Strong spin squeezing induced by weak squeezing of light inside a cavity

Abstract: We propose a simple method for generating spin squeezing of atomic ensembles in a Floquet cavity subject to a weak, detuned two-photon driving. We demonstrate that the weak squeezing of light inside the cavity can, counterintuitively, induce strong spin squeezing. This is achieved by exploiting the anti-Stokes scattering process of a photon pair interacting with an atom. Specifically, one photon of the photon pair is scattered into the cavity resonance by absorbing partially the energy of the other photon whose remaining energy excites the atom. The scattering, combined with a Floquet sideband, provides an alternative mechanism to implement Heisenberg-limited spin squeezing. Our proposal does not need multiple classical and cavity-photon drivings applied to atoms in ensembles, and therefore its experimental feasibility is greatly improved compared to other cavity-based schemes. As an example, we demonstrate a possible implementation with a superconducting resonator coupled to a nitrogen-vacancy electronic-spin ensemble.

Keywords: cavity QED; optical squeezing; spin squeezing.

1 Introduction

In analogy to squeezed states of light, spin squeezing in atomic ensembles [1–4] describes the reduction of quantum fluctuation noise in one component of a collective pseudospin, at the expense of increased quantum fluctuation noise in the other component. This property is an essential ingredient for high-precision quantum metrology and also enables various quantum-information applications [4, 5]. For this reason, significant effort has been devoted to generating spin squeezing; such effort includes exploiting atom–atom collisions in Bose–Einstein condensates [6–14], and atom–light interactions in atomic ensembles [15–21]. In particular, cavity quantum electrodynamics [22, 23], which can strongly couple atoms to cavity photons, is considered as an ideal platform for spin squeezing implementations [24–34]. Here, we propose a fundamentally different approach to prepare atomic spin-squeezed states in cavities and demonstrate that the weak squeezing of the cavity field can induce strong spin squeezing.

One-axis twisting (OAT) and two-axis twisting (TAT) are two basic mechanisms to generate spin-squeezed states [1, 4]. In high-precision measurements, TAT is considered to be superior to OAT [4] because TAT can reduce quantum fluctuation noise to the fundamental Heisenberg limit $\propto N^{-1/3}$, lower than the OAT-allowed limit $\propto N^{-2/3}$. Here, $N$ refers to the number of atoms in an ensemble. Note that both mechanisms depend on controlled unitary dynamics, such that they are extremely fragile to dissipation and also require high-precision control for time evolution. Alternatively, dissipation, when treated as a resource [35–39], has also been exploited to implement Heisenberg-limited squeezing [40–43]. In dissipative protocols, atomic ensembles can be driven to a spin-squeezed steady state. However, these TAT and dissipative schemes have not been experimentally demonstrated because of their high complexity. This is partially attributed to the need for multiple classical and cavity-photon drivings applied to atoms. For example, various approaches for spin squeezing in cavities rely on a double off-resonant Raman transition.
(i.e., the double-$\Lambda$ transition) [25, 31, 40–45]. It is generally difficult to realize such a transition for each atom in ensembles for spin squeezing.

In this manuscript, we propose a simplification by introducing a weak and detuned two-photon driving for a Floquet cavity and demonstrate the dissipative preparation of steady-state spin squeezing (SSSS), with Heisenberg scaling. Remarkably, light squeezing inside the cavity in our proposal is very weak and can be understood as a seed for strong spin squeezing. This is essentially different from the process that directly transfers squeezing from light to atomic ensembles [15–17, 46, 47]. Such weak squeezing of light avoids two-photon correlation noise and thermal noise, which can give rise to the so-called 3 dB limit in degenerate parametric amplification processes [48] and can greatly limit spin squeezing.

Furthermore, in contrast to other cavity-based proposals for Heisenberg-limited spin squeezing, our method does not require multiple classical and cavity-photon drivings on atoms, thus significantly reducing the experimental complexity. The key element underlying our method is the absorption of a detuned-driving photon pair: one of these photons is absorbed by the cavity and the other by an atom. This process can be understood as anti-Stokes scattering, of one photon of the driving photon pair, into the cavity resonance by absorbing part of the energy of the other photon, which excites the atom with its remaining energy. As opposed to typical Raman scattering [49], the scattered photon in the description above absorbs the energy of another photon, rather than the excitation of matter, e.g., atoms, molecules, or mechanics.

2 Physical model

We consider an ensemble consisting of \( N \) identical two-level atoms with the ground state \( |g\rangle \) and the excited state \( |e\rangle \). Here, \( \omega_0 \) is the atomic transition frequency, \( \omega_c \) the cavity frequency, and \( g \) the single-atom coupling to the cavity mode.

The atomic ensemble then scattered into the cavity resonance by absorbing a small part of the energy of the other photon; at the same time the main part of the absorbed-phonon energy resonantly excites an atom [see Figure 2(b)]. We further assume that the cavity frequency \( \omega_c \) is periodically modulated with amplitude \( A_m \) and frequency \( \omega_m \) and ensure that \( \omega_m = \omega_c - \omega_m \). In this case, a detuned atom can emit a photon into the cavity resonance via a Floquet sideband at \( \omega_c - \omega_m \) [see Figure 2(a)]. The above dynamics demonstrates that the cavity-phonon creation gives rise to a competition between the atomic excitation and deexcitation.

To be specific, we consider the Hamiltonian

\[
H(t) = H_0 + H_1(t),
\]

\[
H_0 = \Delta_c a^\dagger a + \Delta_S S_z + g(aS_+ + a^\dagger S_-) + \frac{1}{2}\Omega^2(e^{i\alpha}a^2 + \text{H.c.}),
\]

\[
H_1(t) = A_m \sin(\omega_m t) a^\dagger a + \frac{1}{2}\Omega(t)(e^{i\alpha}a^2 + \text{H.c.}).
\]

Here, \( \Delta_c = \omega_{c-q} - \omega_c/2 \) and \( S_z = S_x \pm iS_y \). In addition to the driving \( \Omega \), we have also assumed another two-photon driving, which has the same frequency and phase as the driving \( \Omega \), but with a time-dependent amplitude \( \Omega(t) = \Omega A_m \sin(\omega_m t)/\Delta_c \). The use of such a driving is to suppress an undesired two-photon driving of the cavity mode, which is induced by the periodic modulation of the cavity frequency and can destroy the dynamics of generating SSSS.

To describe the dissipative dynamics, we use the Lindblad dissipator, given by \( \mathcal{L}(\rho) = 2\rho = 0 \rho_{0} \rho \). Thus, \( \frac{1}{2} \mathcal{L}(\rho) \) corresponds to cavity loss at a rate \( k \), and \( \frac{1}{2} \sum_j \mathcal{L}(\sigma_j \rho) \), where \( \sigma_j = \frac{1}{2}(\sigma_j - i\sigma_j^\dagger) \), describes atomic spontaneous emission at a rate \( \gamma \). It follows, on taking the Fourier transformation \( \tilde{\sigma}_k = \frac{1}{\sqrt{N}} \sum_j \exp(-ik\sigma_j^\dagger) \), that \( \sigma_z = i N \tilde{\sigma}_k \), indicating that the collective spin operators are related only to the zero momentum mode [50–52]. Consequently, we have \( \sum_j \mathcal{L}(\sigma_j \rho) = \frac{1}{N} \mathcal{L}(S_z) \rho \) because different momentum modes are uncoupled and nonzero momentum.

\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{figure1.png}
\caption{An atomic ensemble consisting of \( N \) identical two-level atoms with the ground state \( |g\rangle \) and the excited state \( |e\rangle \). Here, \( \omega_0 \) is the atomic transition frequency, \( \omega_c \) the cavity frequency, and \( g \) the single-atom coupling to the cavity mode.}
\end{figure}
Figure 2: (a) Frequency-domain picture of a cavity driven by a weak and detuned parametric driving. The two-photon driving at frequency \( \omega_0 \), when driving the single-mode cavity of frequency \( \omega_c \), can produce photon pairs at \( \omega_c/2 \) and induce a squeezing sideband at \( \omega_c - \omega_c \). Owing to a cavity-frequency modulation with frequency \( \omega_m \), there also exists a Floquet sideband at \( \omega_c - \omega_m \). (b) Raman scattering of a driving photon pair interacting with an atom. If the squeezing sideband in (a) is tuned to the atomic resonance \( \Omega \approx 2\Delta \), one photon of the photon pair at \( \omega_c/2 \) absorbs partially the energy of the other photon and is scattered into the cavity resonance \( \omega_c \), and simultaneously the atom is excited by the remaining energy of the absorbed photon. (c) Transition mechanism responsible for Raman scattering described in (b). The weak, detuned two-photon driving \( \Omega \) and the cavity mode \( g \) couple the states \( |0, g \rangle \) and \( |1, e \rangle \) via a virtual intermediate state.

modes only decay. The full dynamics of the system is therefore determined by the master equation

\[
\dot{\rho} = i[H(t), \rho] + \frac{\kappa}{2} \mathcal{L}(\rho) + \frac{Y}{2N} \mathcal{L}(S.)\rho.
\]  

(2)

We begin by restricting our discussion to the limits \( \langle g, \Omega \rangle \ll \Delta_c \) and \( A_m \ll \omega_m \). In such a case, the squeezing sideband resulting from the driving \( \Omega \) enables a coupling in the form

\[
\exp(i\theta_0)aS. + \exp(-i\theta_0)a^\dagger S_.,
\]

(3)

with strength \( g\Omega/2\Delta \). The coupling becomes resonant when \( \omega_q = \omega_c - \omega_c \). Such a coupling can be understood from the interaction between a driving photon pair and a single atom, as shown in Figure 2(c). The ground state \( |0, g \rangle \) is driven to a virtual excited state via the two-photon driving \( \Omega \) with detuning \( \approx 2\Delta \) and then is resonantly coupled to the state \( |1, e \rangle \) via the atom-cavity coupling \( g \). Here, the number in the ket refers to the cavity-photon number. This mechanism is responsible for anti-Stokes scattering of correlated photon pairs mentioned above. Furthermore, for \( \omega_q = \omega_c - \omega_m \), the coupling,

\[
a^\dagger S. + aS_.,
\]

(4)

is also made resonant via a first-order Floquet sideband but its strength becomes \( gA_m/2\omega_m \). As we demonstrate in more detail in Appendix A, these two resonant couplings lead to an effective Hamiltonian

\[
H_{eff} = ga^\dagger (G.S. + G.S.) + H.c.,
\]

(5)

where \( G_s = A_m/2\omega_m \) and \( G_e = \Omega/2\Delta \). Here, we have set \( \theta_0 = -\pi/2 \) and a phase factor \( i \) has been absorbed into \( a \). The dynamics driven by \( H_{eff} \) describes two distinct atomic transitions, which can cause the spin-squeezed state to become a dark state [40–43]. In particular, in the optimal case of \( y \rightarrow 0 \), assuming \( G_e \) to be very close to \( G_s \), it yields the maximally spin-squeezed state corresponding to the Heisenberg-limited noise reduction \( \propto 1/N \). In Figure 3(a) we plot the spin Husimi distribution \( Q(\theta, \phi) \) using \( H(t) \). Here, \( Q(\theta, \phi) = \frac{2^{N+1}}{N} \langle CSS | R(\theta, \phi) R(\theta, \phi) | CSS \rangle \), where \( CSS \) refers to a coherent-spin state with all the atoms in the excited state, and \( R(\theta, \phi) = \exp[i\theta(S_z \sin \phi - S_y \cos \phi)] \) is a rotation operator, which rotates \( |CSS \rangle \) by an angle \( \theta \) about the axis \((-\sin \phi, \cos \phi, 0)\) of the collective Bloch sphere. We find, as predicted by \( H_{eff} \), that quantum noise is reduced along the \( x \) direction, at the expense of increased quantum noise along the \( y \) direction.

To quantify the degree of spin squeezing, we use the parameter defined as [2, 3]:

\[
\xi^2 = N \frac{\langle \Delta S_{-} \rangle^2}{\langle |S| \rangle^2},
\]

(6)

where \( S = (S_x, S_y, S_z) \) is the total spin operator, and \( \langle \Delta S_{-} \rangle^2_{min} = (\langle S - n_1 \rangle^2) - (\langle S \cdot n_1 \rangle)^2 \) is the minimum spin fluctuation in the \( n_1 \) direction perpendicular to the mean spin \( \langle S \rangle \). Spin-squeezed states, where quantum fluctuation
in one quadrature is reduced below the standard quantum limit, exhibit $\xi^2 < 1$. We find from Figure 3(b) that a strong loss of a weakly and parametrically driven Floquet cavity can enable $\xi^2$ to be $\ll 1$ in the steady state. In contrast, atomic spontaneous emission carries away information about spin-squeezed states, and hence limits spin squeezing, as plotted in the inset of Figure 3(b). In Figure 3(c), we plot the steady-state $\xi^2$, labeled $\xi_{\text{ss}}^2$, versus the number $N$ of atoms. The enhancement of spin squeezing by increasing $N$ has a lower bound which, as demonstrated below, is determined by the ratio $G_i/G$ in the limit of $N \to \infty$.

### 3 Spin-wave approximation

We now consider the case of $N \to \infty$, so that the dynamics of the collective spin can be mapped to a bosonic mode $b$, i.e., $S_+ = \sqrt{N}b$. Here, we have assumed that the number of excited atoms is much smaller than the total number $N$, i.e., $\langle b^\dagger b \rangle \ll N$, and have made the spin-wave approximation. The effective Hamiltonian is correspondingly transformed to

$$H_{\text{eff}}^{\text{SWA}} = G\sqrt{N}g \left( a^\dagger \beta + \text{H.c.} \right),$$

where $G^2 = G_i^2 - G_c^2$, and $\beta = \cosh(r)b + \sinh(r)b^\dagger$, with $\tanh(r) = G_i/G_c$, describes a squeezed mode of the collective spin. The cavity loss thus can drive the mode $\beta$ to its vacuum, which corresponds to a squeezed vacuum state of the mode $b$. Under the spin-wave approximation, the parameter $\xi^2$ is likewise transformed to

$$\xi_{\text{SWA}}^2 = 1 + 2\langle b^\dagger b \rangle \langle \langle b b \rangle \rangle.$$  

This implies that the two-atom correlation, $\langle b b \rangle$, characterizes a key signature of spin squeezing.

In order to achieve $H_{\text{eff}}^{\text{SWA}}$, we have neglected the off-resonant coupling to the zero-order Floquet sideband, which lowers the degree of spin squeezing [see Figure 3(b) and (c)]. Let us now consider this off-resonant coupling. In the limit $\sqrt{Ng} \ll \Delta_c$, such a coupling shifts the cavity and atomic resonances [53], and as a result it causes an additional detuning $\delta = Ng^2/\Delta_c$ between cavity and atoms. To avoid this undesired effect, the modulating frequency $\omega_m$ needs to be modified to compensate $\delta$, such that $\omega_m = \omega_c - \omega_q + Ng^2/\Delta_c$ (see Appendix B). With such a modification, we directly calculate the parameter $\xi_{\text{SWA}}^2$ and the correlation $\langle b b \rangle$ obtained using the effective and full Hamiltonians under the spin-wave approximation. We find from Figure 4(a) that after compensating the detuning $\delta$, the full dynamics are in excellent agreement with the desired effective dynamics. This allows us to investigate stronger spin squeezing, according to such an effective Hamiltonian.

Based on $H_{\text{eff}}^{\text{SWA}}$, we derive the steady-state $\langle b^\dagger b \rangle$ and $\langle b b \rangle$, yielding

$$\langle b^\dagger b \rangle_{\text{ss}} = A \sinh^2(r),$$

and
Figure 4: (a) Comparison between the effective (curves) and full (symbols) Hamiltonians under the spin-wave approximation. The spin-squeezing parameter ($\xi_{SWA}^2$, left red axis) and the two-atom correlation ($\langle bb \rangle$, right blue axis) are shown. We have set $\omega_m = \omega_c - N g^2/\Delta_c$. This yields an excellent agreement. (b) Spin-squeezing parameter $\xi_{SWA}^2$ given in Eq. (14) for $G_c/G_s = 0.98$. In (a) we set: $\Delta_c = 200 \omega_c$, $\Omega = 0.1 \Delta_c$, $A_m = 0.15 \omega_m$, $Y = 0.01 \kappa$; and in both plots: $\sqrt{N} \gamma = 10 \kappa$.

$$\langle bb \rangle_{ss} = -A \sinh (2r)/2,$$

where $A = 4G^2/\{4G^2C + 1\}(1 + \gamma/\kappa)$. Here, $C = N g^2/\gamma$ is the collective cooperativity. Having $r \geq 1$ gives $\langle (b^\dagger b)^2 \rangle_{ss} \rightarrow -A/2$, and therefore a strong spin-squeezed state is achieved if $A \rightarrow 1$. More specifically, we consider the steady-state $\xi_{SWA}^2$ expressed as

$$\langle \xi_{SWA}^2 \rangle_{ss} = 1 + A [\exp(-2r) - 1].$$

This demonstrates that if $G_c \rightarrow G_s$, then the parameter $r$ and, thus, spin squeezing increases. However, as $G_s \rightarrow G_c$, the effective coupling, $G_s \sqrt{N}\gamma$, between modes $a$ and $b$ tends to zero (i.e., $G \rightarrow 0$), which suppresses the cooling of the mode $b$. The optimal SSSS therefore results from a tradeoff between these two processes [42, 43, 54]. Furthermore, we find that for a spin-squeezed steady state, the number of excited atoms scales as $\langle b^\dagger b \rangle \propto e^{\gamma t}$, but at the same time, the spin-wave approximation requires $(b^\dagger b) \ll N$. To demonstrate the squeezing scaling, we assume that in the steady state, $(b^\dagger b) \propto N^\mu$, where $0 < \mu < 1$. In this case, $(b^\dagger b) \ll N$, and consequently $\xi_{SWA}^2 \ll N^\mu$, is justified even for $\mu \rightarrow 1$, as long as $N$ is sufficiently large. Hence, our approach can, in principle, enable spin squeezing to be far below the standard quantum limit, and approach the Heisenberg limit in a large ensemble.

To consider the squeezing time, we adiabatically eliminate the cavity mode (see Appendix C), yielding

$$\dot{\rho}_{spin} = \frac{Y_c}{2} \mathcal{L}(\beta)\rho_{spin} + \frac{Y}{2} \mathcal{L}(b)\rho_{spin},$$

where $\rho_{spin}$ describes the reduced density matrix of the collective spin, and $Y_c = 4G^2N g^2/\kappa$ represents the cavity-induced atomic decay. According to this adiabatic master equation, $(b^\dagger b)$ and $\langle bb \rangle$ evolve as

$$X = (X_{ini} - X_{ss}) \exp[-(Y_c + \gamma)t] + X_{ss},$$

where $X = (b^\dagger b)$, $\langle bb \rangle$, and $X_{ini}$ refers to the initial $X$. We therefore find that the atomic ensemble can be driven into a spin-squeezed state from any initial state in the spin-$\frac{N}{2}$ manifold. Under time evolution, $\xi_{SWA}^2$ is given by

$$\xi_{SWA}^2 = \langle \xi_{SWA}^2 \rangle_{ss} - \left[\langle \xi_{SWA}^2 \rangle_{ss} - 1 \right] \exp[-(Y_c + \gamma)t].$$

Here, we have assumed, for simplicity, that $\langle (b^\dagger b)^2 \rangle_{ini} = (bb)_{ini} = 0$. This expression predicts that time evolution leads to an exponential squeezing with a rate $Y_c + \gamma$, as plotted in Figure 4(b). For a realistic setup, e.g., a nitrogen-vacancy (NV) spin ensemble coupled to a superconducting resonator (see below), a negligibly small spin decay rate $\gamma \rightarrow 0$ and a typical collective coupling $\sqrt{N}\gamma = 2\pi \times 10$ MHz could result in a spin-squeezed steady state of $\approx -20$ dB in a squeezing time $t = 8 \mu s$. This allows us to neglect spin decoherence because the coherence time in ensembles of NV centers can experimentally reach the order of ms [55] or even $\sim 1 s$ [56].

## 4 Proposed experimental implementation

As an example, we now consider a hybrid quantum system [57–59], where a superconducting transmission line (STL), terminated by a superconducting quantum interference device (SQUID), is magnetically coupled to an NV spin ensemble in diamond (see Appendix D for details). The coherent coupling of an STL cavity to an NV spin ensemble
Here, the components modulate the cavity frequency \( \omega' \), and the component \( f_3(t) \) to be
\[
\mathcal{f}(t) = f_0 + [f_1 + f_2(t)] \cos(\omega t + \theta(t)) + f_3 \sin(\omega' t). \tag{15}
\]
Here, the components \( f_1 \) and \( f_2(t) \) result in the drivings \( \Omega \) and \( \Omega_2(t) \), respectively, while the component \( f_3 \) is to modulate the cavity frequency \( \omega' \). Moreover, the electronic ground state of NV centers is a spin triplet, whose \( m_s = 0 \) and \( m_s = \pm 1 \) sublevels are labeled by \( |0\rangle \) and \( |\pm 1\rangle \). There exists a zero-field splitting \( \approx 2.87 \text{ GHz} \) between state \( |0\rangle \) and states \( |\pm 1\rangle \). In the presence of an external magnetic field, the states \( |\pm 1\rangle \) are further split through the Zeeman effect, which enables a two-level atom with \( |0\rangle \) as the ground state and \( |\pm 1\rangle \) (or \(|\pm 1\rangle\rangle\)) as the excited state. When the diamond containing an NV spin ensemble is placed on top of the STL, the cavity photon can drive the transition \( |0\rangle \rightarrow |1\rangle \) (or \( |\pm 1\rangle \rightarrow |\pm 1\rangle\)) via a magnetic coupling.

5 Conclusions

We have introduced an experimentally feasible method for how to implement Heisenberg-limited SSSS of atomic ensembles in a weakly and parametrically driven Floquet cavity. This method demonstrates a counterintuitive phenomenon: the weak squeezing of light can induce strong spin squeezing. This approach does not require multiple actions on atoms, thus greatly reducing the experimental complexity. We have also shown an anti-Stokes scattering process, induced by an atom, of a correlated photon pair, where one photon of the photon pair is scattered into a higher-energy mode by absorbing a fraction of the energy of the other photon, and the remaining energy of the absorbed photon excites the atom. If the scattered photon is further absorbed by another atom before being lost, then such a scattering process can also generate an atom-pair excitation and, as a consequence, can enable TAT spin squeezing. The two distinct atomic transitions demonstrated are functionally similar to, but experimentally simpler than, the double off-resonant Raman transition in multi-level atoms widely used for generating spin squeezing [25, 42]. Thus, we could expect that our method can provide a universal building block for simulating spin-squeezed states and simulating ultrastrong light–matter interaction [67, 68] and quantum many-body phase transition [69].

Acknowledgments: The authors thank Fabrizio Minganti, Nathan Shammah, and Vincenzo Macrì for their valuable discussions. Y.-H.C. is supported by the Japan Society for the Promotion of Science (JSPS) Foreign Postdoctoral Fellowship No. P19028. A.M. is supported by the Polish National Science Centre (NCN) under the Maestro Grant No. DEC-2019/34/A/ST2/00081. F.N. is supported in part by: NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the Q-LEAP program and the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (via the KAKENHI Grant No. JP20H00134, and the JSPS-RFBR Grant No. JPJSBP120194828), and the Grant No. FQXi-IAF19-06 from the Foundational Questions Institute Fund (FQXi), a donor advised fund of the Silicon Valley Community Foundation.

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: The authors thank Fabrizio Minganti, Nathan Shammah, and Vincenzo Macrì for their valuable discussions. Y.-H.C. is supported by the Japan Society for the Promotion of Science (JSPS) Foreign Postdoctoral Fellowship No. P19028. A.M. is supported by the Polish National Science Centre (NCN) under the Maestro Grant No. DEC-2019/34/A/ST2/00081. F.N. is supported in part by: NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the Q-LEAP program and the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (via the KAKENHI Grant No. JP20H00134, and the JSPS-RFBR Grant No. JPJSBP120194828), and the Asian Office of Aerospace Research and Development (AOARD), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix A: Effective Hamiltonian and decay of the collective spin

Let us first derive the effective Hamiltonian \( H_{\text{eff}} \). We begin with the full Hamiltonian in a rotating frame,
Here, \( \Delta c q = \omega_{c q} - \omega_c / 2 \), where \( \omega_c \) is the cavity frequency, \( \omega_{q} \) is the atomic transition frequency, and \( \omega_L \) is the frequency of the two-photon driving. The cavity mode \( a \) is dressed by the detuned two-photon driving \( \Omega \) and becomes a squeezed mode \( a \). This squeezing operation can be described by the Bogoliubov transformation,

\[
\begin{align*}
\alpha = \cosh (r_c) a + \exp (-i \theta_c) \sinh (r_c) a^\dagger,
\end{align*}
\]

where

\[
\begin{align*}
r_c = \frac{1}{\hbar} \ln \frac{\Delta_c + \Omega}{\Delta_c - \Omega},
\end{align*}
\]

determines the degree of squeezing of the cavity field. It then follows that

\[
\begin{align*}
\Delta_c a^\dagger a + \frac{1}{2} \Omega \{ \exp (i \theta_c) a^2 + \text{H.c.} \} = \omega_s a^\dagger a,
\end{align*}
\]

where \( \omega_s = \sqrt{\Delta_c^2 - \Omega^2} \) is the squeezed-mode frequency. It is seen from Eqs. (A4) and (A6) that, inside the cavity, there exist an upper squeezing sideband at \( (\omega_L / 2 + \omega_c) \) and a lower squeezing sideband at \( (\omega_L / 2 - \omega_c) \). The Hamiltonian \( H(t) \), when expressed in terms of the mode \( a \), is transformed to

\[
\begin{align*}
H(t) &= \left[ \omega_s + A_m \sinh (\omega_m t) \right] a^\dagger a + \Delta q J_Z \\
&+ g \cos (r_c) (a S_c + \text{H.c.}) \\
&- g \sinh (r_c) (e^{i \theta_c} a S_c + \text{H.c.}),
\end{align*}
\]

where \( A_m = A_m \cos (2 \gamma L) [1 - \tanh^2 (2 \gamma L)] \). In Eq. (A7), we have assumed that \( \Omega_1 = A_m \tanh (2 \gamma L) \sin (\omega_m t) \), such that an undesired parametric driving of the mode \( a \) can be eliminated. The last two terms of Eq. (A7) describe two distinct spin-cavity couplings, which are associated with the upper and lower squeezing sidebands, respectively.

We now focus our discussion on the limit \( \Omega \ll \Delta_c \), where light squeezing inside the cavity is very weak. Such weak squeezing can avoid two-photon correlation noise and thermal noise, which are generally considered detrimental in strong-squeezing processes [48, 70]. In this limit, we have

\[
r_c \approx \frac{\Omega}{2 \Delta_c} \ll 1,
\]

which, in turn, gives

\[
cosh (r_c) = 1 + \Delta q \ll \sinh (r_c) = \frac{\Omega}{2 \Delta_c}.
\]

Consequently, the squeezed mode \( a \) can, according to the Bogoliubov transformation in Eq. (A4), be approximated by the bare mode \( a \), i.e.,

\[
a \approx a.
\]

The Hamiltonian \( H(t) \) is therefore approximated by

\[
H(t) = H'(t) = \left[ \omega_s + A_m \sinh (\omega_m t) \right] a^\dagger a + \Delta q J_Z \\
+ g \cos (r_c) (a S_c + \text{H.c.}) \\
- g \sinh (r_c) (e^{i \theta_c} a S_c + \text{H.c.}).
\]

Note that, in the limit of \( \Omega \ll \Delta_c \), the upper squeezing sideband becomes the cavity resonance due to \( \omega_L / 2 + \omega_s = \omega_c \), and the lower squeezing sideband is likewise shifted to \( \omega_L - \omega_c \) (i.e., \( \omega_L / 2 - \omega_s = \omega_c \)).

Upon introducing a unitary transformation

\[
U(t) = \exp \left[ i (\omega_m t - \eta_m \cos (\omega_m t)) a^\dagger a + i \Delta q S_c \right],
\]

with \( \eta_m = \tilde{A}_m / \omega_m \), \( H'(t) \) in Eq. (A11) is then transformed to

\[
H(t) = g \cos (r_c) \sum_{n=-\infty}^{\infty} \{ \tilde{F}_n (\eta_m) a S_c \\
+ \exp [- i (\omega_s - \Delta_q - n \omega_m t)] + \text{H.c.} \} \\
- g \sinh (r_c) \sum_{n=-\infty}^{\infty} \{ \exp [i \theta_c] \tilde{F}_n (\eta_m) a S_c \\
+ \exp [- i (\omega_s + \Delta_q - n \omega_m t)] + \text{H.c.}],
\]

where we have used the Jacobi–Anger identity

\[
\exp \left[ i \eta_m \cos (\omega_m t) \right] = \sum_{n=-\infty}^{\infty} \tilde{F}_n (\eta_m) \exp (i n \omega_m t).
\]

with \( \tilde{F}_n (\eta_m) \) being the \( n \)-th order Bessel function of the first kind.

We find that, when \( \omega_s + \Delta_q = 0 \) (i.e., \( \omega_q = \omega_L - \omega_c \)), the last sum in Eq. (A13) contains a resonant coupling of the form

\[
\exp (i \theta_c) a S_c + \exp (-i \theta_c) a^\dagger S_c,
\]

with strength \( g \sinh (r_c) \bar{f}_0 (\eta_m) \approx g \Omega / 2 \Delta_c \). Such a coupling, which originates from the lower squeezing sideband at \( (\omega_s - \omega_c) \), describes the anti-Stokes scattering process of a driving photon pair interacting with an atom. Specifically, one photon of the photon pair is scattered into the cavity resonance by absorbing part of the energy of the other photon and simultaneously the remaining energy of the absorbed photon excites the atom. When we further choose \( 2 \omega_s = \omega_m \) (i.e., \( \omega_q = \omega_c - \omega_m \)), the first sum in Eq. (A13) also contains a resonant coupling of the form
with strength \( g \cosh (\gamma t) / (\eta_m) \approx g A_m / 2 \omega_m \). This coupling, which is mediated via a first-order Floquet sideband at \( (\omega_c - \omega_m) \), describes that a detuned atom can emit a photon into the cavity resonance. Under the assumptions, \( g \ll \Delta_c \) and \( A_m \ll \omega_m \) (i.e., \( \eta_m \ll 1 \)), off-resonant couplings can be neglected, and thus the system dynamics is determined by the following effective Hamiltonian

\[
H_{\text{eff}} = ga^{{\dag}}(G_- S_- + G_+ S_+) + H_c, \tag{A17}
\]

where \( G_- = A_m / 2 \omega_m \) and \( G_+ = \Omega / 2 \Delta_c \). Here, we have set \( \theta_k = -\pi / 2 \) and a phase factor \( i \) has been absorbed into \( a \).

We now consider the dissipative dynamics of the system. The dissipative dynamics can be described with the Lindblad operator

\[
\mathcal{L}(a)\rho = 2a \rho a^{{\dag}} - a^{{\dag}} a \rho - \rho a^{{\dag}} a, \tag{A18}
\]

such that \( \frac{1}{\gamma} \mathcal{L}(a) \rho \) corresponds to cavity loss, and \( \frac{1}{\gamma} \sum_{j=1}^{N} \mathcal{L}(\sigma_j^c) \rho \) to atomic spontaneous emission. It is, in general, very difficult to perform numerical simulations for a large ensemble because the Hilbert space of the ensemble grows as \( 2^N \). In order to reduce the dimension of this Hilbert space, we follow the method in a study by Gelhausen et al. [50], Shammah et al. [51], and Macrì et al. [52] and perform a Fourier transformation,

\[
\hat{\sigma}_k = \frac{1}{\sqrt{N}} \sum_j \exp(-ik\sigma_j^c). \tag{A19}
\]

It then follows, using \( \sqrt{N} \hat{\sigma}_k^c = S_z \), that

\[
\sum_j \mathcal{L}(\sigma_j^c) \rho = \frac{1}{N} \mathcal{L}(S_z) \rho + \sum_{k=0}^{N} \mathcal{L}(\hat{\sigma}_k) \rho, \tag{A20}
\]

where the first and second terms on the right-hand side describe the dissipative processes of the zero and nonzero momentum modes, respectively. It is seen, from the full Hamiltonian \( H(t) \) in Eq. (A1) or the effective Hamiltonian \( H_{\text{eff}} \) in Eq. (A17), that the coherent dynamics only involves the zero \( (k = 0) \) momentum mode. This implies that we can only focus on the zero momentum mode; that is,

\[
\sum_j \mathcal{L}(\sigma_j) \rho = \frac{1}{N} \mathcal{L}(S_z) \rho. \tag{A21}
\]

This is valid in the steady-state limit or the long-time limit because the nonzero momentum modes in Eq. (A20) only decay. In particular, such a reduction can exactly describe the dissipative dynamics of an atomic ensemble initially in the ground state. Therefore, the dynamics of the system is driven by the following master equation

\[
\dot{\rho} = i[\rho, \mathcal{H}] + \frac{1}{2} \sum_{j=1}^{N} \mathcal{L}(\sigma_j^c) \rho + \frac{Y}{2N} \sum_{j=1}^{N} \mathcal{L}(S_z) \rho, \tag{A22}
\]

where \( \mathcal{H} \) can be taken to be \( H(t) \) for the full dynamics or to \( H_{\text{eff}} \) for the effective dynamics.

In Figure A1, we numerically integrated the master equation in Eq. (A22), with the full Hamiltonian \( H(t) \) and the effective Hamiltonian \( H_{\text{eff}} \). Specifically, we plot the spin squeezing parameter \( \xi^2 \) versus the scaled evolution time \( \sqrt{N} \gamma t \) in Figure A1(a) and versus the ratio \( \gamma / \kappa \) in Figure A1(b). The result in this figure reveals that \( H_{\text{eff}} \) can describe well the dynamics of the system. The divergence between them mainly arises from neglecting an off-resonant coupling to the zero-order Floquet sideband. In the next section, we discuss how to remove the detrimental effect induced by such an off-resonant coupling under the spin-wave approximation.

### Appendix B: Detuning arising from non-resonant couplings

Under the spin-wave approximation (i.e., \( S_z = \sqrt{N} \Omega \)), the Hamiltonian \( H'(t) \) in Eq. (A13) becomes...
\[ H_{\text{SWA}}(t) = g_{\text{col}} \cosh(r_c) \sum_{n=-\infty}^{\infty} \left\{ i^n f_n(\eta_m) a b^\dagger \exp \left[ -i(\omega_2 - \Delta_q - nw_m)t \right] + \text{H.c.} \right\} \]

\[ - g_{\text{col}} \sinh(r_c) \sum_{n=-\infty}^{\infty} \left\{ i^n f_n(\eta_m) a b \exp \left[ -i(\omega_2 + \Delta_q - nw_m)t \right] + \text{H.c.} \right\}, \]

where \( g_{\text{col}} = \sqrt{N} g \) represents a collective coupling. It is seen that, when \( \omega_2 + \Delta_q = 0 \) and \( 2\omega_2 - \omega_m = 0 \), the off-resonant coupling to the zero-order \( (n = 0) \) Floquet sideband, given by

\[ \mathcal{V}_0(t) = g_0 \left[ ab^\dagger \exp(-i2\omega_c t) + \text{H.c.} \right] \]  

with \( g_0 = g_{\text{col}} \cosh(r_c) f_0(\eta_m) \), dominates other off-resonant couplings, due to the property that \( f_0(\eta_m) \gg |f_n(\eta_m)| \) for \( \eta_m \ll 1 \). Therefore, we may drop these counter-rotating terms for \( n \neq 0 \).

As demonstrated above, two resonant couplings in \( H_{\text{SWA}}(t) \) lead to the effective Hamiltonian

\[ H_{\text{eff}}^{\text{SWA}} = g_{\text{col}} a^\dagger (G^2 b + G^b b^\dagger) + \text{H.c.}, \]

\[ = g_{\text{col}} (a^\dagger b + \text{H.c.}). \]  

Here, we have defined a squeezed mode, \( \beta = \cosh(r_c)b + \sinh(r_c)b^\dagger \), of the collective spin, with \( G^2 = G_c^2 - G_s^2 \) and \( \tanh(t) = G_c/G_s \).

Furthermore, after time averaging [53], the effective dynamics of the coupling \( \mathcal{V}_0(t) \) is determined by

\[ \mathcal{V}_0(t) = \frac{g_0^2}{2\omega_c} (a^\dagger a - b^\dagger b). \]

This implies that the coupling \( \mathcal{V}_0(t) \) shifts the cavity resonance frequency and the atomic transition frequency by \(+g_0^2/2\omega_c\) and \(-g_0^2/2\omega_c\), respectively. This, in turn, enables an additional detuning of \( \delta = g_0^2/\omega_c \approx g_{\text{col}}^2/\Delta_c \) between cavity and atoms. For the effective Hamiltonian \( H_{\text{eff}}^{\text{SWA}} \), the detuning \( \delta \) has no effect on the coupling of the form \( (ab + a^\dagger b^\dagger) \), but it causes the coupling \( (a^\dagger b + ab^\dagger) \) to become far off-resonant if \( g_{\text{col}} \) is comparable to \( \Omega \). As a result, the degree of spin squeezing decreases, and even the desired dynamics is destroyed. To remove such a detrimental effect, we need to modify the resonant condition \( 2\omega_2 \approx \omega_m \) (i.e., \( \omega_2 \approx \omega_c - \omega_m \)) to be

\[ 2\omega_2 = \omega_m - \delta, \text{ or } \omega_2 \approx \omega_c - \omega_m + \frac{g_{\text{col}}^2}{\Delta_c}, \]  

which compensates the detuning \( \delta \). In Figure A2, we use the full Hamiltonian \( H(t) \) by compensating the detuning \( \delta \) to numerically calculate the excited-atom number \( \langle b^\dagger b \rangle \), the two-atom correlation \( \langle bb \rangle \), and the spin squeezing parameter \( \xi_2^{\text{SWA}} \). We then compare them with the predictions of the effective Hamiltonian \( H_{\text{eff}}^{\text{SWA}} \). Note that the full Hamiltonian \( H(t) \) has been obtained under the spin-wave approximation. We see from Figure A2 that, when the detuning \( \delta \) is compensated, the full dynamics is in excellent agreement with the desired effective dynamics.

**Appendix C: Adiabatic elimination of the cavity mode**

We now discuss how to adiabatically eliminate the cavity mode. To begin, we consider the master equation with the effective Hamiltonian \( H_{\text{eff}}^{\text{SWA}} \),

---

**Figure A2:** Evolution of (a) the excited-atom number \( \langle b^\dagger b \rangle \), (b) the two-atom correlation \( \langle bb \rangle \), and (c) the spin squeezing parameter \( \xi_2^{\text{SWA}} \). In all plots, squares are obtained from the full Hamiltonian \( H(t) \) by compensating the detuning \( \delta \), and dashed curves are given by the effective Hamiltonian \( H_{\text{eff}}^{\text{SWA}} \). Here, we have made the spin-wave approximation for \( H(t) \). We have assumed that \( \Delta_c = 200\kappa, \Omega = 0.1\Delta_c, \Lambda_m = 0.15\omega_m, \gamma = 0.01\kappa, \sqrt{rg} = 10\kappa \), and also that all atoms are initialized in the ground state and the cavity is in the vacuum.
As mentioned already, we work within the limit $\Omega \ll \Delta$, and the squeezing of the cavity field is very weak. In this case, the occupation of the cavity mode is very low, such that we can only consider the vacuum state $|0\rangle$ and the single-photon state $|1\rangle$ of the cavity mode. The density matrix, $\rho$, of the system can therefore be expanded as

$$\rho = \rho_{00}|0\rangle\langle 0| + \rho_{11}|1\rangle\langle 1| + \rho_{01}|0\rangle\langle 1| + \rho_{10}|1\rangle\langle 0|.$$  (C2)

Upon substituting this expression into the master equation in Eq. (C1), we obtain

$$\dot{\rho}_{00} = i\Gamma g_{\text{col}}(\rho_{00}\beta - \beta\rho_{10}) + \kappa\rho_{11} + \frac{\gamma}{2}\mathcal{L}(b)\rho_{00},$$  (C3)

$$\dot{\rho}_{11} = i\Gamma g_{\text{col}}(\rho_{11}\beta - \beta\rho_{01}) - \kappa\rho_{11} + \frac{\gamma}{2}\mathcal{L}(b)\rho_{11},$$  (C4)

$$\dot{\rho}_{01} = i\Gamma g_{\text{col}}(\rho_{00}\beta - \beta\rho_{01}) - \frac{\kappa}{2}\rho_{01} + \frac{\gamma}{2}\mathcal{L}(b)\rho_{01},$$  (C5)

and $\dot{\rho}_{10} = \dot{\rho}_{01}^\dagger$. It then follows, on setting $\rho_{01} = 0$, that

$$\rho_{01} = \frac{i2\Gamma g_{\text{col}}}{\kappa} (\rho_{00}\beta - \beta\rho_{01}).$$  (C6)

Here, we have assumed $\gamma \ll \kappa$. This assumption is generally valid because, for a typical atomic ensemble, e.g., an NV spin ensemble, the atomic decay rate $\gamma$ is negligible compared to the cavity loss rate $\kappa$. Then, substituting Eq. (C6) into Eqs. (C3) and (C4) leads to the following adiabatic master equation

$$\dot{\rho}_{\text{spin}} = \frac{\gamma}{2}\mathcal{L}(b)\rho_{\text{spin}} + \frac{\gamma}{2}\mathcal{L}(b)\rho_{\text{spin}}.$$  (C7)

where $\rho_{\text{spin}}$ is the reduced density matrix of the collective spin, and $\gamma_c = 4G^2g_{\text{col}}^2/\kappa$ represents the cavity-induced atomic decay. We analytically find, according to Eq. (C7), that

$$(b'b') (t) = (b'b')_{\text{ini}}(\exp[-(\gamma_c + \gamma)t] + (b'b')_{\text{ss}},$$  (C8)

$$(bb) (t) = (bb)_{\text{ini}}(\exp[-(\gamma_c + \gamma)t] + (bb)_{\text{ss}}).$$  (C9)

Here, $(b'b')_{\text{ini}}$ is the initial excited-atom number, $(bb)_{\text{ini}}$ is the initial two-atom correlation, and the corresponding steady-state values are

$$(b'b')_{\text{ss}} = A\sinh^2(r), \quad (bb)_{\text{ss}} = \frac{1}{2}A\sinh(2r),$$  (C10)

where $A = (\gamma_c/\gamma)/[(\gamma_c/\gamma + 1)(1 + \gamma/\kappa)]$. It follows, using $\xi_{\text{SWA}}^2 = 1 + 2((b'b') - (bb))$, that

$$\xi_{\text{SWA}}^2 = \frac{\xi_{\text{SWA}}^2}{\text{ss}} - \left[\frac{\xi_{\text{SWA}}^2}{\text{ss}} - 1\right]\exp[-(\gamma_c + \gamma)t].$$  (C11)

where, for simplicity, we have assumed $(b'b')_{\text{ini}} = (bb)_{\text{ini}} = 0$.

In Figure A3, we compare the analytical $\xi_{\text{SWA}}^2$ in Eq. (C11) with the exact numerical simulations of the full Hamiltonian $H(t)$ in Eq. (A1). This figure shows a good agreement, in particular, for the steady-state behavior (yellow regions). The oscillation of red solid curves results from the reversible energy exchange between cavity and atoms (i.e., Rabi oscillation). However, this Rabi oscillation vanishes in the limit $G_s \rightarrow G_\ast$, as shown in Figure A3. This is because the coupling, $G_{\text{col}}$, in the effective Hamiltonian $H_{\text{eff}}^\text{SWA}$ becomes smaller when $G_s$ approaches $G_\ast$. Thus, Eqs. (C10) and (C11) may be used to analytically predict stronger SSSS.

Figure A3: Evolution of the spin squeezing parameter $\xi_{\text{SWA}}^2$ for (a) $A_m/\omega_m = 0.15$, (b) $0.13$, and (c) $0.12$. Solid curves are obtained from the full Hamiltonian $H(t)$ in Eq. (A1), while dashed curves are analytical predictions given by Eq. (C11). The analytical expression can predict well the squeezing of the collective spin, in particular, for the steady-state behavior (yellow regions). Here, we have made the spin-wave approximation for $H(t)$. In all plots, we have assumed that $\Delta_c = 200\kappa$, $\Omega = 0.1\Delta_c$, $\gamma = 0.1\kappa$, $\sqrt{\kappa}g = 10\kappa$, and also that all atoms are initialized in the ground state and the cavity is in the vacuum.
Appendix D: Proposed experimental implementation with hybrid quantum systems and its feasibility

In this section, we consider a hybrid system, where a superconducting transmission line (STL) is terminated by a superconducting quantum interference device (SQUID) and is magnetically coupled to an NV spin ensemble in diamond. The strong coupling between the STL cavity and the NV spin ensemble has already been widely implemented experimentally [60–66]. In particular, in the studies by Kubo et al. [60, 62, 63], a SQUID has already been used to tune the cavity frequency.

D1 Proposed experimental implementation

We first show how to use an STL terminated by a SQUID to implement a parametrically driven Floquet cavity. The equivalent circuit for this setup is schematically illustrated in Figure A4. The STL of length \( d \) can be divided into \( N \) segments of equal length \( \Delta x \), and then this can be modeled as a series of LC circuits each with a capacitance \( C_0 \Delta x \) and an inductance \( L_0 \Delta x \). Here, \( C_0 \) and \( L_0 \) are the characteristic capacitance and inductance per unit length, respectively. The Lagrangian for the STL is therefore given by \([71–73]\):

\[
\mathcal{L}_{\text{STL}} = \left( \frac{\hbar}{2e} \right)^2 \frac{C_0}{2} \sum_{i=1}^{N-1} \left[ \phi_i^2 \Delta x - \nu^2 \frac{(\phi_{i+1} - \phi_i)^2}{\Delta x} \right],
\]

where \( \phi_i \) is the node phase, and \( \nu = 1/\sqrt{L_0C_0} \) is the speed of light in the STL. In the continuum limit \( N \to \infty \), we have \( \Delta x \to dx \), and \( \phi_i \to \phi(x, t) \). As a result, \( \mathcal{L}_{\text{STL}} \) becomes

\[
\mathcal{L}_{\text{STL}} = \left( \frac{\hbar}{2e} \right)^2 \frac{C_0}{2} \int_0^d dx \left( \phi_x^2 - \nu^2 \phi^2 \right). \tag{D2}
\]

The Lagrangian for the SQUID is

\[
\mathcal{L}_{\text{SQUID}} = \sum_{i=1}^{2} \left[ \left( \frac{\hbar}{2e} \right)^2 \frac{C_{J,i}}{2} \phi_i^2 + E_{J,i} \cos(\phi_i) \right]. \tag{D3}
\]

Here, \( E_{J,i}, C_{J,i} \), and \( \phi_{J,i} \) are, respectively, the Josephson energy, capacitance, and phase of the \( i \)th Josephson junction in the SQUID loop. The phases \( \phi_{J,i} \) of the Josephson junctions depend on the external magnetic flux, such that \( (\phi_{J,1} - \phi_{J,2}) \) is determined by a driving phase \( f(t) \) across the SQUID, yielding \( \phi_{J,1} - \phi_{J,2} = 2f(t) \). We assume that the SQUID is symmetric, i.e., \( C_{J,1} = C_{J,2} = C_J \) and \( E_{J,1} = E_{J,2} = E_J \). The Lagrangian \( \mathcal{L}_{\text{SQUID}} \) is reduced to

\[
\mathcal{L}_{\text{SQUID}} = \left( \frac{\hbar}{2e} \right)^2 \frac{2C_J}{2} \phi_a^2 + 2E_J \cos[f(t)] \cos(\phi_a). \tag{D4}
\]

where we have assumed that an effective phase of the SQUID, \( \phi_f = (\phi_{J,1} + \phi_{J,2})/2 \), is equal to the boundary phase of the STL, \( \phi_b = \phi(d, t) \). The cavity Lagrangian, including the STL and SQUID Lagrangians, is

\[
\mathcal{L}_{\text{cavity}} = \mathcal{L}_{\text{STL}} + \mathcal{L}_{\text{SQUID}}. \tag{D5}
\]

We now discuss how to quantize the system. We begin with the massless scalar Klein–Gordon equation [74],

\[
\phi - \nu^2 \phi'' = 0, \tag{D6}
\]

which results from the Lagrangian \( \mathcal{L}_{\text{STL}} \). This wave equation is complemented with two boundary conditions \( \phi_0 = 0 \) at the open end of the STL, and

---

**Figure A4**: Equivalent circuits for a superconducting transmission line (STL) terminated by a superconducting quantum interference device (SQUID). We assume that the left end, at \( x = 0 \), of the STL is open, and its right end, at \( x = d \), is connected to the SQUID. The STL of length \( d \) has a characteristic capacitance \( C_0 \) and inductance \( L_0 \) per unit length. The STL is modeled as a series of LC circuits each with a capacitance \( C_0 \Delta x \) and an inductance \( L_0 \Delta x \). Here, \( \Delta x \) is a small distance. We assume \( \phi_i (i = 1, 2, 3, \ldots, N) \) to be the node phases between these LC circuits. The SQUID consists of two Josephson junctions, and we use \( E_{J,i}, C_{J,i} \), and \( \phi_{J,i} (i = 1, 2) \) to label the Josephson energy, capacitance, and phase of the \( i \)th junction, respectively. The phases \( \phi_{J,i} \) are determined by a driving phase \( f(t) \) across the SQUID, such that \( f(t) = (\phi_{J,1} - \phi_{J,2})/2 \). The effective phase \( \phi_f \) of the SQUID is given by \( \phi_f = (\phi_{J,1} + \phi_{J,2})/2 \). In the continuum limit \( N \to \infty \), we have \( \Delta x \to dx \) and \( \phi_i \to \phi(x, t) \).
here, nonlinear interactions between them.

Following the standard quantization procedure, we replace the c-numbers \( q_n \) and \( p_n \) by operators, which obey the canonical commutation relation \([q_n, p_m] = i\hbar \delta_{nm}\). We then introduce the annihilation and creation operators \( a_n \) and \( a_n^\dagger \):

\[
q_n = q_{\text{zpf}, n} (a_n + a_n^\dagger), \quad p_n = -i\hbar \frac{a_n - a_n^\dagger}{2a_{\text{zpf}, n}},
\]

where \( q_{\text{zpf}, n} = \sqrt{\hbar/2M_n a_{\text{zpf}, n}} \) is the zero-point fluctuation of the variable \( q_n \). Here, \( a_n \) and \( a_n^\dagger \) obey the canonical commutation relation \([a_n, a_m^\dagger] = \delta_{nm}\). With these definitions, the free Hamiltonian \( H_0 \) is transformed to

\[
H_0 = \sum_n \hbar \omega_n \left(a_n^\dagger a_n + \frac{1}{2}\right). \tag{18}
\]

We find that the quantized STL contains infinitely many modes, but the existence of the driving phase \( f(t) \) enables us to selectively excite a desired mode, e.g., the fundamental mode \( a_0 \) (see below). The nonlinear potential \( V \) can be approximated as

\[
V = -E_j \sin(f_0) \left(f_1 \cos(\omega_{12} t + \theta_{12}) + f_2(t) \cos(\omega_{13} t + \theta_{13}) + f_3 \cos(\omega_{23} t + \theta_{23})\right), \tag{19}
\]

by assuming that \( f_2(f_1, f_2(t), f_3) \ll f_0 \) and \( \phi_d \ll 1 \). According to the solution \( \phi(x,t) \) in Eq. (D9), the quadratic potential \( V \) can be expressed, in terms of the modes \( a_n \), as

\[
V = -E_j \left( \frac{2\hbar}{\hbar} \right) \left( \frac{2}{C_0 d} \right) E_j \sin(f_0) \left[f_1 \cos(\omega_{12} t + \theta_{12}) + f_2(t) \cos(\omega_{13} t + \theta_{13}) + f_3 \cos(\omega_{23} t + \theta_{23})\right]
\]

\[
\times \sum_{n,m} q_{\text{zpf}, n} q_{\text{zpf}, m} (a_n + a_n^\dagger)(a_m + a_m^\dagger) \cos(k_n d) \cos(k_m d).
\tag{20}
\]

This means that the potential can excite or couple different modes. To select the fundamental mode \( a_0 \), we further assume that \( \omega_{12} = 2\omega_0 \) and \( \omega_{13} \ll \omega_0 \). In this case, we can only focus on the \( a_0 \) mode and other modes can be neglected, yielding

\[
V = A_m \sin(\omega_0 t) a_0^\dagger a_0 \tag{21} + \frac{1}{2} \left[\Omega + \Omega_1(t)\right] \left[\exp[i(\omega_0 t + \theta_0)] a_0^\dagger a_0^\dagger + \text{H.c.}\right].
\]

Here, \( \omega_0 = \omega_{12} = \omega_{13}, \omega_m = \omega_{13}, \theta_L = \theta_{11} = \theta_{22}, \) and \( \theta_{13} = 3\pi/2 \). Moreover, we have defined

\[
A_m = \Omega_f/f_1, \quad \Omega(t) = \Omega_0(t)/f_1, \quad \Omega = -2\left(\frac{2e}{\hbar}\right)^2 E_j \frac{C_0 d}{\hbar} q_{\text{zpf}, f_1} \sin(f_0(t)) \cos^2(k_0 d).
\tag{22}
\]

In a frame rotating at \( \omega_L/2 \), the cavity Hamiltonian becomes (hereafter, we set \( \hbar = 1 \))

\[
H_0 = \frac{1}{2} \sum_n \left( \frac{P_n^2}{M_n} + M_n a_n^\dagger a_n \right), \tag{15}
\]

We find that \( H_0 \) describes a collection of independent harmonic oscillators, but \( V \) can provide either linear or nonlinear interactions between them.
Some experimental parameters for recent experiments reporting the coupling between an NV spin ensemble and an superconducting transmission line (STL) cavity. Here, $\omega_c$ is the cavity frequency, $Q$ is the quality factor of the cavity, $x$ is the loss rate of the cavity, $N$ is the number of NV centers in the ensemble, $g_{\text{col}}$ is the collective coupling of the ensemble to the cavity, $\gamma_c$ is the dephasing rate of the ensemble, and $\gamma$ is the energy relaxation rate of the ensemble. Note that the superscript “*” indicates that the cavity frequency is tunable via a superconducting quantum interference device (SQUID).

<table>
<thead>
<tr>
<th>Reference</th>
<th>$\omega_c$ (GHz)</th>
<th>$Q$</th>
<th>$\frac{x}{Q}$ (MHz)</th>
<th>$N$</th>
<th>$g_{\text{col}}$ (MHz)</th>
<th>$\frac{\gamma_c}{Q}$ (MHz)</th>
<th>$\frac{\gamma}{Q}$ (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[60]</td>
<td>2.87*</td>
<td>-1.9 x 10^3</td>
<td>-1.5</td>
<td>-10^-12</td>
<td>-11</td>
<td>-3</td>
<td>-</td>
</tr>
<tr>
<td>[61]</td>
<td>2.701</td>
<td>-3.2 x 10^3</td>
<td>-0.8</td>
<td>-10^-12</td>
<td>-10</td>
<td>-</td>
<td>-0.004</td>
</tr>
<tr>
<td>[62]</td>
<td>3.004*</td>
<td>-</td>
<td>-</td>
<td>-10^-11</td>
<td>-3</td>
<td>-0.02</td>
<td>-</td>
</tr>
<tr>
<td>[63]</td>
<td>2.88*</td>
<td>-1.8 x 10^3</td>
<td>-1.6</td>
<td>-10^-12</td>
<td>-11</td>
<td>-5.3</td>
<td>-</td>
</tr>
<tr>
<td>[64]</td>
<td>2.6899</td>
<td>-3.0 x 10^3</td>
<td>-0.8</td>
<td>-10^-12</td>
<td>-9</td>
<td>-5.2</td>
<td>-</td>
</tr>
<tr>
<td>[65]</td>
<td>2.88</td>
<td>80</td>
<td>-36</td>
<td>-</td>
<td>-5</td>
<td>-0.02</td>
<td>&lt;0.005</td>
</tr>
<tr>
<td>[66]</td>
<td>2.7491</td>
<td>-4.3 x 10^3</td>
<td>-0.6</td>
<td>-</td>
<td>-10</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Experimental feasibility

In Table A1, we list some relevant parameters reported in recent experiments demonstrating the coupling between an NV spin ensemble and an STL cavity. In addition to these parameters listed in Table 1, the coherence time of NV spin ensembles, with spin-echo sequences, has experimentally reached the order of ms (i.e., $\gamma_\phi/2\pi \sim 0.16$ kHz) [55] and harnessing dynamical-decoupling sequences can further make this coherence time close to 1 s (i.e., $\gamma_\phi/2\pi \sim 0.16$ Hz) [56].

Note that the studies by Kubo et al. [60, 62, 63] used a SQUID to tune the resonance frequency of an STL cavity coupled to an NV spin ensemble. This setup is similar to the one we have already proposed for a possible implementation of our proposal.

The analytical $\xi_{\text{SWE}}$ in Eq. (C11) predicts that, for typical parameters $g_{\text{eff}}/2\pi = 10$ MHz, $\kappa/2\pi = 1.0$ MHz, and $g = 0$ in Table I, a spin-squeezed steady state of $\approx -12$ dB can be achieved for a squeezing time $\approx 0.8$ $\mu$s, or $\approx -20$ dB for $\approx 8$ $\mu$s. This justifies neglecting spin decoherence, which, as described above, could be made much slower. We also find, according to an exponential squeezing given in Eq. (C11), that by properly increasing $y_\phi$, we can achieve a shorter squeezing time.

Moreover, in addition to the NV spin ensembles, iron spin ensembles [75–77] and P1 center ensembles [78] can also couple to an STL cavity. In a recent experiment [79], the coupling of an ensemble of $^{87}$Rb atoms to an STL cavity has already been reported.

Hence, we expect that our proposal could be realized with current technologies.

References


