Maestro Grant No. DEC-2019/34/A/ST2/00081\ of the Polish National Science Centre (NCN) (2020-2025)

Maestro Grant No. DEC-2019/34/A/ST2/00081
of the Polish National Science Centre (NCN) (2020-2025)

Project title:
"Fundamental problems and implementations of dissipative quantum engineering"
("Fundamentalne problemy i implementacje dyssypatywnej inżynierii kwantowej,")
[click here to read more about the grant] 

Articles in reverse chronological order

Preprints

  1. Ievgen I. Arkhipov, Fabrizio Minganti, Adam Miranowicz, Şahin K. Özdemir, Franco Nori,
    Restoring Adiabatic State Transfer in Time-Modulated Non-Hermitian Systems,
    e-print arXiv:2402.15298 . [PDF] 
    DOI: 10.48550/arXiv.2402.15298
    (submitted on 23 Feb 2024)
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.

  2. Yunlan Zuo, Ya-Feng Jiao, Baijun Li, Xun-Wei Xu, Adam Miranowicz, Le-Man Kuang, and Hui Jing,
    Chiral photon blockade,
    (submitted on 21 Feb 2024)
    Keywords: [photon blockade], [optical chirality], [spinning resonators]
    Grant tasks: #1. Quantum engineering with loss, gain, and nonlinearity. #1.A: Photon blockade.

  3. Wei Qin, Adam Miranowicz, and Franco Nori,
    Exponentially Improved Dispersive Qubit Readout with Squeezed Light,
    e-print arXiv:2402.12044 . [PDF] 
    DOI: 10.48550/arXiv.2402.12044
    (submitted on 19 Feb 2024)
    Keywords: [qubit readout], [squeezing of light], [squeezed reservoir]
    Grant tasks: #4.A: Enhanced interactions via dissipative quantum engineering. #4.0: Quantum noise reduction.

  4. Kelvin Onggadinata, Paweł Kurzyński, and Dagomir Kaszlikowski,
    Communication Cost in Simulating Unknown Entangled States,
    e-print arXiv:2402.11610 . [PDF] 
    DOI: 10.48550/arXiv.2402.11610
    (submitted on 18 Feb 2024)
    Keywords: [contextuality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.

  5. Kelvin Onggadinata, Paweł Kurzyński, and Dagomir Kaszlikowski,
    Non-classicality Primitive in a Quasi-probabilistic Toy Model,
    e-print arXiv:2402.11607 . [PDF] 
    DOI: 10.48550/arXiv.2402.11607
    (submitted on 18 Feb 2024)
    Keywords: [contextuality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.

  6. Jan Wójcik,
    Quantum Walks in Weak Stochastic Gauge Fields,
    e-print arXiv:2402.09133 . [PDF] 
    DOI: 10.48550/arXiv.2402.09133
    (submitted on 14 Feb 2024)
    Keywords: [quantum walks], [quantum-to-classical transition], [semiclassical physics]
    Grant tasks: #3.A: Cellular automata. #3.B: Dissipative quantum walks.

  7. Bárbara Andrade, Utso Bhattacharya, Ravindra W. Chhajlany, Tobias Graß, Maciej Lewenstein,
    Observing quantum many-body scars in random quantum circuits,
    e-print arXiv:2402.06489  [PDF] 
    DOI: 10.48550/arXiv.2402.06489
    (submitted on 9 Feb 2024)
    Keywords: [quantum circuits], [quantum scars], [Schwinger model], [PXP model], [thermalization]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.

  8. Christian Brahms, Lin Zhang, Xiao Shen, Utso Bhattacharya, Maria Recasens, Johann Osmond, Tobias Grass, Ravindra W. Chhajlany, Kent A. Hallman, Richard F. Haglund, Sokrates T. Pantelides, Maciej Lewenstein, John C. Travers, Allan S. Johnson,
    Decoupled few-femtosecond phase transitions in vanadium dioxide,
    e-print arXiv:2402.01266  [PDF] 
    DOI: 10.48550/arXiv.2402.01266
    (submitted on 9 Feb 2024)
    Keywords: [nonequilibrium phase transitions], [structural phase transitions], [insulator-to-metal transitions], [tensor networks], [vanadium dioxide], [femtosecond spectroscopy], [experiment]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.

  9. Lin Zhang, Utso Bhattacharya, Maria Recasens, Tobias Grass, Ravindra W. Chhajlany, Maciej Lewenstein, Allan S. Johnson,
    Light-induced phase transitions in vanadium dioxide: a tensor network study,
    e-print arXiv:2402.01247  [PDF] 
    DOI: 10.48550/arXiv.2402.01247
    (submitted on 2 Feb 2024)
    Keywords: [nonequilibrium phase transitions], [structural phase transitions], [insulator-to-metal transitions], [tensor networks], [vanadium dioxide]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  10. Shilan Abo, Patrycja Tulewicz, Karol Bartkiewicz, Sahin K. Özdemir, and Adam Miranowicz,
    Liouvillian Exceptional Points of Non-Hermitian Systems via Quantum Process Tomography,
    e-print arXiv:2401.14993  [PDF] 
    DOI: 10.48550/arXiv.2401.14993
    (submitted on 26 Jan 2024)
    Keywords: [Liouvillian exceptional points], [quantum process tomography], [experiment], [IBMQ]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  11. Wei Qin, Anton Frisk Kockum, Carlos Sanchez Munoz, Adam Miranowicz, and Franco Nori,
    Quantum amplification and simulation of strong and ultrastrong coupling of light and matter,
    89-page review to be submitted to Physics Reports, 
    e-print arXiv:2401.04949  [PDF] 
    DOI: 10.48550/arXiv.2401.04949
    (submitted on 10 Jan 2024)
    Keywords: [review], [strong coupling], [ultrastrong coupling], [quantum amplification], [quantum simulation
    Grant task #4: Enhanced interactions and quantum noise reduction via quantum dissipative engineering.
  12. Xin Wang, Jia-Qi Li, Tao Liu, Adam Miranowicz, and Franco Nori,
    Long-range four-body interactions in structured nonlinear photonic waveguides,
    e-print arXiv:2401.02714  [PDF] 
    DOI: 10.48550/arXiv.2401.02714
    (submitted on 8 Jan 2024)
    Keywords: [photonic waveguides], [single-photon bound states], [doublon bound states]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  13. Kuan-Yi Lee, Jhen-Dong Lin, Karel Lemr, Antonín Černoch, Adam Miranowicz, Franco Nori, Huan-Yu Ku, Yueh-Nan Chen,
    Coherence Distillation Unveils Einstein-Podolsky-Rosen Steering,
    e-print arXiv:2312.01055 . [PDF] 
    DOI: 10.48550/arXiv.2312.01055
    (submitted on 2 Dec 2023)
    Keywords: [steering], [coherence], [distillation]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  14. Deng-Gao Lai, Adam Miranowicz, and Franco Nori,
    Nonreciprocal topological phononics independent of both exceptional-point encircling direction and device mass,
    (submitted on 27 Oct 2023)
    Keywords: [nonreciprocal effects], [topological effects], [phononics]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  15. Javier Argüello-Luengo, Utso Bhattacharya, Alessio Celi, Ravindra W. Chhajlany, Tobias Grass, Marcin Płodzień, Debraj Rakshit, Tymoteusz Salamon, Paolo Stornati, Leticia Tarruell, Maciej Lewenstein,
    Synthetic dimensions for topological and quantum phases: Perspective,
    e-print arXiv:2310.19549 . [PDF] 
    DOI: 10.48550/arXiv.2310.19549
    (submitted on 30 Oct 2023)
    Keywords: [review], [topological phases], [quantum phases], [synthetic dimensions]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  16. A. Miranowicz, J. Kadlec, K. Bartkiewicz, A. Černoch, Y.-N. Chen, K. Lemr, F. Nori,
    Quantifying nonclassicality of vacuum-one-photon superpositions via potentials for Bell nonlocality, quantum steering, and entanglement,
    e-print arXiv:2309.12930 . [PDF] 
    DOI: 10.48550/arXiv.2309.12930
    (submitted on 22 Sep 2023)
    Keywords: [hierarchy of quantum correlations], [nonclassicality measures], [nonlocality], [steering], [entanglement], [linear optics]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  17. Yuma Watanabe, Utso Bhattacharya, Ravindra W. Chhajlany, Javier Argüello-Luengo, Maciej Lewenstein, Tobias Graß:
    Competing order in two-band Bose-Hubbard chains with extended-range interactions,
    e-print arXiv:2309.01121 . [PDF] 
    DOI: 10.48550/arXiv.2309.01121
    (submitted on 3 September 2023)
    Keywords: [Bose-Hubbard model], [superfluidity], [supersolidity], [Mott insulators]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  18. A. Krzywicka, T. P. Polak:
    Reentrant phase behavior in systems with density-induced tunneling,
    e-print arXiv:2308.16423 . [PDF] 
    DOI: 10.48550/arXiv.2308.16423
    (submitted on 31 August 2023)
    Keywords: [Bose-Hubbard model], [superfluidity], [quantum tunneling], [dissipation]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  19. Vojtěch Trávníček, Jan Roik, Karol Bartkiewicz, Antonín Černoch, Paweł Horodecki, Karel Lemr:
    Sensitivity versus selectivity in entanglement detection via collective witnesses,
    e-print arXiv:2307.08293 . [PDF] 
    DOI: 10.48550/arXiv.2307.08293
    (submitted on 17 July 2023)
    Keywords: [supervised learning], [artificial neural networks], [entanglement], [collective witnesses]
    Grant tasks: #3: Algorithmic approach to quantum engineering.
  20. Wanhua Su, Wei Qin, Adam Miranowicz, Tao Li, Franco Nori:
    Heralded quantum entangling gate for distributed quantum computation in a decoherence-free subspace,
    e-print arXiv:2305.00642 . [PDF] 
    DOI: 10.48550/arXiv.2305.00642
    (submitted on 1 May 2023)
    Keywords: [quantum gates], [distributed quantum computation], [decoherence-free subspaces]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  21. Chun-Wang Wu, Man-Chao Zhang, Yan-Li Zhou, Ting Chen, Ran Huang, Yi Xie, Bao-Quan Ou, Wei Wu, Adam Miranowicz, Jie Zhang, Hui Jing, Ping-Xing Chen:
    Maximizing temporal quantum correlation by approaching an exceptional point,
    e-print arXiv:2304.06590 . [PDF] 
    DOI: 10.48550/arXiv.2304.06590
    (submitted on 13 Apr 2023).
    Keywords: [exceptional points], [Leggett-Garg inequalities], [temporal correlations], [nonclassicality tests]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  22. Kelvin Onggadinata, Paweł Kurzyński, Dagomir Kaszlikowski:
    Operational approach to bilocality with joint probability distributions,
    DOI: 10.48550/arXiv.2302.03263
    (submitted on 7 February 2023)
    Keywords: [network nonlocality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.
  23. Kelvin Onggadinata, Dagomir Kaszlikowski, Pawel Kurzynski:
    A new look at the Kochen-Specker theorem - emergence of completeness,
    e-print arXiv:2210.06822 . [PDF] 
    (posted on 13 Oct 2022).
    Keywords: [contextuality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.
  24. Andrzej Grudka, Marcin Karczewski, Pawel Kurzynski, Jan Wojcik, Antoni Wojcik:
    Relative homotopy approach to topological phases in quantum walks,
    e-print arXiv:2209.12820 . [PDF] 
    (posted on 26 Sep 2022).
    Keywords: [quantum walks], [topological phases], [symmetries], [topological invariants]
    Grant tasks: #3.A: Cellular automata. #3.B: Dissipative quantum walks.
  25. C. Lagoin, U. Bhattacharya, T. Grass, R. Chhajlany, T. Salamon, K. Baldwin, L. Pfeiffer, M. Lewenstein, M. Holzmann, F. Dubin:
    Checkerboard solid of dipolar excitons in a two-dimensional lattice,
    e-print arXiv:2201.03311 . [PDF] 
    (Submitted on 10 Jan 2022).
    Keywords: [Bose-Hubbard model], [exciton checkerboard], [dipolar excitons]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  26. Kelvin Onggadinata, Pawel Kurzynski, Dagomir Kaszlikowski:
    Local Activation of Non-locality With Negative Bits,
    e-print arXiv:2106.07945 . [PDF] 
    (submitted on 15 Jun 2021)
    Keywords: [quantum walks], [nonlocality], [nonclassicality], [negative probabilistic bits (nebits)]
    Grant tasks: #3.B: Dissipative quantum walks. #1.D: Measurement-based projective synthesis.
  27. Dawid Maskalaniec, Karol Bartkiewicz:
    Hierarchy and robustness of multilevel two-time temporal quantum correlations,
    e-print arXiv:2106.02844 . [PDF] 
    (submitted on 5 Jun 2021)
    Keywords: [temporal quantum correlations], [nonlocality], [steering], [entanglement], [noise robustness]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  28. Edgar A. Aguilar, Hanna Wojewódka-Ściążko, Maciej Stankiewicz, Christopher Perry, Piotr Ćwikliński, Andrzej Grudka, Karol Horodecki, Michał Horodecki:
    Thermal operations in general are not memoryless,
    e-print arXiv:2009.03110 . [PDF] 
    (Submitted on 7 Sep 2020 (v1))
    Keywords: [thermal operations], [quantum memory]
    Grant task #3: Algorithmic approach to quantum engineering.
  29. F. Minganti, I.I. Arkhipov, A. Miranowicz, F. Nori:
    Correspondence between Dissipative Phase Transitions of Light and Time Crystals,
    e-print arXiv:2008.08075 . [PDF] 
    (Submitted on 18 Aug 2020)
    Keywords: [dissipative phase transitions], [time crystals], [quantum reservoir engineering], [Liouvillians], [quantum trajectories]
    Grant task #4.B: Quantum reservoir engineering.
  30. G. Chimczak, A. Kowalewska-Kudłaszyk, E. Lange, K. Bartkiewicz:
    Equilibrium frame reveals hidden PT-symmetry of passive systems,
    e-print arXiv:2008.06532 . [PDF] 
    (Submitted on 14 Aug 2020)
    Keywords: [PT-symmetry], [non-Hermitian Hamiltonians]
    Grant task #1.B: Active PT-symmetric systems.

Articles accepted for publication

  1. /71/ Chia-Yi Ju, Adam Miranowicz, Yueh-Nan Chen, Guang-Yin Chen, Franco Nori,
    Emergent Parallel Transports and Curvatures in Non-Hermitian Quantum Mechanics,
    to appear in Quantum (2024),  e-print arXiv:arXiv:2204.05657 . [PDF] 
    DOI: 10.48550/arXiv.arXiv:2204.05657
    (accepted on 26 Feb 2024)
    Keywords: [non-Hermitian quantum mechanics], [general relativity], [geometry of Hilbert space bundle], [geometric interpretation of Schrödinger equation], [parallel transport], [Berry curvature], [fidelity susceptibility], [Christoffel symbol], [gauge symmetry]
    Grant tasks: #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.

  2. /70/ Arnab Laha, Adam Miranowicz, R. K. Varshney, and Somnath Ghosh,
    Correlated nonreciprocity around conjugate exceptional points,
    to appear in Phys. Rev. A (2024),  e-print arXiv:2308.13643 . [PDF] 
    DOI: 10.48550/arXiv.2308.13643
    (accepted on 23 Feb 2024) . 
    Keywords: [exceptional points], [nonreciprocity]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems.

  3. /69/ Wei Qin, Adam Miranowicz, Franco Nori,
    Proposal of ensemble qubits with two-atom decay,
    to appear in New Journal of Physics (2024),  e-print arXiv:2302.06781 . [PDF] 
    DOI: 10.48550/arXiv.2302.06781
    (accepted on 21 Feb 2024)
    Keywords: [quantum dissipative engineering], [ensemble qubits], [degenerate parametric amplification], [squeezing]
    Grant tasks: #4.A: Enhanced interactions via dissipative quantum engineering. #4.0: Quantum noise reduction.

  4. /68/ Deng-Gao Lai, Cui-Hong Wang, Adam Miranowicz, and Franco Nori,
    Exceptional refrigeration of mechanical resonators beyond their mass and temperature limitations,
    to appear in Optica (2024),  preprint 
    (accepted on 8 Jan 2024)
    Keywords: [exceptional points], [cavity optomechanics], [cooling]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.

Publications

    2024

  1. /67/ Marek Kopciuch, Magdalena Smolis, Adam Miranowicz, and Szymon Pustelny,
    Optimized experimental optical tomography of quantum states of room-temperature alkali-metal vapor,
    Phys. Rev. A 109, 032402 (2024),  e-print arXiv:2307.01160 . [PDF] 
    DOI: 10.1103/PhysRevA.109.032402
    (published on 1 March 2024)
    Keywords: [experiment], [quantum state tomography], [atomic vapors]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering
    Keywords: [experiment], [quantum state tomography], [atomic vapors]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering

  2. /66/ Kelvin Onggadinata, Dagomir Kaszlikowski, and Paweł Kurzyński,
    Observer effect, quasi-probabilities and generalized Specker's boxes,
    Phil. Trans. R. Soc. A382, 20230010 (2024), 
    DOI: 10.1098/rsta.2023.0010
    (published on 29 Jan 2024)
    Keywords: [contextuality],[nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.
  3. /65/ J. Kadlec, K. Bartkiewicz, A. Černoch, K. Lemr, A. Miranowicz,
    Experimental hierarchy of the nonclassicality of single-qubit states via potentials for entanglement, steering, and Bell nonlocality,
    Opt. Express 32, 2333-2346 (2024),  e-print arXiv:2309.12878 . [PDF] 
    DOI: 10.1364/OE.506169
    (published on 9 Jan 2024)
    Keywords: [experiment], [hierarchy of quantum correlations], [nonclassicality measures], [nonlocality], [steering], [entanglement], [linear optics]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  4. /64/ Ye-Hong Chen, Yuan Qiu, Adam Miranowicz, Neill Lambert, Wei Qin, Roberto Stassi, Yan Xia, Shi-Biao Zheng, Franco Nori,
    Sudden change of the photon output field marks phase transitions in the quantum Rabi model,
    Communications Physics 7, 5 (2023),  DOI: 10.1038/s42005-023-01457-w
    e-print arXiv:2207.12156 . [PDF] 
    (published on 5 Jan 2024)
    Keywords: [quantum phase transitions], [Rabi model], [ultrastrong coupling (USC) of light and matter]
    Grant task #2: Exceptional points. #1.B: Active PT-symmetric systems. #4.A: Enhanced interactions via quantum dissipative engineering.

    2023

  5. /63/ Kelvin Onggadinata, Paweł Kurzyński, and Dagomir Kaszlikowski,
    Simulations of quantum nonlocality with local negative bits,
    Phys. Rev. A 108, 032204 (2023),  e-print arXiv:2106.07945 . [PDF] 
    DOI: 10.1103/PhysRevA.108.032204
    (Published on 6 September 2023),
    Keywords: [contextuality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant tasks: #1.D: Measurement-based projective synthesis.

  6. /62/ Paweł Cieśliński, Waldemar Kłobus, Paweł Kurzyński, Tomasz Paterek, Wiesław Laskowski,
    The fastest generation of multipartite entanglement with natural interactions,
    New J. Phys. 25 093040 (2023),  e-print arXiv:2303.09238 . [PDF] 
    DOI: 10.1088/1367-2630/acf953
    (Published on 25 September 2023),
    Keywords: [entanglement generation], [quantum state engineering]
    Grant tasks: #3: Multipartite entanglement engineering.

  7. /61/ Andrzej Grudka, Paweł Kurzyński, Adam S. Sajna, Jan Wójcik, and Antoni Wójcik,
    Exposing hypersensitivity in quantum chaotic dynamics,
    Phys. Rev. E 108, 064212 (2023),  e-print arXiv:2307.14678 . [PDF] 
    DOI: 10.1103/PhysRevE.108.064212
    (Published on 21 December 2023),
    Keywords: [hypersensitivity to perturbations], [quantum chaos]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering.

  8. /60/ Jan Wójcik, Grzegorz Chimczak,
    Electrically coupled optomechanical cavities as a tool for quantum nondemolition measurement,
    Phys. Lett. 490, 129187 (2033)  e-print arXiv:2309.10159 . [PDF] 
    DOI: 10.1016/j.physleta.2023.129187
    (published on 5 December 2023)
    Keywords: [quantum nondemolition measurements (QND)], [optomechanics], [cross-Kerr effect]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering.
  9. /59/ Javid Naikoo, Ravindra W. Chhajlany, Jan Kolodynski,
    Multiparameter estimation perspective on non-Hermitian singularity-enhanced sensing,
    Phys. Rev. Lett. 131, 220801 (2033);  e-print arXiv:2303.05532 . [PDF] 
    DOI: 10.1103/PhysRevLett.131.220801
    (published on 29 Nov 2023)
    Keywords: [quantum sensing], [non-Hermitian singularities], [exceptional points]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems.
  10. /58/ Ievgen I. Arkhipov, Adam Miranowicz, Franco Nori, Sahin K. Özdemir, Fabrizio Minganti,
    Fully solvable finite simplex lattices with open boundaries in arbitrary dimensions,
    Phys. Rev. Research 108, 033512 (2023),  e-print arXiv:2206.14779 . [PDF] 
    DOI: 10.1103/PhysRevResearch.5.043092
    (Published on 26 October 2023)
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  11. /57/ Jan Perina Jr., Adam Miranowicz, Joanna K. Kalaga, Wieslaw Leonski,
    Unavoidability of nonclassicality loss in PT-symmetric systems,
    Phys. Rev. A 108, 033512 (2023),  e-print arXiv:2302.04235 . [PDF] 
    DOI: 10.1103/PhysRevA.108.033512
    (Published on 15 September 2023)
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  12. /56/ Ri-Hua Zheng, Wen Ning, Ye-Hong Chen, Jia-Hao Lü, Li-Tuo Shen, Kai Xu, Yu-Ran Zhang, Da Xu, Hekang Li, Yan Xia, Fan Wu, Zhen-Biao Yang, Adam Miranowicz, Neill Lambert, Dongning Zheng, Heng Fan, Franco Nori, and Shi-Biao Zheng,
    Observation of a Superradiant Phase Transition with Emergent Cat States,
    Phys. Rev. Lett. 131, 113601 (2023),  e-print arXiv:2207.05512 . [PDF] 
    DOI: 10.1103/PhysRevLett.130.113601
    (Published 11 September 2023)
    Keywords: [experiment], [Schrödinger cat states], [quantum dissipative engineering]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  13. /55/ Karol Bartkiewicz, Patrycja Tulewicz, Jan Roik, Karel Lemr,
    Synergic quantum generative machine learning,
    Sci. Rep. 13, 12893 (2023),  e-print arXiv:2112.13255 . [PDF] 
    (Published on 9 August 2021)
    Keywords: [quantum machine learning], [quantum collaborative generative network], [generative adversarial network]
    Grant task #3: Algorithmic approach to quantum engineering.
  14. /54/ Andrzej Grudka, Paweł Kurzyński, Tomasz P. Polak, Adam S. Sajna, Jan Wójcik, and Antoni Wójcik,
    Complementarity in quantum walks,
    J. Phys. A: Math. Theor. 56, 275303 (2023), 
    DOI: 10.1088/1751-8121/acdcd0
    (published on 19 June 2023).
    Keywords: [quantum walks], [complementarity], [mutually unbiassed bases], [almost mutually unbiassed bases]
    Grant task #3.A: Cellular automata. #3.B: Dissipative quantum walks.
  15. /53/ Kelvin Onggadinata, Paweł Kurzyński, and Dagomir Kaszlikowski,
    Qubits from the classical collision entropy,
    Phys. Rev. A 107, 032214 (2023), 
    DOI: 10.1103/PhysRevA.107.032214
    (published on 20 March 2023).
    Keywords: [contextuality],[nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant task #1.D: Measurement-based projective synthesis.
  16. /52/ Andrzej Grudka, Marcin Karczewski, Paweł Kurzyński, Jan Wójcik, and Antoni Wójcik,
    Topological invariants in quantum walks,
    Phys. Rev. A 107, 032201 (2023), 
    DOI: 10.1103/PhysRevA.107.032201
    (published on 1 March 2023).
    Keywords: [quantum walks], [topological phases], [symmetries], [topological invariants]
    Grant task #3.A: Cellular automata. #3.B: Dissipative quantum walks.
  17. /51/ Kelvin Onggadinata, Dagomir Kaszlikowski, and Paweł Kurzyński,
    Reexamination of the Kochen-Specker theorem: Relaxation of the completeness assumption,
    Phys. Rev. A 107, 022223 (2023), 
    DOI: 10.1103/PhysRevA.107.022223
    (published on 22 February 2023).
    Keywords: [contextuality], [nonclassicality], [joint probability distributions], [negative probabilistic bits (nebits)]
    Grant task #1.D: Measurement-based projective synthesis.
  18. /50/ Shilan Abo, Jan Soubusta, Kateřina Jiráková, Karol Bartkiewicz, Antonín Černoch, Karel Lemr, Adam Miranowicz,
    Experimental hierarchy of two-qubit quantum correlations without state tomography,
    Sci. Rep. 13, 8564 (2023),  e-print arXiv:2302.10159 . [PDF] 
    DOI: 10.1038/s41598-023-35015-9
    (published on 26 May 2023).
    Keywords: [nonlocality], [steering], [entanglement], [noise robustness], [experiment], [linear optics]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  19. /49/ Ievgen I. Arkhipov, Adam Miranowicz, Fabrizio Minganti, Şahin K. Özdemir, Franco Nori,
    Dynamically encircling an exceptional curve by crossing diabolic points: A programmable multimode switch,
    Nat. Comm. 14, 2076 (2023) , e-print arXiv:2210.14840 . [PDF] 
    DOI: 10.1038/s41467-023-37275-5
    (published on 12 April 2023).
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  20. /48/ Grzegorz Chimczak, Anna Kowalewska-Kudłaszyk, Ewelina Lange, Karol Bartkiewicz, and Jan Perina Jr.,
    The effect of thermal photons on exceptional points in coupled resonators,
    Sci. Rep. 13, 5859 (2023),  e-print arXiv:2305.08150 . [PDF] 
    DOI: 10.1038/s41598-023-32864-2
    (Published on 11 April 2023).
    Keywords: [thermal environment], [superconducting systems], [Liouvillian exceptional points], [linear optics]
    Grant tasks: #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems. #1.D: Quantum-optical implementations and simulations of PT-symmetric systems. #2.A: Quantum EPs.
  21. /47/ Alberto Mercurio, Shilan Abo, Fabio Mauceri, Enrico Russo, Vincenzo Macri, Adam Miranowicz, Salvatore Savasta, and Omar Di Stefano,
    Pure Dephasing of Light-Matter Systems in the Ultrastrong and Deep-Strong Coupling Regimes,
    Phys. Rev. Lett. 130, 123601 (2023),  e-print arXiv:arXiv:2205.05352 . [PDF] 
    DOI: 10.1103/PhysRevLett.130.123601
    (published on 21 March 2023).
    Keywords: [ultrastrong coupling (USC) of light and matter], [deep-strong coupling (DSC)], [generalized master], [quantum Rabi model], [Hopfield model], [Coulomb gauge], [dipole gauge]
    Grant task #4.A: Ultrastrong coupling of light and matter.
  22. /46/ Kuan-Yi Lee, Jhen-Dong Lin, Adam Miranowicz, Franco Nori, Huan-Yu Ku, and Yueh-Nan Chen,
    Steering-enhanced quantum metrology using superpositions of quantum channels,
    Phys. Rev. Research 5, 013103 (2023),  e-print arXiv:arXiv:2206.03760 . [PDF] 
    DOI: 10.1103/PhysRevResearch.5.013103
    (published on 13 Jan 2023).
    Keywords: [quantum metrology], [steering], [entanglement], [IBMQ experiment], [quantum channels]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.

    2022

  23. /45/ Jan Perina Jr., Adam Miranowicz, Grzegorz Chimczak, Anna Kowalewska-Kudlaszyk,
    Quantum Liouvillian exceptional and diabolical points for bosonic fields with quadratic Hamiltonians,
    The Heisenberg-Langevin equation approach,

    Quantum 6, 883 (2022),  e-print arXiv:2206.14745 . [PDF] 
    DOI: 10.22331/q-2022-12-22-883
    (published on 22 Dec 2022).
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  24. /44/ Ye-Hong Chen, Adam Miranowicz, Xi Chen, Yan Xia, Franco Nori,
    Enhanced-Fidelity Ultrafast Geometric Quantum Computation Using Strong Classical Drives,
    Phys. Rev. Applied 18, 064059 (2022),  e-print arXiv:arXiv:2203.06831 . [PDF] 
    DOI: 10.1103/PhysRevApplied.18.064059
    (published on 20 Dec 2022)
    Keywords: [geometric quantum computation], [beyond rotating-wave approximation]
    Grant tasks: #2: Exceptional points. #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  25. /43/ Tymoteusz Salamon, Bernhard Irsigler, Debraj Rakshit, Maciej Lewenstein, Tobias Grass, Ravindra Chhajlany,
    Flat-band-induced superconductivity in synthetic bilayer optical lattices,
    Phys. Rev. B 106, 174503 (2022),  e-print arXiv:2207.13013 . [PDF] 
    DOI: 10.1103/PhysRevB.106.174503
    (published on 4 Nov 2022)
    Keywords: [superconductivity], [optical lattices], [synthetic twisted bilayers]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  26. /42/ Shilan Abo, Grzegorz Chimczak, Anna Kowalewska-Kudlaszyk, Jan Perina Jr., Ravindra Chhajlany, Adam Miranowicz,
    Hybrid photon-phonon blockade,
    Scientific Reports 12, 17655 (2022),  e-print arXiv:2207.09388 . [PDF] 
    DOI: 10.1038/s41598-022-21267-4
    (published on 21 Oct 2022)
    Keywords: [photon blockade], [phonon blockade], [photon-induced tunneling (PIT)], [photon antibunching], [quantum dissipative engineering], [circuit QED], [quantum optomechanics]
    Grant tasks: #1. Quantum engineering with loss, gain, and nonlinearity. #1.A: Photon blockade.
  27. /41/ Andrzej Grudka and Antoni Wójcik,
    Comment on "Quantum principle of relativity",
    New J. Phys. 24, 098001 (2022);  e-print arXiv:2112.05658 . [PDF] 
    DOI: 10.1088/1367-2630/ac924e
    (published on 3 Oct 2022)
    Keywords: [principle of relativity], [superluminal particles], [Lorentz transformation]
  28. /40/ Waldemar Kłobus, Paweł Kurzyński, Marek Kuś, Wiesław Laskowski, Robert Przybycień, Karol Życzkowski,
    Transition from order to chaos in reduced quantum dynamics,
    Phys. Rev. E 105, 034201 (2022),  e-print arXiv:2111.13477 . [PDF] 
    DOI: 10.1103/PhysRevE.105.034201
    (published on 2 March 2022)
    Keywords: [quantum chaos], [kicked top], [effective nonlinear dynamics]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  29. /39/ Wei Qin, Adam Miranowicz, and Franco Nori,
    Beating the 3 dB Limit for Intracavity Squeezing and Its Application to Nondemolition Qubit Readout,
    Phys. Rev. Lett. 129, 123602 (2022),  e-print arXiv:2203.06892 . [PDF] 
    DOI: 10.1103/PhysRevLett.129.123602
    (published on 14 Sep 2022)
    Keywords: [squeezing of light], [quantum parametric amplifier], [nondemolition qubit readout]
    Grant tasks: #4.A: Enhanced interactions via dissipative quantum engineering. #4.0: Quantum noise reduction.
  30. /38/ C. Lagoin, U. Bhattacharya, T. Grass, R. W. Chhajlany, T. Salamon, K. Baldwin, L. Pfeiffer, M. Lewenstein, M. Holzmann, and F. Dubin,
    Extended Bose–Hubbard model with dipolar excitons,
    Nature 609, 485–489 (2022)  DOI: 10.1038/s41586-022-05123-z
    (published on 14 Sep 2022)
    Keywords: [Bose–Hubbard model], [Phase transitions and critical phenomena], [Quantum fluids and solids]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  31. /37/ Rui Xu, Deng-Gao Lai, Bang-Pin Hou, Adam Miranowicz, and Franco Nori,
    Millionfold improvement in multivibration-feedback optomechanical refrigeration via auxiliary mechanical coupling,
    Phys. Rev. A 106, 033509 (2022),  www
    DOI: 10.1103/PhysRevA.106.033509
    (published on 13 Sep 2022)
    Keywords: [cavity optomechanics], [cooling], [entanglement]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  32. /36/ Y.-H. Chen, R. Stassi, W. Qin, A. Miranowicz, F. Nori,
    Fault-Tolerant Multiqubit Geometric Entangling Gates Using Photonic Cat-State Qubits,
    Phys. Rev. Applied 18, 024076 (2022),  e-print arXiv:2109.04643 . [PDF] 
    DOI: 10.1103/PhysRevApplied.18.024076
    (published on August 29, 2022)
    Keywords: [fault-tolerant quantum gates], [Schrödinger cat states], [quantum dissipative engineering]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  33. /35/ Deng-Gao Lai, Ye-Hong Chen, Wei Qin, Adam Miranowicz, and Franco Nori,
    Tripartite optomechanical entanglement via optical-dark-mode control,
    Phys. Rev. Research 4, 033112 (2022). 
    DOI: 10.1103/PhysRevResearch.4.033112
    (published on August 10, 2022)
    Keywords: [cavity optomechanics], [entanglement], [dark modes]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  34. /34/ Deng-Gao Lai, Wei Qin, Adam Miranowicz, Franco Nori,
    Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop,
    Giant enhancement in mechanical susceptibilities and net cooling rates

    Phys. Rev. Research 4, 033102 (2022). 
    DOI: 10.1103/PhysRevResearch.4.033102
    (published on 5 August 2022)
    Keywords: [cavity optomechanics], [cooling], [entanglement]
    Grant task #4.B: Quantum reservoir engineering.
  35. /33/ Deng-Gao Lai, Jie-Qiao Liao, Adam Miranowicz, and Franco Nori,
    Noise-Tolerant Optomechanical Entanglement via Synthetic Magnetism,
    Phys. Rev. Lett. 129, 063602 (2022),  e-print arXiv:2201.10814 . [PDF] 
    DOI: 10.1103/PhysRevLett.129.063602
    (published on 3 August 2022)
    Keywords: [cavity optomechanics], [entanglement], [synthetic magnetism], [noise robustness]
    Grant task #4.B: Quantum reservoir engineering.
  36. /32/ A. Krzywicka, T. P. Polak,
    Coexistence of two kinds of superfluidity at finite temperatures in optical lattices,
    Annals of Physics 443, 168973 (2022),  e-print arXiv:2105.04788 . [PDF] 
    DOI: 10.1016/j.aop.2022.168973
    (Available online 20 June 2022)
    Keywords: [Bose-Hubbard model], [superfluidity], [quantum tunneling], [thermal fluctuations]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  37. /31/ Jan Roik, Karol Bartkiewicz, Antonín Černoch, Karel Lemr,
    Entanglement quantification from collective measurements processed by machine learning,
    Phys. Lett. A 446, 128270 (2022),  e-print arXiv:2203.01607 . [PDF] 
    DOI: 10.1016/j.physleta.2022.128270
    (Available online 14 June 2022)
    Keywords: [quantum machine learning], [entanglement], [collective measurements]
    Grant task #3: Algorithmic approach to quantum engineering.
  38. /30/ H.-Y. Ku, J. Kadlec, A. Černoch, W. Zhou, K. Lemr, N. Lambert, A. Miranowicz, S.-L. Chen, F. Nori, Y.-N. Chen,
    Detecting quantum non-breaking channels without entanglement,
    PRX Quantum 3, 020338 (2022),  e-print arXiv:2106.15784 . [PDF] 
    DOI: 10.1103/PRXQuantum.3.020338
    (published on 19 May 2022)
    Keywords: [nonlocality], [steering], [entanglement], [experiment], [linear optics]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  39. /29/ Ch.-Y. Ju, A. Miranowicz, F. Minganti, C.-Ts. Chan, G.-Y. Chen, F. Nori,
    Flattening the Curve with Einstein's Quantum Elevator,
    Hermitization of Non-Hermitian Hamiltonians via the Vielbein Formalism
    ,
    Phys. Rev. Research 4, 023070 (2022),  e-print arXiv:2107.11910 . [PDF] 
    DOI: 10.1103/PhysRevResearch.4.023070
    (published on 25 Apr 2022)
    Keywords: [non-Hermitian quantum mechanics], [PT-symmetry], [vielbein formalism]
    Grant tasks: #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  40. /28/ Y.-H. Kang, Y.-H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S.-B. Zheng, F. Nori,
    Nonadiabatic geometric quantum computation with cat qubits via invariant-based reverse engineering,
    Phys. Rev. Research 4, 013233 (2022),  e-print arXiv:2110.01933 . [PDF] 
    DOI: 10.1103/PhysRevResearch.4.013233
    (published on 28 March 2022)
    Keywords: [fault-tolerant quantum gates], [Schrödinger cat states], [quantum dissipative engineering]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  41. /27/ A. Krzywicka, T. P. Polak,
    Entropy of pair condensed bosons at finite temperatures in optical lattices with bond-charge interaction,
    Journal of Magnetism and Magnetic Materials 542, 168589 (2022),  e-print arXiv:2110.11902 . [PDF] 
    DOI: 10.1016/j.jmmm.2021.168589
    (published on 15 Jan 2022)
    Keywords: [Bose-Hubbard model], [superfluidity], [quantum tunneling], [thermal fluctuations]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  42. /26/ Adam S. Sajna and Paweł Kurzyński,
    Collective dynamics of N-partite quantum systems: The role of entanglement, classical correlations, and interaction,
    Phys. Rev. A 105, 012206 (2022),  e-print arXiv:2110.11902 . [PDF] 
    DOI: 10.1103/PhysRevA.105.012206
    (published on 10 January 2022)
    Keywords: [entanglement], [collective dynamics]
    Grant tasks: #3.A: Cellular automata. Dissipative dynamics for generation of stable multipartite entangled states. #3.B: Dissipative quantum walks.

    2021

  43. /25/ F. Minganti, I. I. Arkhipov, A. Miranowicz, F. Nori,
    Continuous Dissipative Phase Transitions with or without Symmetry Breaking,
    New J. Phys. 23, 122001 (2021),  e-print arXiv:2110.11902 . [PDF] 
    DOI: 10.1088/1367-2630/ac3db8
    (published on 22 Dec 2021)
    Keywords: [Liouvillian spectral collapse], [phase transitions], [dynamical hysteresis], [diabolic points]
    Grant task #4.B: Quantum reservoir engineering.
  44. /24/ F. Minganti, I. I. Arkhipov, A. Miranowicz, F. Nori,
    Liouvillian spectral collapse in the Scully-Lamb laser model
    Phys. Rev. Research 3, 043197 (2021),  e-print arXiv:2103.05625 . [PDF] 
    DOI: 10.1103/PhysRevResearch.3.043197
    (published on 21 Dec 2021)
    Keywords: [Scully-Lamb laser], [phase transitions], [dynamical hysteresis], [diabolic points]
    Grant task #4.B: Quantum reservoir engineering.
  45. /23/ K. Jiráková, A. Černoch, K. Lemr, K. Bartkiewicz, A. Miranowicz,
    Experimental hierarchy and optimal robustness of quantum correlations of two-qubit states with controllable white noise,
    Phys. Rev. A 104, 062436 (2021),  e-print arXiv:2103.03691 . [PDF] 
    DOI: 10.1103/PhysRevA.104.062436
    (published on 21 Dec 2021)
    Keywords: [nonlocality], [steering], [entanglement], [noise robustness], [experiment], [linear optics]
    Grant tasks: #1.D: Measurement-based projective synthesis; #4.B: Quantum reservoir engineering.
  46. /22/ Paweł Kurzyński,
    Weighted Bures length uncovers quantum state sensitivity,
    Phys. Rev. E 104, L052202,  e-print arXiv:2106.14081 . [PDF] 
    DOI: 10.1103/PhysRevE.104.L052202
    (published on 18 November 2021)
    Keywords: [weighted Bures length], [quantum sensitivity], [cellular automata], [graphs]
    Grant task #3.A: Cellular automata.
  47. /21/ Andrzej Grudka, Paweł Kurzyński, Antoni Wójcik,
    Quantum semipermeable barriers: Investigating Maxwell's demon toolbox,
    Phys. Rev. E 104, 064114,  e-print arXiv:2105.12179 . [PDF] 
    DOI: 10.1103/PhysRevE.104.064114
    (published on 17 Nov 2021)
    Keywords: [Maxwell's Demon], [quantum walks on graphs]
    Grant tasks: #4.A: Enhanced interactions via quantum dissipative engineering; #4.B: Quantum reservoir engineering.
  48. /20/ H. Xu, D.-G. Lai, Y.-B. Qian, B.-P. Hou, A. Miranowicz, F. Nori,
    Optomechanical dynamics in the PT- and broken-PT-symmetric regimes,
    Phys. Rev. A 104, 053518 (2021),  e-print arXiv:2107.13891 . [PDF] 
    DOI: 10.1103/PhysRevA.104.053518
    (published on 17 Nov 2021)
    Keywords: [optomechanics], [PT-symmetry]
    Grant task #1.B: Active PT-symmetric systems.
  49. /19/ Y. Li, Y.-F. Jiao, J.-X. Liu, A. Miranowicz, Y.-L. Zuo, L.-M. Kuang, and H. Jing,
    Coherent vectorial switch of optomechanical entanglement,
    Nanophotonics 11, 67-77 (2021) ; e-print arXiv:2107.08384 . [PDF] 
    DOI: 10.1515/nanoph-2021-0485
    (published on 1 Nov 2021)
    Keywords: [optomechanics], [entanglement]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  50. /18/ D.-G. Lai, W. Qin, B.-P. Hou, A. Miranowicz, F. Nori,
    Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted optomechanical systems,
    Phys. Rev. A 104, 043521 (2021),  e-print arXiv:2110.02663 . [PDF] 
    DOI: 10.1103/PhysRevA.104.043521
    (Published 22 October 2021)
    Keywords: [cavity optomechanics], [cooling], [entanglement]
    Grant task #4.B: Quantum reservoir engineering.
  51. /17/ W. Qin, A. Miranowicz, H. Jing, and F. Nori,
    Generating long-lived macroscopically distinct superposition states in atomic ensembles,
    Phys. Rev. Lett. 127, 093602 (2021),  e-print arXiv:2101.03662 . [PDF] 
    DOI: 10.1103/PhysRevLett.127.093602
    (Published on 23 August 2021)
    Keywords: [Schrödinger cat states], [quantum dissipative engineering]
    Grant task #4.B: Quantum reservoir engineering.
  52. /16/ Xiaoxiao Chen, Zhe Meng, Jian Li, Jiazhi Yang, Anning Zhang, Tomasz Kopyciuk, Pawel Kurzynski,
    Nonclassical oscillations in pre- and post-selected quantum walks,
    Phys. Rev. A 104, 012220 (2021),  e-print arXiv:2012.13488 . [PDF] 
    DOI: 10.1103/PhysRevA.104.012220
    (Published on 28 July 2021),
    Keywords: [quantum walks], [contextuality], [nonclassicality], [quantum-optical experiment]
    Grant tasks: #3.B: Dissipative quantum walks. #1.D: Measurement-based projective synthesis.
  53. /15/ I. I. Arkhipov, F. Minganti, A. Miranowicz, F. Nori,
    Generating high-order quantum exceptional points,
    Phys. Rev. A 104, 012205 (2021),  e-print arXiv:2102.13646 . [PDF] 
    DOI: 10.1103/PhysRevA.104.012205
    (Published on 8 July 2021)
    Keywords: [quantum dissipative engineering], [exceptional points], [non-Hermitian Hamiltonians], [Liouvillians]
    Grant tasks: #1.B: Active PT-symmetric systems. #1.C: Passive PT-symmetric systems.
  54. /14/ Jan Roik, Karol Bartkiewicz, Antonín Černoch, Karel Lemr,
    Accuracy of Entanglement Detection via Artificial Neural Networks and Human-Designed Entanglement Witnesses,
    Phys. Rev. Applied 15, 054006 (2021),  e-print arXiv:2011.11340 . [PDF] 
    DOI: 10.1103/PhysRevApplied.15.054006
    (Published on 4 May 2021)
    Keywords: [quantum-optical experiment], [entanglement detection], [artificial neural networks]
    Grant task #3: Algorithmic approach to quantum engineering.
  55. /13/ Julia Stasińska, Omjyoti Dutta, Luca Barbiero, Maciej Lewenstein, Ravindra W. Chhajlany,
    Clustered Superfluids in the One Dimensional Bose-Hubbard model with extended correlated hopping,
    Phys. Rev. B 103, 134513 (2021),  e-print arXiv:2010.14459 . [PDF] 
    DOI: 10.1103/PhysRevB.103.134513
    (Published on 23 April 2021)
    Keywords: [superfluids], [Bose-Hubbard model]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  56. /12/ Joanna K. Kalaga, Anna Kowalewska-Kudłaszyk, Mateusz Nowotarski, and Wiesław Leo\'nski,
    Violation of Leggett–Garg Inequalities in a Kerr-Type Chaotic System,
    Photonics 8, 20 (2021) 
    DOI: 10.3390/photonics8010020
    (Published on 15 January 2021)
    Keywords: [photon blockade], [Leggett–Garg Inequalities], [Kerr model], [chaos]
    Grant task #1.A: Photon blockade.
  57. /11/ Y.-H. Chen, W. Qin, X. Wang, A. Miranowicz, F. Nori,
    Shortcuts to Adiabaticity for the Quantum Rabi Model,
    Efficient Generation of Giant Entangled Cat States via Parametric Amplification,

    Phys. Rev. Lett. 126, 023602 (2021),  e-print arXiv:2008.04078 . [PDF] 
    DOI: 10.1103/PhysRevLett.126.023602
    (Published on 13 January 2021)
    Keywords: [quantum simulations], [Rabi model], [ultrastrong coupling (USC) of light and matter], [shortcuts-to-adiabatic dynamics]
    Grant task #4.A: Ultrastrong coupling of light and matter.

    2020

  58. /10/ V. Trávníček, K. Bartkiewicz, A. Černoch, and K. Lemr,
    Experimental diagnostics of entanglement swapping by a collective entanglement test,
    Phys. Rev. Applied 14, 064071 (2020),  e-print arXiv:2005.13292 . [PDF] 
    DOI: 10.1103/PhysRevApplied.14.064071
    (Published on 24 Dec 2020)
    Keywords: [quantum-optical experiment], [entanglement verification], [quantum dissipative engineering], [amplitude-damping channel]
    Grant tasks: #3: Algorithmic approach to quantum engineering. #4.0: Quantum noise reduction.
  59. /9/ Tymoteusz Salamon, Ravindra W. Chhajlany, Alexandre Dauphin, Maciej Lewenstein, Debraj Rakshit,
    Quantum anomalous Hall phase in synthetic bilayers via twistless twistronics,
    Phys. Rev. B 102, 235126 (2020),  e-print arXiv:2008.02854 . [PDF] 
    DOI: 10.1103/PhysRevB.102.235126
    (Published on 14 December 2020)
    Keywords: [quantum simulations], [twistronics], [anomalous Hall phase]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.
  60. /8/ L. Garziano, A. Ridolfo, A. Miranowicz, G. Falci, S. Savasta, F. Nori,
    Atoms in distant resonators can jointly absorb a single photon,
    Scientific Reports 10, 21660 (2020),  e-print arXiv:1910.00224 . [PDF] 
    DOI: 10.1038/s41598-020-78299-x
    (Published on 10 Dec 2020)
    Keywords: [Rabi model], [ultrastrong coupling of light and matter]
    Grant task #4.A: Ultrastrong coupling of light and matter.
  61. /7/ E. Lange, G. Chimczak, A. Kowalewska-Kudłaszyk, K. Bartkiewicz,
    Rotation-time symmetry in bosonic systems and the existence of exceptional points in the absence of PT symmetry,
    Scientific Reports 10, 19906 (2020),  e-print arXiv:2008.06539 . [PDF] 
    DOI: 10.1038/s41598-020-76787-8
    (Published on 16 Nov 2020)
    Keywords: [PT-symmetry], [RT-symmetry], [exceptional points], [non-Hermitian Hamiltonians]
    Grant tasks: #1.B: Active PT-symmetric systems. #2: Exceptional points.
  62. /6/ W. Qin, Y.-H. Chen, X. Wang, A. Miranowicz, F. Nori,
    Strong Spin Squeezing Induced by Weak Squeezing of Light inside a Cavity,
    Nanophotonics 20200513 (2020)  (IF=7.491), e-print arXiv:1912.04039 . [PDF] 
    DOI: 10.1515/nanoph-2020-0513
    (Published online on 8 October 2020)
    Keywords: [spin squeezing], [light squeezing], [enhanced interactions]
    Grant tasks: #4.A: Enhanced interactions via dissipative quantum engineering. #4.0: Quantum noise reduction.
  63. /5/ Y.-F. Jiao, Y. -L. Zhang, A. Miranowicz, L. -M. Kuang, H. Jing,
    Nonreciprocal Quantum Entanglement Against Backscattering,
    Phys. Rev. Lett. 125, 143605 (2020),  e-print arXiv:2002.11148 . [PDF] 
    DOI: 10.1103/PhysRevLett.125.143605
    (Published on 2 Oct 2020)
    Keywords: [quantum dissipative engineering], [nonreciprocal effects], [quantum entanglement], [quantum nonclassicality]
    Grant task #2.B: Unidirectional propagation.
  64. /4/ C. Sánchez Muñoz, A. F. Kockum, A. Miranowicz, F. Nori,
    Ultrastrong-coupling effects induced by a single classical drive in Jaynes-Cummings-type systems,
    Phys. Rev. A 102, 033716 (2020),  e-print arXiv:1910.12875 . [PDF] 
    DOI: 10.1103/PhysRevA.102.033716
    (Published on 11 Sep 2020)
    Keywords: [quantum simulations], [Rabi model], [ultrastrong coupling of light and matter]
    Grant task #4.A: Quantum simulations of ultrastrong coupling of light and matter.
  65. /3/ I. I. Arkhipov, A. Miranowicz, F. Minganti, F. Nori,
    Liouvillian exceptional points of any order in dissipative linear bosonic systems,
    Coherence functions and switching between PT and anti-PT symmetries,

    Phys. Rev. A 102, 033715 (2020),  e-print arXiv:2006.03557 . [PDF] 
    DOI: 10.1103/PhysRevA.102.033715
    (Published on 11 Sep 2020)
    Keywords: [quantum dissipative engineering], [quantum jumps], [quantum trajectories], [exceptional points], [non-Hermitian Hamiltonians], [Liouvillians], [driven linear systems]
    Grant tasks: #1.B: Active PT-symmetric systems. #2.A: Quantum exceptional points.
  66. /2/ F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, F. Nori,
    Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories,
    Phys. Rev. A 101, 062112 (2020),  e-print arXiv:2002.11620 . [PDF] 
    DOI: 10.1103/PhysRevA.101.062112
    (Published on 24 June 2020)
    Keywords: [quantum dissipative engineering], [quantum jumps], [quantum trajectories], [exceptional points], [non-Hermitian Hamiltonians], [Liouvillians], [driven dissipative qubit]
    Grant tasks: #2.A: Quantum exceptional points. #1.D: Measurement-based projective synthesis.
  67. /1/ Tymoteusz Salamon, Alessio Celi, Ravindra W. Chhajlany, Irénée Frérot, Maciej Lewenstein, Leticia Tarruell, and Debraj Rakshit,
    Simulating Twistronics without a Twist,
    Phys. Rev. Lett. 125, 030504 (2020) .
    e-print arXiv:1912.12736 . [PDF] 
    DOI: 10.1103/PhysRevLett.125.030504
    (Published on 14 July 2020)
    Keywords: [quantum simulations], [twistronics]
    Grant task #4.A: Enhanced interactions via quantum dissipative engineering.

    Research tasks

    #1. Quantum engineering with loss, gain, and nonlinearity.
    #1.A: Photon blockade.
    #1.B: Active PT-symmetric systems (with both losses and gain), including the Scully-Lamb laser model.
    #1.C: Passive PT-symmetric systems (with two dissipative channels without incoherent gain).
    #1.D: Quantum-optical implementations and simulations PT-symmetric systems. Measurement-based projective synthesis for linear-optical simulations of passive PT-symmetric systems.
    #2. Exceptional points (EPs).
    #2.A: Quantum EPs.
    #2.B: Enhanced quantum sensing at semiclassical and quantum EPs. PT-symmetry breaking and unidirectional propagation in the proximity of semiclassical and quantum EPs.
    #3: Algorithmic approach to quantum engineering with losses, gain, and nonlinearities.
    #3.A: Cellular automata. Dissipative dynamics for generation of stable multipartite entangled states.
    #3.B: Dissipative quantum walks.
    #4: Enhanced interactions and quantum noise reduction via quantum dissipative engineering.
    Quantum engineering for increasing optical nonlinearities and matter-light interactions in dissipative quantum systems.
    #4.0: Quantum noise reduction via quantum dissipative engineering.
    This task includes the study of generation and control of quadrature squeezing, photon antibunching, and sub-Poissonian photon number statistics.
    #4.A: Enhanced interactions via quantum dissipative engineering.
    Quantum dissipative engineering and quantum simulations of amplified matter-light interactions, amplified optical nonlinearities, of quantum superpositions of massive objects with amplified excitations. Ultra-strong coupling (USC) of light and matter.
    #4.B: Quantum reservoir engineering.
    Quantum state and interaction engineering via quantum nonlinear reservoirs (i.e., beyond thermal baths).



  68. File translated from TEX by TTHgold, version 4.00.
    On 02 Mar 2024, 17:55.