-print arXiv:1208.5681 .
  27. /1114/ Y. Guo, Y. Liu, and D.L. Zhou:
    Sudden switch of correlation building velocity in a strong transverse field Ising spin chain,
    Eur. Phys. J. D 66, 250 (2012). 
  28. /1115/ Jian-Feng Ai, Jian-Song Zhang, And Ai-Xi Chen:
    Transmitting bipartite and multipartite correlations via spin chains under phase decoherence,
    Int. J. Quant. Inform. Vol. 10, No. 06 (2012). 
  29. /1116/ Song-Song Li, Ji-Bing Yuan, Le-Man Kuang:
    Coherent manipulation of spin squeezing in atomic Bose-Einstein condensate via electromagnetically induced transparency,
    Frontiers of Physics 8, 27-33 (2013). 
  30. /1117/ HG Yi, RH Chen, SS Li:
    Spin squeezing of Yurke-like state,
    Chinese Journal of Quantum Electronics (2013).
  31. /1118/ Hong-Gang Yi, Rong-Hua Chen:
    Generating spin squeezed state of atom-photon with stimulated Raman transition,
    Int. J. Theor. Phys. 52, 3608 (2013) 
  32. /1119/ W Zhong, Z Sun, J Ma, X Wang, F Nori:
    Fisher information under decoherence in Bloch representation,
    Phys. Rev. A 87, 022337 (2013). 
  33. /1120/ Song-Song Li And Xiao-Bing Lai:
    Spin squeezing dynamics in two-component Bose-Einstein condensates ,
    Int. J. Quantum Inform. 11, 1350016 (2013) 
  34. /1121/ Xinyu Zhao, Samuel R. Hedemann, Ting Yu :
    Restoration of a quantum state in a dephasing channel via environment-assisted error correction,
    Phys. Rev. A 88, 022321 (2013), e-print arXiv:1305.4627v2 .
  35. /1122/ Wen-Ying Jiang, Zhi-Min Zhao, Hui Yang, Li Zheng, Tai-Yu Zheng :
    Quantum Dynamics of Atomic Spatial Decoherence in a Squeezed Vacuum Field,
    Int. J. Theor. Phys. 52 (11). 4008-4014 (2013) .
  36. /1123/ M. S. Ateto:
    Non-Markovian Dynamics of Entanglement of three-level atom embedded in a 3D photonic band gap structure ,
    Quant. Inf. Rev. 1, No. 2, 23-34 (2013) .
  37. /1124/ AZ Chaudhry:
    Understanding and Controlling Open Quantum Dynamics,
    Ph.D. Thesis, National University of Singapour (2013).
  38. /1125/ Jia-pei Zhu, Hui Huang and Gao-xiang Li:
    Phonon-mediated squeezing of the cavity field off-resonantly coupled with a coherently driven quantum dot,
    J. Appl. Phys. 115, 033102 (2014).
  39. /1126/ Z. Jin, T.T. Han, T.Y. Zheng, Li Zheng, H. Yang:
    Atomic Spatial Decoherence in a Squeezed Cavity Field,
    Int. J. Theor. Phys. 53, 2275 (2014) 
  40. /1127/ Wang, Kelvin; Zhao, Xinyu; Yu, Ting:
    Environment-assisted quantum state restoration via weak measurements,
    Phys. Rev. A 89, 042320 (2014);  arXiv:1404.4110 
  41. /1128/ Desheng Liu, Gang Chen:
    Simple Scheme for Dynamical Preparation of Spin Squeezed State of Trapped Ions,
    Int. J. Theor. Phys. May (2004). 
  42. /1129/ Q Zheng, Y Yao, Y Li:
    Optimal quantum channel estimation of two interacting qubits subject to decoherence,
    Eur. Phys. J. D 68, 170 (2014). 
  43. /1130/ S. Sarkar:
    Quantum Correlations of Two Superconducting Charge Qubits in a Magnetic Field,
    J. Phys. Soc. Japan 83, 104003 (2014). 
  44. /1131/ Y Chen, JQ You, T Yu:
    Exact non-Markovian master equations for multiple qubit systems: Quantum trajectory approach,
    Phys. Rev. A 90, 052104 (2014),  e-print arXiv:1408.1475 .
  45. /1132/ Lixian Yu, Jingtao Fan, Shiqun Zhu, Gang Chen, Suotang Jia, and Franco Nori:
    Creating a tunable spin squeezing via a time-dependent collective atom-photon coupling,
    Phys. Rev. A 89, 023838 (2014). 
  46. /1133/ Qing-Shou Tan, Yixiao Huang, Le-Man Kuang, and Xiaoguang Wang:
    Dephasing-assisted parameter estimation in the presence of dynamical decoupling,
    Phys. Rev. A 89, 063604 (2015). 
  47. /1134/ Teng-Long Wang, Ling-Na Wu, Wen Yang, Guang-Ri Jin, Neill Lambert and Franco Nori:
    Quantum Fisher information as a signature of the superradiant quantum phase transition,
    New J. Phys. 16 063039 (2014). 
  48. /1135/ CX Wang:
    Generation of Spin Squeezed State via a Degenerate Parametric Down-Converter,
    Int. J. Theor. Phys. 54, 1594 (2015) 
  49. /1136/ Voronine, DV; Sinyukov, AM; Hua, X; Munusamy, E; Ariunbold, G; Sokolov, AV; Scully, MO:
    Complex line shapes in surface-enhanced coherent Raman spectroscopy,
    J. Mod. Opt. 62, 90 (2015). 
  50. /1137/ Q Zheng, L Ge, Y Yao, Q Zhi:
    Enhancing parameter precision of optimal quantum estimation by direct quantum feedback,
    Phys. Rev. A 91, 033805 (2015),  e-print arXiv:1503.00236 .
  51. /1138/ AZ Chaudhry, J Gong:
    Optimization of the environment for generating entanglement and spin squeezing,
    J. Phys. B 48, 115505 (2015). 
  52. P Yue, L Ge, Q Zheng:
    Invertible condition of quantum Fisher information matrix for a mixed qubit,
    Euro. Phys. J. D 70, 8 (2015). 
  53. /1139/ Y Guo, M Fang, Z Ke, G Wang:
    Pairwise quantum discord for a symmetric multi-qubit system in different types of noisy channels,
    e-print arXiv:1507.04826 .
61
Adam Miranowicz, Sahin Kaya Özdemir, Jiri Bajer, Masato Koashi, and Nobuyuki Imoto:
Selective truncations of an optical state using projection synthesis, J. Opt. Soc. Am. B 24, 379-383 (2007).
CITATIONS:
  1. /1140/ Jiyong Park, Su-Yong Lee, Ho-Joon Kim and Hai-Woong Lee:
    Cavity-QED-based scheme for verification of the photon commutation relation,
    New J. Phys. 12, 033019 (2010).
  2. /1141/ Ho-Joon Kim, Jiyong Park, and Hai-Woong Lee:
    Cavity-QED based scheme for realization of photon annihilation and creation operations and their combinations,
    J. Opt. Soc. Am. B 27, 464-475 (2010).
  3. /1142/ S. K. Goyal and T. Konrad:
    Teleporting photonic qudits using multimode quantum scissors
    Sc. Rep. 3, 3548 (2013),  e-print arXiv:1306.0427 .
  4. /1143/ HW Liu, F Wang, HR Li, Y Deng, MX Luo:
    Optimal bipartite entanglement transfer and photonic implementations,
    Opt. Commun. 334, 273 (2014) 
  5. /1144/ Dall'Arno, M:
    Quantum reading for the practical man,
    Int. J. Quant. Inform. 12, 1560018 (2014). 
62
A. Miranowicz, B. Horst, and A. Koper:
Paradoxes of measures of quantum entanglement and Bell's inequality violation in two-qubit systems,
J. Comp. Meth. Sci. Eng. 10, 501-512 (2010); e-print arXiv:1002.4637 .
CITATIONS:
  1. /1145/ F. Altintas, R. Eryigit:
    Dynamics of entanglement and Bell-nonlocality for two stochastic qubits with dipole-dipole interaction,
    J. Phys. A 43, 415306 (2010); e-print arXiv:1007.2987 .
  2. /1146/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
63
Yu-xi Liu, A. Miranowicz, Y. B. Gao, J. Bajer, C. P. Sun, and F. Nori:
Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators,
Phys. Rev. A 82, 032101 (2010), e-print arXiv:0910.3066 .
CITATIONS:
  1. /1147/ N. Didier, S. Pugnetti, Y. M. Blanter, R. Fazio:
    Detecting phonon blockade with photons,
    Phys. Rev. B 84, 054503 (2011); e-print arXiv:1007.4714 .
  2. /1148/ Jie-Qiao Liao and Le-Man Kuang:
    Tailorable couplings of a cantilever with a superconducting charge qubit:
    Quantum state engineering
    ,
    e-print arXiv:1008.1713 .
  3. /1149/ W. Leoński and A. Kowalewska-Kudaszyk:
    Quantum scissors - finite-dimensional states engineering,
    Progress in Optics 56, 131-185 (2011).
  4. /1150/ Ni Liu, Junqi Li, J.-Q. Liang:
    Entanglement in a Tripartite Cavity-Optomechanical System,
    Int. J. Theor. Phys. 52, 706-715 (2013). 
  5. /1151/ L. Chotorlishvili, D. Sander, A. Sukhov, V. Dugaev, V.R. Vieira, A. Komnik, J. Berakdar :
    Entanglement between nitrogen vacancy spins in diamond controlled by a nanomechanical resonator,
    Phys. Rev. B 88, 085201 (2013) , e-print arXiv:1301.4256v1 .
  6. /1152/ W. Leoński; V. Cao Long:
    Nonlinear quantum scissors and quantum states engineering: numerical simulations,
    Proc. SPIE 8697, 869728 (2012). 
  7. /1153/ A. Kowalewska-Kudłaszyk:
    Entanglement in a nonlinear coupler: the cross-action effect,
    Phys. Scr. T153, 014039 (2013). 
  8. /1154/ A. Kowalewska-Kudłaszyk, W. Leonski, T. D. Nguyen, and V. C. Long:
    Kicked nonlinear quantum scissors and entanglement generation,
    Phys. Scr. T160, 014023 (2014). 
  9. /1155/ PC Ma, JQ Zhang, Y Xiao, M Feng, ZM Zhang:
    Tunable double optomechanically induced transparency in an optoelectromechanical system,
    Phys. Rev. A 90, 043825 (2014); e-print arXiv:1405.2410 .
  10. /1156/ JQ Zhang, W Xiong, S Zhang, Y Li, M Feng:
    Generating the Schrodinger cat state in a nanomechanical resonator coupled to a charge qubit,
    Annalen der Physik 527, 180 (2015),  e-print arXiv:1405.3129 .
  11. /1157/ GH Hovsepyan, AR Shahinyan, GY Kryuchkyan:
    Multiphoton blockades in pulsed regimes beyond the stationary limits,
    Phys. Rev. A 90, 013839 (2014); e-print arXiv:1406.1057 .
  12. /1158/ A Kowalewska-Kudlaszyk, W Leonski:
    Nonlinear coupler operating on Werner-like states-entanglement creation, its enhancement, and preservation ,
    J. Opt. Soc. Am. B 31, 1290 (2014). 
  13. /1159/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014). 
  14. /1160/ GH Hovsepyan, GY Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015);  e-print arXiv:1410.1021 .
  15. /1161/ MA Lemonde, N Didier, AA Clerk:
    Antibunching and unconventional photon blockade with Gaussian squeezed states,
    Phys. Rev. A 90 (6) 063824 (2014);  e-print arXiv:1410.6510 .
  16. /1162/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    Three-mode system of nonlinear quantum oscillators and quantum correlations,
    Proc. SPIE 9441, 94410U (2014). 
  17. /1163/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  18. /1164/ Jia, W. Z.; Wei, L. F.; Li, Y.; Liu, Y. X.:
    Phase-dependent optical response properties in an optomechanical system by coherently driving the mechanical resonator,
    Phys. Rev. A 91, 043843 (2015). .
  19. /1165/ Xiao, RJ; Pan, GX; Zhou, L:
    Analog multicolor electromagnetically induced transparency in multimode quadratic coupling quantum optomechanics,
    J. Opt. Soc. Am. B 32, 1399 (2015).
  20. /1166/ W Xiong, DY Jin, J Jing, CH Lam, JQ You:
    Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit,
    Phys. Rev. A 92, 032318 (2015)  e-print arXiv:1506.01801 .
  21. /1167/ C Valverde, AN Castro, B Baseia:
    Controlling properties of a hybrid Cooper pair box interacting with a nanomechanical resonator in the presence of Kerr nonlinearities and losses,
    e-print arXiv:1509.00094 .
  22. /1168/ J Li, R Yu, Y Wu:
    Proposal for enhanced photon blockade in parity-time-symmetric coupled microcavities,
    Phys. Rev. A 92, 053837 (2015) .
  23. /1411/ C Valverde, AN Castro, B Baseia:
    Using a hybrid system (Cooper pair box plus nanomechanical resonator) in the presence of Kerr nonlinearities and losses to control the entropy of the subsystems,
    Opt. Commun. (2016). 
  24. /1412/ W Chao-Quan, Z Jian, Z Zhi-Ming:
    Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System,
    Chin. Phys. Lett. 33, No. 2, 024202 (2016). 
64
A. Miranowicz, M. Bartkowiak, X. Wang, Y. X. Liu, and F. Nori:
Testing nonclassicality in multimode fields: a unified derivation of classical inequalities,
Phys. Rev. A 82, 013824 (2010); e-print arXiv:1004.3182 .
CITATIONS:
  1. /1169/ Luis, A; Rivas, A:
    Independent nonclassical tests for states and measurements in the same experiment,
    Phys. Scripta T143, 014015 (2011); e-print arXiv:1103.5014 .
  2. /1170/ Ivan, J. Solomon; Chaturvedi, S.; Ercolessi, E.; Marmo, G.; Morandi, G.; Mukunda, N.; Simon, R.:
    Entanglement and nonclassicality for multimode radiation-field states,
    Phys. Rev. A 83, 032118 (2011).
  3. /1171/ Sen, B.; Peřinová, V.; Luks, A.; Peřina, J.; Křepelka, J.:
    Sub-shot noise photon-number correlation in stimulated and spontaneous Raman processes,
    J. Phys. B 44, 105503 (2011).
  4. /1172/ Paavola, J.; Hall, M. J. W.; Paris, M. G. A.; Maniscalco, S.:
    Finite-time quantum-to-classical transition for a Schroedinger-cat state,
    Phys. Rev. A 84, 012121 (2011), e-print arXiv:1103.4150 .
  5. /1173/ Wang, D. S.:
    Superposition and Entanglement from Quantum Scope,
    e-print arXiv:1101.5002 .
  6. /1174/ A. Luis:
    Nonclassicality in the statistics of noncommuting observables: Nonclassical states are more compatible than classical states,
    Phys. Rev. A 84, 012106 (2011).
  7. /1175/ Perina, J; Krepelka, J:
    Joint probability distributions and entanglement in optical parametric processes,
    Opt. Commun. 284, 4941 (2011).
  8. /1176/ J. Ma, X. Wang, C. P. Sun, F. Nori:
    Quantum spin squeezing,
    Phys. Rep. 509, 89-165 (2011), e-print arXiv:1011.2978 .
  9. /1177/ J. Robert Johansson, Neill Lambert, Imran Mahboob, Hiroshi Yamaguchi, and Franco Nori:
    Entangled-state generation and Bell inequality violations in nanomechanical resonators,
    Phys. Rev. B 90, 174307 (2014). 
  10. /1178/ Clive Emary, Neill Lambert, and Franco Nori:
    Leggett-Garg inequality in electron interferometers,
    Phys. Rev. B 86, 235447 (2015). 
  11. /1179/ J. R. Johansson, G. Johansson, C. M. Wilson, P. Delsing, and Franco Nori:
    Nonclassical microwave radiation from the dynamical Casimir effect,
    Phys. Rev. A 87, 043804 (2013). 
  12. /1180/ N Lambert, YN Chen, F Nori:
    Unified single-photon and single-electron counting statistics: From cavity QED to electron transport,
    Phys. Rev. A 82, 063840 (2010). 
  13. /1181/ CM Li, N Lambert, YN Chen, GY Chen, F Nori:
    Witnessing Quantum Coherence: from solid-state to biological systems,
    Sc. Rep. 2, 885 (2012). 
  14. /1182/ Clive Emary, Neill Lambert and Franco Nori:
    Leggett–Garg inequalities,
    Reports on Progress in Physics 77, (2014).
  15. /1183/ R. Namiki:
    Einstein-Podolsky-Rosen-like correlation on a coherent-state basis and inseparability of two-mode Gaussian states,
    J. Phys. Soc. Jap. 82 (1), 014001 (2013);  e-print arXiv:1109.0349 .
  16. /1184/ Dodonov, V. V.; Valverde, C.; Souza, L. S.; Baseia, B.:
    Classicalization times of parametrically amplified "Schrödinger cat" states coupled to phase-sensitive reservoirs,
    Phys. Lett. A 375, 3668 (2011).
  17. /1185/ J. Perina and J. Krepelka:
    Two-dimensional quantum statistics of optical parametric processes,
    in: "Physics and Applications I - Quantum Optics", ed. W. Leoński (Zielona Góra University Publishers, Zielona Góra, 2012) pp. 87-113.
  18. /1186/ Rahimi-Keshari, Saleh; Kiesel, Thomas; Vogel, Werner:
    Moments of nonclassicality quasiprobabilities,
    Phys. Rev. A 85, 043827 (2012); e-print arXiv:1201.0861 .
  19. /1187/ Ivan, JS; Mukunda, N; Simon, R:
    Generation and distillation of non-Gaussian entanglement from nonclassical photon statistics,
    Quant. Inform. Process. 11, 873 (2012).
  20. /1188/ Ivan, JS; Mukunda, N; Simon, R:
    Moments of non-Gaussian Wigner distributions and a generalized uncertainty principle: I. The single-mode case,
    J. Phys. A 45, 1751 (2012).
  21. /1189/ Kiesel, T.; Vogel, W.:
    Universal nonclassicality witnesses for harmonic oscillators,
    Phys. Rev. A 85, 062106 (2012); e-print arXiv:1205.2898 .
  22. /1190/ Ralph Wiegner:
    Entanglement and Superradiance in the Light of Non-Classical and Classical Photon Sources,
    Ph.D. Thesis, Universitat Erlangen-Nurnberg, Nurnberg, Germany (2012).
  23. /1191/ C. Gehrke, J. Sperling, and W. Vogel:
    Quantification of nonclassicality,
    Phys. Rev. A 86, 052118 (2012).
  24. /1192/ B. Sen, S. K. Giri, S. Mandal, C. H. R. Ooi, A. Pathak:
    Intermodal entanglement in Raman processes,
    Phys. Rev. A 87, 022325 (2013) ; e-print arXiv:1301.0286 .
  25. /1193/ W. Lücke:
    Introduction to Photonics,
    www.wolfgang-luecke.denlqo.pdf.
  26. /1194/ K. Bartkiewicz, K. Lemr, A. Cernoch, and J. Soubusta:
    Measuring nonclassical correlations of two-photon states,
    Phys. Rev. A 87, 062102 (2013); e-print arXiv:1302.1221v2 .
  27. /1195/ Leppakangas, J; Johansson, G; Marthaler, M; Fogelstrom, M:
    Nonclassical Photon Pair Production in a Voltage-Biased Josephson Junction,
    Phys. Rev. Lett. 110, 267004 (2013);  e-print arXiv:1210.6276 .
  28. /1196/ R. Di Candia, E. P. Menzel, L. Zhong, F. Deppe, A. Marx, R. Gross, E. Solano:
    Dual-Path Methods for Propagating Quantum Microwaves,
    New J. Phys. 16, 015001 (2014),  e-print arXiv:1308.3117 .
  29. /1197/ J. Sperling, W. Vogel, G. S. Agarwal :
    Correlation measurements with on-off detectors,
    Phys. Rev. A 88, 043821 (2013), e-print arXiv:1309.3058 .
  30. /1198/ A. Allevi, M. Lamperti, M. Bondani, J. Perina Jr., V. Michalek, O. Haderka, R. Machulka:
    Characterizing the non-classicality of mesoscopic optical twin-beam states,
    Phys. Rev. A 88, 063807 (2013), e-print arXiv:1311.4049v1 .
  31. /1199/ J Leppäkangas, G Johansson, M Marthaler and M Fogelström:
    Input-output description of microwave radiation in the dynamical Coulomb blockade,
    New J. Phys. 16, 015015 (2014) .
  32. /1200/ Wang, Kelvin; Zhao, Xinyu; Yu, Ting:
    Environment-assisted quantum state restoration via weak measurements,
    Phys. Rev. A 89, 042320 (2014);  arXiv:1404.4110 
  33. /1201/ J. Sperling, W. Vogel, and G. S. Agarwal:
    Correlation Measurements with Systems of On-Off Detectors,
    Optics InfoBase Conference Paper, Quantum Information and Measurement (Berlin, 2014) .
  34. /1202/ K Thapliyal, A Pathak, B Sen, J Perina :
    Higher-order nonclassicalities in a codirectional nonlinear optical coupler: Quantum entanglement, squeezing and antibunching,
    Phys. Rev. A 90, 013808 (2014).
  35. /1203/ C Eichler, Y Salathe, J Mlynek, S Schmidt, A Wallraff:
    Quantum limited amplification and entanglement in coupled nonlinear resonators,
    Phys. Rev. Lett. 113, 110502 (2014);  e-print arXiv:1404.4643 .
  36. /1204/ P Grünwald, W Vogel:
    Quantum-Entangled Light from Localized Emitters,
    Phys. Rev. A 90, 022334 (2014),  e-print arXiv:1405.3063 .
  37. /1205/ K Thapliyal, A Pathak, B Sen, J Perina:
    Nonclassical properties of a contradirectional nonlinear optical coupler,
    Phys. Lett. A 378, 3431 (2014),  e-print arXiv:1406.0355 .
  38. /1206/ SK Giri, K Thapliyal, B Sen, A Pathak:
    Higher-order nonclassical properties of atom-molecule Bose-Einstein Condensate,
    e-print arXiv:1407.1780 .
  39. /1207/ V Ardizzone:
    Parametric scattering in semiconductor microcavities: second order coherence and transverse pattern formation,
    e-print tel-00933528.
  40. /1208/ Johansson, JR; Lambert, N; Mahboob, I; Yamaguchi, H; Nori, F:
    Entangled-state generation and Bell inequality violations in nanomechanical resonators,
    Phys. Rev. B 90, 174307 (2014) .
  41. /1209/ J Trapani, M Bina, S Maniscalco, MGA Paris:
    Collapse and revival of quantum coherence for a harmonic oscillator interacting with a classical fluctuating environment,
    Phys. Rev. A 91, 022113 (2015),  e-print arXiv:1411.0946 .
  42. /1210/ R Englman, A Yahalom:
    Open Systems' Density Matrix Properties in a Time Coarsened Formalism,
    Found. Phys. ??? (2015). 
  43. /1211/ Juha Leppäkangas, Mikael Fogelström, Alexander Grimm, Max Hofheinz, Michael Marthaler, and Göran Johansson:
    Antibunched Photons from Inelastic Cooper-Pair Tunneling,
    Phys. Rev. Lett. 115, 027004 (2015). 
  44. /1212/ Ryo Namiki:
    Converting separable conditions to entanglement breaking conditions,
    e-print arXiv:1503.07109v1 .
  45. /1213/ S Ryl, J Sperling, E Agudelo, M Mraz, S Köhnke, B. Hage, and W. Vogel:
    Unified Nonclassicality Criteria,
    Phys. Rev. A 92, 011801 (2015),  e-print arXiv:1505.06089 .
  46. /1214/ N Alam, S Mandal:
    Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators,
    Opt. Commun. 359, 221 (2016). 
  47. /1215/ Tomasz Wasak, Piotr Szańkowski , Marek Trippenbach, Jan Chwedeńczuk:
    Cauchy–Schwarz inequality for general measurements as an entanglement criterion,
    Quant. Inform. Process. ??? (2015). 
  48. /1216/ SK Giri, B Sen, A Pathak, PK Jana:
    Higher order two-mode and multi-mode entanglement in Raman processes,
    e-print arXiv:1508.06949 .
65
M. Bartkowiak and A. Miranowicz:
Linear-optical implementations of the iSWAP and controlled NOT gates based on conventional detectors,
J. Opt. Soc. Am. B 27, 2369-2377 (2010); e-print arXiv:1004.2379 .
CITATIONS:
  1. /1217/ Hou, Kui; Li, Yi-Bao; Liu, Gou-Hong; Sheng, Shou-Qi:
    Joint remote preparation of an arbitrary two-qubit state via GHZ-type states,
    J. Phys. A 44, 255304 (2011).
  2. /1218/ K. Lemr and A. Cernoch:
    Optimal success probability of a tunable linear-optical controlled-phase gate,
    Phys. Rev. A 86, 034304 (2012).
  3. /1219/ Smith, AM; Uskov, DB; Fanto, ML; Ying, LH; Kaplan, L:
    Proposed experiment in two-qubit linear optical photonic gates for maximal success rates,
    J. Phys. B 45, 0953-4075 (2012).
  4. /1220/ M. Bula, K. Bartkiewicz, A. Cernoch, and K. Lemr:
    Photonic scheme for non-demolition detection of single photon presence,
    Phys. Rev. A 87, 033826 (2013); e-print arXiv:1212.5366 .
  5. /1221/ Karel Lemr, Karol Bartkiewicz, Antonín Černoch, Miloslav Dušek, Jan Soubusta:
    Experimental implementation of optimal linear-optical controlled-unitary gates,
    Phys. Rev. Lett. 114, 153602 (2015);  e-print arXiv:1410.4318 .
  6. /1222/ Xue Han, Shi Hu, Qi Guo, Hong-Fu Wang, Shou Zhang :
    Effective scheme for W -state fusion with weak cross-Kerr nonlinearities,
    Quant. Inform. Process. ??? (March 2015). 
  7. Lemr, K; Bartkiewicz, K; Cernoch, A:
    Scheme for a linear-optical controlled-phase gate with programmable phase shift,
    J. Opt. 17 (12) (2015). 
66
M. Bartkowiak, A. Miranowicz, X. Wang, Y.X. Liu, W. Leonski, and F. Nori:
Sudden vanishing and reappearance of nonclassical effects: General occurrence of finite-time decays and periodic vanishings of nonclassicality and entanglement witnesses,
Phys. Rev. A 83, 053814 (2011); arXiv:1101.4956 .
CITATIONS:
  1. /1223/ Le Kien, F; Hakuta, K:
    Deterministic generation of a pair of entangled guided photons from a single atom in a nanofiber cavity ,
    Phys. Rev. A 84, 053801 (2011).
  2. /1224/ Yin, Miao; Liang, Wen-Yao; Li, Chao; Cheng, Ze:
    Sudden Vanishing of Atomic Dipole-Squeezing in a Kerr Nonlinear Blackbody,
    Int. J. Theor. Phys. 51, 2359-2369 (2012).
  3. /1225/ Y. Guo, Y. Liu, and D.L. Zhou:
    Sudden switch of correlation building velocity in a strong transverse field Ising spin chain,
    Eur. Phys. J. D 66, 250 (2012). 
  4. /1226/ Michalik, L; Domanski, AW:
    Influence of the quantum uncertainty on the two-beams approach of reconstruction for one-photon mixed states of partially polarised light,
    J. Mod. Opt. 60 (8), 681 (2013) 
  5. /1227/ Xinyu Zhao, Samuel R. Hedemann, Ting Yu :
    Restoration of a quantum state in a dephasing channel via environment-assisted error correction,
    Phys. Rev. A 88, 022321 (2013), e-print arXiv:1305.4627 .
  6. /1228/ Chang-Woo Lee, Junghee Ryu, Jeongho Bang, and Hyunchul Nha :
    Inseparability Criterion Using Higher-Order Schrödinger-Robertson Uncertainty Relation,
    J. Opt. Soc. Am. B 31, 656-663 (2014). 
  7. /1229/ C.-Q. Pang and M.-L. Liang:
    Influence of the Phase on the Entanglement between a Jaynes-Cummings Atom and an Isolated Atom,
    Acta Phys. Polon. 125, 1069 (2014) .
  8. /1230/ Q Zheng, Y Yao, Y Li:
    Optimal quantum channel estimation of two interacting qubits subject to decoherence,
    Eur. Phys. J. D 68, 170 (2014) 
  9. /1231/ S. Sarkar:
    Quantum Correlations of Two Superconducting Charge Qubits in a Magnetic Field,
    J. Phys. Soc. Japan 83, 104003 (2014). 
  10. /1232/ W Huang, YX Du, ZT Liang, H Yan:
    Detecting quantumness witness with atoms manipulated by the fractional stimulated Raman adiabatic passage processes,
    Optics Communications 363, 42–46 (2016). 
67
K. Bartkiewicz and A. Miranowicz:
Optimal cloning of qubits given by arbitrary axisymmetric distribution on Bloch sphere,
Phys. Rev. A 82, 042330 (2010); arXiv:1007.0780 .
CITATIONS:
  1. /1233/ Laszlo Gyongyosi, Sandor Imre:
    Quasi-Superactivation of Classical Capacity of Zero-Capacity Quantum Channels,
    J. Mod. Opt. 59, 1243 (2012); e-print arXiv:1206.5693 .
  2. /1234/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
  3. /1235/ Kay, A; Ramanathan, R; Kaszlikowski, D:
    Optimal asymmetric quantum cloning for quantum information and computation,
    Quant. Inform. Comp. 13, 880 (2013).
  4. /1236/ MZ Zhu, L Ye:
    Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus,
    Phys. Rev. A 91, 042319 (2015). 
  5. /1237/ J Zhang, S Wu, C Yu:
    The roles of quantum correlations in quantum cloning,
    Euro. Phys. J. D 68, 365 (2014);  e-print arXiv:1411.7456 .
68
K. Lemr, K. Bartkiewicz, A. Cernoch, J. Soubusta, and A. Miranowicz:
Experimental linear-optical implementation of a multifunctional optimal cloner,
Phys. Rev. A 85, 050307(R) (2012); e-print arXiv:1201.6234 .
CITATIONS:
  1. /1238/ Laszlo Gyongyosi, Sandor Imre:
    Quasi-Superactivation of Classical Capacity of Zero-Capacity Quantum Channels,
    J. Mod. Opt. 59, 1243 (2012); e-print arXiv:1206.5693 .
  2. /1239/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
  3. /1240/ Yu, Yang; Ye, Liu:
    Proposal for a general quantum cloning machine via distant qubits in a quantum network,
    Int. J. Mod. Phys. B 27, 1350154 (2013) .
  4. /1241/ W Tao, F Bao-Long, Y Liu:
    Quantum cloning machines and their implementation in physical systems,
    Chin. Phys. B 22, 110311 (2013). 
  5. /1242/ Machulka, R; Lemr, K; Haderka, O; Lamperti, M; Allevi, A; Bondani, M:
    Luminescence-induced noise in single photon sources based on BBO crystals,
    J. Phys. B 47 ??? (2014) 
  6. /1243/ Bartkiewicz, K; Cernoch, A; Javurch, D; Lemr, K; Soubusta, J; Svozilik, J:
    One-state vector formalism for the evolution of a quantum state through nested Mach-Zehnder interferometers,
    Phys. Rev. A 91, 012103 (2014). 
  7. /1244/ MZ Zhu, L Ye:
    Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus,
    Phys. Rev. A 91, 042319 (2015). 
69
K. Bartkiewicz and A. Miranowicz:
Cloning of arbitrary mirror-symmetric distributions on Bloch sphere: Proposal for practical photonic realization,,
Phys. Scr. T 147, 014003 (2012); e-print arXiv:1103.5324 .
CITATIONS:
  1. /1245/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
70
K. Bartkiewicz, K. Lemr, A. Cernoch, J. Soubusta, and A. Miranowicz:
Experimental eavesdropping based on optimal quantum cloning,
Phys. Rev. Lett. 110, 173601 (2013); e-print arXiv:1206.0144 .
CITATIONS:
  1. /1246/ Heng Fan, Yi-Nan Wang, Li Jing, Jie-Dong Yue, Han-Duo Shi, Yong-Liang Zhang, Liang-Zhu Mu:
    Quantum Cloning Machines and the Applications,
    Phys. Rep. 544, 241 (2014),  e-print arXiv:1301.2956 .
  2. /1247/ Yu, Yang; Ye, Liu:
    Proposal for a general quantum cloning machine via distant qubits in a quantum network,
    Int. J. Mod. Phys. B 27, 1350154 (2013) .
  3. /1248/ H Song, S Luo, N Li, L Chang:
    Comparing quantum cloning: A Fisher-information perspective,
    Phys. Rev. A 88, 042121 (2013).
  4. /1249/ TJ Wang, C Cao, C Wang:
    Linear-optical implementation of hyperdistillation from photon loss,
    Phys. Rev. A 89, 052303 (2014). 
  5. /1250/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014). 
  6. /1251/ Machulka, R; Lemr, K; Haderka, O; Lamperti, M; Allevi, A; Bondani, M:
    Luminescence-induced noise in single photon sources based on BBO crystals,
    J. Phys. B 47 ??? (2014) 
  7. /1252/ Bartkiewicz, K; Cernoch, A; Javurch, D; Lemr, K; Soubusta, J; Svozilik, J:
    One-state vector formalism for the evolution of a quantum state through nested Mach-Zehnder interferometers,
    Phys. Rev. A 91, 012103 (2014). 
  8. /1253/ MZ Zhu, L Ye:
    Implementing a quantum cloning machine in separate cavities via the optical coherent pulse as a quantum communication bus,
    Phys. Rev. A 91, 042319 (2015). 
  9. /1254/ He Lu, Chang Liu, Dong-Sheng Wang, Luo-Kan Chen, Zheng-Da Li, Xing-Can Yao, Li Li, Nai-Le Liu, Cheng-Zhi Peng, Barry C. Sanders, Yu-Ao Chen, and Jian-Wei Pan:
    Universal digital photonic single-qubit quantum channel simulator,
    e-print arXiv:1505.02879 .
71
A. Miranowicz, P. Horodecki, R.W. Chhajlany, J. Tuziemski, and J. Sperling:
Analytical progress on symmetric geometric discord: Measurement-based upper bounds,
Phys. Rev. A 86, 042123 (2012); e-print arXiv:1209.2698 .
CITATIONS:
  1. /1255/ K. Bartkiewicz, K. Lemr, A. Cernoch, and J. Soubusta:
    Measuring nonclassical correlations of two-photon states,
    Phys. Rev. A 87, 062102 (2013); e-print arXiv:1302.1221v2 .
  2. /1256/ J Zhang, Y Zhang, S Wu, C Yu:
    Non-classicalities via perturbing local unitary operations,
    Eur. Phys. J. D 67, 217 (2013).
  3. /1257/ Swapan Rana and Preeti Parashar:
    Maximally discordant separable two qubit X states,
    Quant. Inform. Process. 13, 2815 (2014),  e-print arXiv:1311.1671v1 .
  4. /1258/ Chang-shui Yu, Yang Zhang, and Haiqing Zhao:
    Quantum correlation via quantum coherence,
    Quant. Inform. Process. (2014).
  5. /1259/ C Jara-Figueroa, AB Klimov, L Roa:
    Discording power of Hamiltonian interactions,
    Eur. Phys. J. D 68, 51 (2014) 
  6. /1260/ Mazurek, P.; Roszak, K.; Horodecki, P.:
    The decay of quantum correlations between quantum dot spin qubits and the characteristics of its magnetic-field dependence,
    European Phys. Lett. 107 (2014). 
  7. /1261/ J Zhang, SX Wu, CS Yu, X Wang:
    Analytic symmetric information-theoretical discord for one class of two-qubit states,
    Int. J. Quant. Inform. 13, 1550006 (2015). 
  8. /1262/ X Chuan-Mei, L Yi-Min, X Hang, Z Zhan-Jun:
    Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States,
    Comm. Theor. Phys. 63, 439 (2015).
  9. /1263/ K. Roszak and L. Cywinski:
    The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes,
    EPL 112 (2015),  e-print arXiv:arXiv:1505.05741v1 .
  10. /1264/ J Krzywda, K Roszak:
    Phonon-mediated generation of quantum correlations between quantum dot qubits,
    e-print arXiv:1511.08434 .
72
B. Horst, K. Bartkiewicz, and A. Miranowicz:
Two-qubit mixed states more entangled than pure states: Comparison of the relative entropy of entanglement for a given nonlocality,
Phys. Rev. A 87, 042108 (2013); e-print arXiv:1301.2969 .
CITATIONS:
  1. /1265/ SR Hedemann:
    Evidence that X-States Are Universal to Quantum Mechanics,
    e-print arXiv:1310.7038 .
  2. /1266/ Wei Song, Zhuo-Liang Cao :
    Conditions for the Freezing Phenomena of Geometric Measure of Quantum Discord for Arbitrary Two-Qubit X-states under Non-dissipative Dephasing Noises,
    Int. J. Theor. Phys. 53, 519-523 (2014) 
  3. /1267/ A. Milne, S. Jevtic, D. Jennings, H. Wiseman, T. Rudolph:
    Quantum steering ellipsoids, extremal physical states and monogamy,
    New J. Phys. 16, 083017 (2014) ; e-print arXiv:1403.0418v1 .
  4. /1268/ I Licata and D Fiscaletti:
    Bell Length as Mutual Information in Quantum Interference,
    Axioms 3, 153-165 (2014) 
  5. /1269/ A. Milne, D. Jennings, S. Jevtic, and T. Rudolph:
    Quantum correlations of two-qubit states with one maximally mixed marginal,
    Phys. Rev. A 90, 024302 (2014), e-print arXiv:1404.3951 .
  6. /1270/ M Enríquez, C Quintana, O Rosas-Ortiz:
    Time-evolution of entangled bipartite atomic systems in quantized radiation fields,
    J. Phys. Conf. 512, 012022 (2014). 
  7. /1271/ V Erol, S Bugu, F Ozaydin, AA Altintas:
    An analysis of concurrence entanglement measure and quantum Fisher information of quantum communication networks of two-qubits,
    Signal Processing and Communications Applications Conference (SIU), 317-320 (2014) 
  8. /1272/ R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, and E. Paladino:
    Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling,
    Phys. Rev. B 90 , 054304 (2014).
  9. /1273/ Li, C; Zhang, G; Zhang, XZ; Song, Z:
    Conventional quantum phase transition driven by a complex parameter in a non-Hermitian PT-symmetric Ising model,
    Phys. Rev. A 90, 012103 (2014).
  10. /1274/ WC Ma, JD Shi, S Xu, XK Song, L Ye:
    Probing the relationship between quantum entanglement and non-locality for different states,
    Mod. Phys. Lett. B 28, 1450146 (2014). 
  11. /1275/ D. Fiscaletti, I. Licata :
    Bell Length in the Entanglement Geometry,
    Int. J. Theor. Phys. 54, 2362 (2015) .
  12. /1276/ Juan Hea, Shuai Xua, Yang Yua, Liu Yea:
    Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space–time,
    Phys. Lett. B 740, 322 (2014) .
  13. /1277/ ZF Feng, Y Ou-Yang, L Zhou, YB Sheng:
    Entanglement assisted single-photon W state amplification,
    Opt. Commun. 340, 80 (2014). 
  14. /1278/ W Ma, S Xu, J He, J Shi, L Ye:
    Probing the entanglement distillability responses to the Unruh effect and prepared states,
    Quant. Inform. Process. 14, 1411 (2015). 
  15. /1279/ C Bengtson, M Stenrup, E Sjöqvist:
    Nonlocality in the excitation energy transfer in the Fenna-Matthews-Olson complex
    e-print arXiv:1502.07842 .
  16. /1280/ V. Erol:
    A comparative study of concurrence and negativity of general three-level quantum systems of two particles,
    AIP Conf. Proc. 1653, 020037 (2015). 
  17. /1281/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
  18. /1282/ RL Franco:
    Nonlocality threshold for entanglement under general pure-dephasing evolutions: An application,
    e-print arXiv:1508.02325 .
  19. /1283/ T Chanda, T Das, D Sadhukhan, AK Pal, AS De, U Sen:
    Statistics of leading digits leads to unification of quantum correlations,
    e-print arXiv:1509.09295 .
73
A. Miranowicz, M. Paprzycka, Y. X. Liu, J. Bajer, and F. Nori:
Two-photon and three-photon blockades in driven nonlinear systems,
Phys. Rev. A 87, 023809 (2013); e-print arXiv:1212.4365 .
CITATIONS:
  1. /1284/ J. Wenner, Yi Yin, Yu Chen, R. Barends, B. Chiaro, E. Jeffrey, J. Kelly, A. Megrant, J. Y. Mutus, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank, A. Vainsencher, T. C. White, Alexander N. Korotkov, A. N. Cleland, John M. Martinis:
    Catching Time-Reversed Microwave Coherent State Photons with 99.4% Absorption Efficiency,
    Phys. Rev. Lett. 112, 210501 (2014); e-print arXiv:1311.1180 .
  2. /1285/ HZ Shen, YH Zhou, XX Yi:
    Quantum optical diode with semiconductor microcavities,
    Phys. Rev. A 90, 023849 (2014),  e-print arXiv:1403.5620 .
  3. /1286/ A. Kowalewska-Kudłaszyk, W. Leonski, T. D. Nguyen, and V. C. Long:
    Kicked nonlinear quantum scissors and entanglement generation,
    Phys. Scr. T160, 014023 (2014). 
  4. /1287/ A Kowalewska-Kudlaszyk, W Leonski:
    Nonlinear coupler operating on Werner-like states-entanglement creation, its enhancement, and preservation,
    J. Opt. Soc. Am. B 31, 1290 (2014). 
  5. /1288/ A Barasinski, W Leonski, T Sowinski:
    Ground-state entanglement of spin-1 bosons undergoing superexchange interactions in optical superlattices,
    J. Opt. Soc. Am. B 31, 1845 (2014). 
  6. /1289/ GH Hovsepyan, AR Shahinyan, GY Kryuchkyan:
    Multiphoton blockades in pulsed regimes beyond the stationary limits,
    Phys. Rev. A 90, 013839 (2014); e-print arXiv:1406.1057 .
  7. /1290/ LT Shen, RX Chen, ZB Yang, HZ Wu, SB Zheng:
    Preparation of two-qubit steady entanglement through driving a single qubit,
    Opt. Lett. 39, 6046 (2014). 
  8. /1291/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    Three-mode system of nonlinear quantum oscillators and quantum correlations,
    Proc. SPIE 9441, 94410U (2014). 
  9. /1292/ H Xiong, LG Si, XY Lv, XX Yang, Y Wu:
    Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions,
    Science China Physics, Mechanics & Astronomy 58 No. 5: 050302 (2015). 
  10. /1293/ Wen-Wu Deng, Gao-Xiang Li, and Hong Qin:
    Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,
    Phys. Rev. A 91, 043831 (2015). 
  11. /1294/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  12. /1295/ HZ Shen, YH Zhou, XX Yi:
    Tunable photon blockade in coupled semiconductor cavities,
    Phys. Rev. A 91, 063808 (2015). 
  13. /1296/ WZ Zhang, J Cheng, JY Liu, L Zhou:
    Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics,
    Phys. Rev. A 91, 063836 (2015). 
  14. /1297/ Yang Zhang, Jun Zhang, Shao-xiong Wu, Chang-shui Yu:
    The effect of center-of-mass motion on photon statistics,
    Ann. Phys. 361, 563 (2015). 
  15. /1298/ Y Yan, G Li, Q Wu:
    Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots,
    Optics Express 23, 21306 (2015). 
  16. /1299/ Y. H. Zhou, H. Z. Shen, and X. X. Yi:
    Unconventional photon blockade with second-order nonlinearity,
    Phys. Rev. A 92, 023838 (2015). 
  17. /1300/ HZ Shen, YH Zhou, HD Liu, GC Wang, XX Yi:
    Exact optimal control of photon blockade with weakly nonlinear coupled cavities,
    Optics Express 23, 32835 (2015). 
  18. /1301/ AR Shahinyan, AR Tamazyan, GY Kryuchkyan:
    Selective multi-photon excitations in the Kerr nonlinear resonator
    e-print arXiv:1502.06975 .
  19. /1302/ M Hua, MJ Tao, FG Deng:
    Quantum state transfer and controlled-phase gate on 1D superconducting resonators assisted by a quantum bus,
    e-print arXiv:1507.00069 .
  20. /1303/ N Meher, S Sivakumar:
    Quantum interference induced photon localisation and delocalisation in coupled cavities,
    e-print arXiv:1512.02489 .
74
X.B. Wang, Z.W. Yu, J.-Z. Hu, A. Miranowicz, and F. Nori:
Efficient tomography of quantum optical Gaussian processes probed with a few coherent states,
Phys. Rev. A 88, 022101 (2013); e-print arXiv:1304.6307 .
CITATIONS:
  1. /1304/ B. Julsgaard, K. Molmer:
    Fidelity of Fock-state-encoded qubits subjected to continuous variable Gaussian processes,
    Phys. Rev. A 89, 012333 (2014),  e-print arXiv:1312.3655v1 .
  2. /1305/ Ilya A Fedorov, Aleksey K Fedorov, Yury V Kurochkin and A I Lvovsky:
    Tomography of a multimode quantum black box,
    New J. Phys. 17, 043063 (2015). 
  3. /1306/ KR Parthasarathy, R Sengupta:
    From particle counting to Gaussian tomography,
    e-print arXiv:1504.07054 .
75
K. Bartkiewicz, B. Horst, K. Lemr, and A. Miranowicz:
Entanglement estimation from Bell inequality violation,
Phys. Rev. A 88, 052105 (2013), e-print arXiv:1306.6504 .
CITATIONS:
  1. /1307/ R. Lo Franco, A. D’Arrigo, G. Falci, G. Compagno, and E. Paladino:
    Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling,
    Phys. Rev. B 90 , 054304 (2014).
  2. /1308/ A. Milne, D. Jennings, S. Jevtic, and T. Rudolph:
    Quantum correlations of two-qubit states with one maximally mixed marginal,
    Phys. Rev. A 90, 024302 (2014), e-print arXiv:1404.3951 .
  3. /1309/ WC Ma, JD Shi, S Xu, XK Song, L Ye:
    Probing the relationship between quantum entanglement and non-locality for different states,
    Mod. Phys. Lett. B 28, 1450146 (2014). 
  4. /1310/ J Batle and M Abdel-Aty:
    Locality and Classicality: role of entropic inequalities
    e-print arXiv:1410.3605 .
  5. /1311/ J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L. O’Brien, and M. G. Thompson:
    Qubit entanglement between ring-resonator photon-pair sources on a silicon chip,
    Nat. Commun. 6, 7948 (2015),  e-print arXiv:1410.8332v4 .
  6. /1312/ W Ma, S Xu, J He, J Shi, L Ye:
    Probing the entanglement distillability responses to the Unruh effect and prepared states,
    Quant. Inform. Process. 14, 1411 (2015). 
  7. /1313/ J Batle, CH Ooi:
    Computing the maximum violation of a Bell inequality is NP-complete
    e-print arXiv:1503.00272 .
  8. /1314/ Batle, J.; Abdel-Aty, Mahmoud; Ooi, C. H. Raymond; Abdalla, S.; Al-hedeethi, Y.:
    Locality and classicality: role of entropic inequalities,
    Quant. Inform. Process. 14, 3115 (2015). 
  9. /1315/ WC Ma, S Xu, J Shi, L Ye:
    Quantum correlation versus Bell-inequality violation under the amplitude damping channel,
    Phys. Lett. A 379, 2802 (2015). 
  10. /1316/ RL Franco:
    Nonlocality threshold for entanglement under general pure-dephasing evolutions: An application,
    e-print arXiv:1508.02325 .
76
H. Wang, X. Gu, Y.X. Liu, A. Miranowicz, and F. Nori:
Optomechanical analog of two-color electromagnetically-induced transparency:
Photon transmission through an optomechanical device with a two-level system,

Phys. Rev. A 90, 023817 (2014), e-print arXiv:1402.2764 
CITATIONS:
  1. /1317/ Li, HC; Ge, GQ; Liao, LM; Feng, SB:
    Electromagnetically Induced Transparency and Autler-Townes Splitting in a Superconducting Quantum Circuit with a Four-Level V-Type Energy Spectrum,
    Found. Phys. 45, 198-210 (2015). 
  2. /1318/ Y Yan, WJ Gu, GX Li:
    Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling,
    Science China: Physics, Mechanics & Astronomy 58 No. 5: 050306 (2015). 
  3. /1319/ MJ Akram, F Ghafoor, F Saif:
    Electromagnetically induced transparency and tunable Fano resonances in hybrid optomechanics,
    J. Phys. B 48, 065502 (2015). 
  4. /1320/ H.R. Hamedi:
    Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy,
    Physica B 465, 7–12 (2015). 
  5. /1321/ L Ling-Chao, S Rao, X Jun, H Xiang-Ming:
    Double optomechanical transparency with direct mechanical interaction,
    Chinese Physics B 24, 054205 (2015). 
  6. /1322/ Y Yan, G Li, Q Wu:
    Entanglement and Einstein-Podolsky-Rosen steering between a nanomechanical resonator and a cavity coupled with two quantum dots,
    Optics Express 23, 21306 (2015). 
  7. /1323/ Q Wu, JQ Zhang, JH Wu, M Feng, ZM Zhang:
    Tunable multi-channel inverse optomechanically induced transparency and its applications,
    Optics Express 23, 18534 (2015),  e-print arXiv:1504.05359 .
  8. /1324/ Qin Wu:
    Tunable optomechanically induced absorption with quantum fields in an optomechanical system,
    J. Opt. Soc. Am. B 32, 1712 (2015). 
  9. /1325/ Q Wang, YH Zhao, Z He, CM Yao:
    Tunable Optomechanically Induced Absorption in a Hybrid Optomechanical System,
    Int. J. Theor. Phys. ??? (2015). 
  10. /1326/ Xiao, RJ; Pan, GX; Zhou, L:
    Analog multicolor electromagnetically induced transparency in multimode quadratic coupling quantum optomechanics,
    J. Opt. Soc. Am. B 32, 1399 (2015).
  11. /1327/ H Xiong, LG Si, X Yang, Y Wu:
    Asymmetric optical transmission in an optomechanical array,
    Appl. Phys. Lett. 107, 091116 (2015). 
  12. /1328/ MJ Akram, F Saif:
    Tunable Fast and Slow light in a hybrid optomechanical system,
    Phys. Rev. A 92, 023846 (2015)  e-print arXiv:1501.06062 .
  13. /1329/ Q Wang, L Yan, PC Ma, Z He, CM Yao:
    Tunable double optomechanically induced transparency with quantized fields in an optomechanical system,
    Euro. Phys. J. D 69, 213 (2015). 
  14. /1330/ B. P. Hou, L. F. Wei, and S. J. Wang:
    Optomechanically induced transparency and absorption in hybridized optomechanical systems,
    Phys. Rev. A 92, 033829 (2015). 
  15. /1331/ W Nie, A Chen, Y Lan, Q Liao, S Zhu:
    Enhancing steady-state entanglement via vacuum-induced emitter–mirror coupling in a hybrid optomechanical system,
    J. Phys. B 49 025501 (2016).
  16. /1332/ HZ Shen, YH Zhou, HD Liu, GC Wang, XX Yi:
    Exact optimal control of photon blockade with weakly nonlinear coupled cavities,
    Optics Express 23, 32835 (2015). 
  17. /1338/ XW Xu, Y Li:
    Controllable optical output fields from an optomechanical system with a mechanical driving
    Phys. Rev. A 92, 023855 (2015),  e-print arXiv:1504.08069 .
  18. /1333/ B Chen, LD Wang, J Zhang, AP Zhai, HB Xue:
    Second-order sideband effects mediated by microwave in hybrid electro-optomechanical systems,
    Phys. Lett. A ??? (2015). 
  19. X Wang, H Li, D Chen, W Liu, F Li:
    Tunable electromagnetically induced transparency in a composite superconducting system,
    Opt. Commun. (2016). 
  20. /1334/ B Sarma, AK Sarma:
    Optical bistability and cooling of a mechanical oscillator induced by radiation pressure in a hybrid optomechanical system,
    e-print arXiv:1503.03813 .
  21. /1335/ MJ Akram, K Naseer, F Saif:
    Efficient tunable switch from slow light to fast light in quantum opto-electromechanical system,
    e-print arXiv:1503.01951 .
  22. /1336/ M Hirokawa:
    A duality between a dark state and a quasi-dark,
    e-print arXiv:1503.04386 .
  23. /1337/ B Sarma, AK Sarma:
    Controllable optical bistability in a hybrid optomechanical system,
    e-print arXiv:1503.08432 .
  24. /1339/ B Sarma, AK Sarma:
    Cavity optomechanical cooling of a mechanical resonator in presence of a quantum well,
    e-print arXiv:1509.08815 
  25. /1340/ MM Khan, MJ Akram, F Saif:
    Single Phonon State of Mechanical Mode via Photon Subtraction,
    e-print arXiv:1511.07617 .
  26. /1341/ MJ Akram, F Ghafoor, MM Khan, F Saif:
    Fano resonances control and slow light with Bose-Einstein Condensate in a cavity setup,
    e-print arXiv:1512.07278 .
  27. /1342/ MJ Akram, F Ghafoor, F Saif:
    Multiple electromagnetically induced transparency, slow and fast light in hybrid optomechanics,
    e-print arXiv:1512.07297 .
77
Y.X. Liu, X.W. Xu, A. Miranowicz, and F. Nori:
From blockade to transparency: controllable photon transmission through a circuit QED system,
Phys. Rev. A 89, 043818 (2014),  e-print arXiv:1203.6419v3 .
CITATIONS:
  1. /1343/ Xu, XW; Li, Y:
    Tunable photon statistics in weakly nonlinear photonic molecules ,
    Phys. Rev. A 90, 043822 (2014) .
  2. /1344/ H.R. Hamedi:
    Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy,
    Physica B 465, 7–12 (2015). 
  3. /1345/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  4. /1346/ Wen-Wu Deng, Gao-Xiang Li, and Hong Qin:
    Enhancement of the two-photon blockade in a strong-coupling qubit-cavity system,
    Phys. Rev. A 91, 043831 (2015). 
  5. /1347/ HZ Shen, YH Zhou, XX Yi:
    Tunable photon blockade in coupled semiconductor cavities,
    Phys. Rev. A 91, 063808 (2015). 
  6. /1348/ Yang Zhang, Jun Zhang, Shao-xiong Wu, Chang-shui Yu:
    The effect of center-of-mass motion on photon statistics,
    Ann. Phys. ??? (2015). 
  7. /1349/ Y. H. Zhou, H. Z. Shen, and X. X. Yi:
    Unconventional photon blockade with second-order nonlinearity,
    Phys. Rev. A 92, 023838 (2015). 
  8. /1350/ GW Lin, YH Qi, XM Lin, YP Niu, SQ Gong:
    Strong photon blockade with intracavity electromagnetically induced transparency in a blockaded Rydberg ensemble,
    Phys. Rev. A 92, 043842 (2015). 
  9. /1351/ HZ Shen, YH Zhou, HD Liu, GC Wang, XX Yi:
    Exact optimal control of photon blockade with weakly nonlinear coupled cavities,
    Optics Express 23, 32835 (2015). 
  10. X Wang, H Li, D Chen, W Liu, F Li:
    Tunable electromagnetically induced transparency in a composite superconducting system,
    Opt. Commun. (2016). 
  11. /1352/ YL Liu, GZ Wang, Y Liu, F Nori:
    Mode coupling and photon antibunching in a bimodal cavity containing a dipole-quantum-emitter,
    e-print arXiv:1506.06889 .
78
A. Miranowicz, M. Paprzycka, A. Pathak, and F. Nori:
Phase-space interference of states optically truncated by quantum scissors:
Generation of distinct superpositions of qudit coherent states by displacement of vacuum,

Phys. Rev. A 89, 033812 (2014), e-print arXiv:1307.6950 .
CITATIONS:
  1. /1353/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  2. /1354/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  3. /1355/ A Verma, P Manchanda, AD Varshney, PK Chauhan:
    Phase Space Distribution Functions for Qudit States using QUTIP,
    Int. J. Res. Eng. Tech. Management 3, 1 (2015).
  4. /1356/ K Thapliyal, S Banerjee, A Pathak, S Omkar, and V. Ravishankar:
    Quasiprobability distributions in open quantum systems: spin-qubit systems,
    Annals Phys. 362, 261-286 (2015),  e-print arXiv:1504.02030 .
  5. /1357/ K Thapliyal, S Banerjee, A Pathak:
    Tomograms for open quantum systems: in (finite) dimensional optical and spin systems,
    Ann. Phys. 366, 148 (2016), e-print arXiv:1507.02135 .
  6. /1358/ M Rohith, C Sudheesh:
    Visualizing revivals and fractional revivals in a Kerr medium using an optical tomogram,
    Phys. Rev. A 92, 053828 (2015),  e-print arXiv:1507.03724 .
  7. /1359/ Chakrabarti, R.; Jenisha, B. Virgin:
    Quasi-Bell states in a strongly coupled qubit-oscillator system and their delocalization in the phase space,
    Physica A 435, 95 (2015). 
  8. /1360/ R Chakrabarti, V Yogesh:
    Evolution of a hybrid micro-macro entangled state of the qubit-oscillator system via the generalized rotating wave approximation,
    e-print arXiv:1509.07030 .
79
A. Miranowicz, J. Bajer, M. Paprzycka, Y. X. Liu, A. M. Zagoskin, and F. Nori:
State-dependent photon blockade via quantum-reservoir engineering,
Phys. Rev. A 90, 033831 (2014), e-print arXiv:1407.5779 .
CITATIONS:
  1. /1361/ JK Kalaga, W Leoński, A Kowalewska-Kudłaszyk:
    System of nonlinear quantum oscillator and quantum correlations: proposal for quantum chaos indicator,
    Proc. SPIE 9441, 94410W (2014). 
  2. /1362/ Gor H. Hovsepyan, Gagik Yu. Kryuchkyan:
    Excitations of photon-number states in Kerr nonlinear resonator at finite temperatures,
    Euro. Phys. J. D 69:64 (2015). 
  3. /1363/ L Bougoffa, S Bougouffa:
    Analysis of quantum stochastic differential equations in driven cavity single mode,
    e-print arXiv:1512.06763 .
80
M. Bartkowiak, L.A. Wu, and A. Miranowicz:
Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing,
J. Phys. B 47, 145501 (2014), e-print arXiv:1210.2384 .
CITATIONS:
  1. /1364/ R Khan, F Massel, TT Heikkilä:
    Cross-Kerr nonlinearity in optomechanical systems
    Phys. Rev. A 91, 043822 (2015);  e-print arXiv:1501.02092 .
  2. L Dong, JX Wang, QY Li, HZ Shen, HK Dong, XM Xiu, et al.:
    Nearly deterministic preparation of the perfect W state with weak cross-Kerr nonlinearities,
    Phys. Rev. A 93, 012308 (2016). 
  3. /1365/ R Stassi, S Savasta, L Garziano, B Spagnolo, F Nori:
    Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED,
    e-print arXiv:1509.09064 .
81
Y. X. Liu, H. C. Sun, Z. H. Peng, A. Miranowicz, J. S. Tsai, and F. Nori:
Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit,
Scientific Reports 4, 7289 (2014),  e-print arXiv:1308.6409 .
CITATIONS:
  1. /1366/ H.R. Hamedi:
    Subluminal and superluminal light propagation in a superconducting quantum circuit via Josephson coupling energy,
    Physica B 465, 7–12 (2015). 
  2. Z Amini Sabegh, A Vafafard, M A Maleki and M Mahmoudi:
    Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits,
    Laser Phys. Lett. 12, 085202 (2015). 
  3. /1367/ CP Yang, QP Su, SB Zheng, F Nori:
    Entangling superconducting qubits in a multi-cavity system,
    e-print arXiv:1506.06108 .
  4. /1368/ YJ Zhao, JH Ding, ZH Peng, Y Liu:
    Realization of microwave amplification, attenuation, and frequency conversion using a single three-level superconducting quantum circuit,
    e-print arXiv:1510.05737 .
82
A. Miranowicz, K. Bartkiewicz, J. Perina Jr., M. Koashi, N. Imoto, and F. Nori:
Optimal two-qubit tomography based on local and global measurements:
Maximal robustness against errors as described by condition numbers,

Phys. Rev. A 90, 062123 (2014),  e-print arXiv:1409.4622 .
CITATIONS:
  1. /1369/ J Řeháček, YS Teo, Z Hradil:
    Determining which quantum measurement performs better for state estimation ,
    Phys. Rev. A  92, 012108 (2015). 
  2. /1370/ Lukas Knips, Christian Schwemmer, Nico Klein, Jonas Reuter, Géza Tóth, Harald Weinfurter:
    How long does it take to obtain a physical density matrix?,
    e-print arXiv:1512.06866 .
  3. /1371/ Bo Qi, Zhibo Hou, Yuanlong Wang, Daoyi Dong, Han-Sen Zhong, Li Li, Guo-Yong Xiang, Howard M. Wiseman, Chuan-Feng Li, Guang-Can Guo:
    Recursively Adaptive Quantum State Tomography: Theory and Two-qubit Experiment,
    e-print arXiv:1512.01634v1 .
83
A. Miranowicz, K. Bartkiewicz, A. Pathak, J. Perina Jr., Y. N. Chen, and F. Nori:
Statistical mixtures of states can be more quantum than their superpositions:
Comparison of nonclassicality measures for single-qubit states,

Phys. Rev. A 91, 042309 (2015),  e-print arXiv:1502.04523 .
CITATIONS:
  1. /1372/ K Thapliyal, S Banerjee, A Pathak, S Omkar, and V. Ravishankar:
    Quasiprobability distributions in open quantum systems: spin-qubit systems,
    Annals Phys. 362, 261-286 (2015),  e-print arXiv:1504.02030 .
  2. /1375/ G Schild, C Emary:
    Maximum violations of the quantum-witness equality,
    Phys. Rev. A 92, 032101 (2015),  e-print arXiv:1507.05328 .
  3. W Ge, ME Tasgin, MS Zubairy:
    Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter,
    Phys. Rev. A 92, 052328 (2015). 
  4. /1373/ KK Sabapathy:
    Nonclassicality depth of quantum-optical channels: A noisy approach,
    e-print arXiv:1506.06706 .
  5. /1374/ K Thapliyal, S Banerjee, A Pathak:
    Tomograms for open quantum systems: in (finite) dimensional optical and spin systems,
    Ann. Phys. 366, 148 (2016), e-print arXiv:1507.02135 .
  6. /1376/ F Albarelli, A Ferraro, M Paternostro, MGA Paris:
    Nonlinearity as a resource for nonclassicality in anharmonic systems,
    e-print arXiv:1507.07840 .
84
K. Bartkiewicz, A. Cernoch, K. Lemr, A. Miranowicz, F. Nori:
Experimental temporal steering and security of quantum key distribution with mutually-unbiased bases,
e-print arXiv:1503.00612 .
CITATIONS:
  1. /1377/ B Musto, J Vicary:
    Quantum Latin squares and unitary error bases,
    e-print arXiv:1504.02715 .
85
K. Bartkiewicz, J. Beran, K. Lemr, M. Norek, and A. Miranowicz:
Quantifying entanglement of a two-qubit system via
measurable and invariant moments of its partially transposed density matrix,

Phys. Rev. A 91, 022323 (2015),  e-print arXiv:1411.7977 .
CITATIONS:
  1. /1378/ PB Slater:
    Hypergeometric/Difference-Equation-Based Separability Probability Formulas and Their Asymptotics for Generalized Two-Qubit States Endowed with Random Induced Measure,
    e-print arXiv:1504.04555 .
  2. /1379/ L Zhou, YB Sheng:
    Concurrence Measurement for the Two-Qubit Optical and Atomic States
    Entropy 17, 4293 (2015). 
  3. G Chaudhary, V Ravishankar:
    Optimal observables to determine entanglement of a two qubit state,
    Euro. Phys. J. D  (2016). 
86
K. Bartkiewicz, P. Horodecki, K. Lemr, A. Miranowicz, and K. Zyczkowski:
Method for universal detection of two-photon polarization entanglement,
Phys. Rev. A 91, 032315 (2015),  e-print arXiv:1405.5560 .
CITATIONS:
  1. /1380/ L Zhou, YB Sheng:
    Concurrence Measurement for the Two-Qubit Optical and Atomic States
    Entropy 17, 4293 (2015). 
  2. G Chaudhary, V Ravishankar:
    Optimal observables to determine entanglement of a two qubit state,
    Euro. Phys. J. D  (2016). 
87
I. I. Arkhipov, J. Perina Jr., J. Perina, and A. Miranowicz:
Comparative study of nonclassicality, entanglement, and dimensionality of multimode noisy twin beams,
Phys. Rev. A 91, 033837 (2015),  e-print arXiv:1501.05256 .
CITATIONS:
  1. /1381/ KK Sabapathy:
    Nonclassicality depth of quantum-optical channels: A noisy approach,
    e-print arXiv:1506.06706 .
88
A. Miranowicz, J. Bajer, N. Lambert, Y.X. Liu, F. Nori:
Tunable multiphonon blockade in coupled nanomechanical resonators,
Phys. Rev. A 93, 013808 (2016),  e-print arXiv:1506.08622 .
CITATIONS:
  1. /1382/ N Meher, S Sivakumar:
    Quantum interference induced photon localisation and delocalisation in coupled cavities,
    e-print arXiv:1512.02489 .
89
H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, F. Nori:
Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system,
Phys. Rev. A 92, 033806 (2015),  e-print arXiv:1506.03858 .
CITATIONS:
  1. Shen, HZ; Zhou, YH; Liu, HD; Wang, GC; Yi, XX:
    Exact optimal control of photon blockade with weakly nonlinear coupled cavities,
    Opt. Express 23, 32835 (2015). 
90
VARIA.
CITATIONS:
  1. /1383/ Maciej Przanowski, Hugo García-Compeán, Jaromir Tosiek, Francisco J. Turrubiates:
    Uncertainty relations in quantum optics. Is the photon intelligent?,
    e-print arXiv:1511.04215v1 .
  2. /1384/ S. Abdel-Khalek and M. S. Almalki:
    Entanglement for Jaynes Cummings model in the presence multi-photon process under decoherence effect ,
    Int. J. Quant. Inform. 11, 1350026 (2013). 
  3. /1385/ MB Plenio, SS Virmani:
    An Introduction to Entanglement Theory,
    in: Quantum Information and Coherence, eds. Erika Andersson and Patrik Öhberg (Springer, 2014).
  4. /1386/ CC Liu, S Xu, J He, L Ye:
    Unveiling the thermal entanglement in a mixed-spin XXZ model with Dzyaloshinskii-Moriya interaction under a homogeneous magnetic field,
    Int. J. Mod. Phys. B 29, 1550005 (2014) .
  5. /1387/ B Wu, C Huang:
    The signal recovery of continuous variable quantum communication system,
    J. Mod. Opt. 62, 1353 (2015). 
  6. /1388/ M. A. Al-Rajhi,
    Photon added coherent states for nonharmonic oscillators in a nonlinear Kerr medium,
    Mod. Phys. Lett. B, 29, 1550035 (2015). 
  7. /1389/ V Erol, F Ozaydin, AA Altintas:
    Analysis of Negativity and Relative Entropy of Entanglement measures for qubit-qutrit Quantum Communication systems,
    IEEE Signal Processing and Communications Applications (2015) .
  8. /1391/ Z Mahmoudi, S Shakeri, O Hamidi, MH Zandi, A Bahrampour:
    Generation of motional entangled coherent state in an optomechanical system in the single photon strong coupling regime,
    J. Mod. Opt. 62, 1685 (2015). 
  9. M Rohith, C Sudheesh, R Rajeev:
    Entanglement dynamics of quantum states generated by a Kerr medium and a beam splitter,
    Mod. Phys. Lett. B 30, 1550269 (2016),  e-print arXiv:1409.2643 .
  10. L Dong, YF Lin, JX Wang, QY Li, HZ Shen, HK Dong, et al.:
    Nearly deterministic Fredkin gate based on weak cross-Kerr nonlinearities,
    J. Opt. Soc. Am. B 33, 253-260 (2016). 



File translated from TEX by TTHgold, version 4.00.
On 05 May 2016, 09:40.